Skip to main content
Log in

Asymmetric Item Characteristic Curves and Item Complexity: Insights from Simulation and Real Data Analyses

  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

While item complexity is often considered as an item feature in test development, it is much less frequently attended to in the psychometric modeling of test items. Prior work suggests that item complexity may manifest through asymmetry in item characteristics curves (ICCs; Samejima in Psychometrika 65:319–335, 2000). In the current paper, we study the potential for asymmetric IRT models to inform empirically about underlying item complexity, and thus the potential value of asymmetric models as tools for item validation. Both simulation and real data studies are presented. Some psychometric consequences of ignoring asymmetry, as well as potential strategies for more effective estimation of asymmetry, are considered in discussion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Baker, F. B., & Kim, S. H. (Eds.). (2004). Item response theory: Parameter estimation techniques. CRC Press.

  • Bazán, J. L., Branco, M. D., & Bolfarine, H. (2006). A skew item response model. Bayesian Analysis, 1(4), 861–892.

    Article  Google Scholar 

  • Bolfarine, H., & Bazán, J. L. (2010). Bayesian estimation of the logistic positive exponent IRT model. Journal of Educational and Behavioral Statistics, 35, 693–713.

    Article  Google Scholar 

  • Bolt, D. M., Deng, S., & Lee, S. (2014). IRT model misspecification and measurement of growth in vertical scaling. Journal of Educational Measurement, 51(2), 141–162.

    Article  Google Scholar 

  • Bolt, D. M., Kim, J.-S., Blanton, M., & Knuth, E. (2016). Applications of item response theory in mathematics education research. In A. Izsák, J. T. Remillard, & J. Templin (Eds.), Psychometric methods in mathematics education: Opportunities, challenges, and interdisciplinary collaborations. Journal for research in mathematics education monograph series. Reston, VA: National Council of Teachers of Mathematics.

    Google Scholar 

  • Bolt, D. M., & Lall, V. F. (2003). Estimation of compensatory and noncompensatory multidimensional item response models using Markov chain Monte Carlo. Applied Psychological Measurement, 27(6), 395–414.

    Article  Google Scholar 

  • De Ayala, R. J. (2013). The theory and practice of item response theory. New York: Guilford Publications.

    Google Scholar 

  • De Boeck, P., & Wilson, M. (2004). Explanatory item response models: A generalized linear and nonlinear approach. New York: Springer.

    Book  Google Scholar 

  • Embretson, S. (1984). A general latent trait model for response processes. Psychometrika, 49(2), 175–186.

    Article  Google Scholar 

  • Falk, C. F., & Cai, L. (2016). Semi-parametric item response functions in the context of guessing. Journal of Educational Measurement, 53, 229–247.

    Article  Google Scholar 

  • Hess, K. (2006). Exploring cognitive demand in instruction and assessment. Dover, NH: National Center for the Improvement of Educational Assessment. Retrieved from http://www.nciea.org/publications/DOK_ApplyingWebb_KH08.pdf.

  • Jannarone, R. J. (1986). Conjunctive item response theory kernels. Psychometrika, 51, 357–373.

    Article  Google Scholar 

  • Junker, B. W., & Sijtsma, K. (2001). Cognitive assessment models with few assumptions, and connections with nonparametric item response theory. Applied Psychological Measurement, 25(3), 258–272.

    Article  Google Scholar 

  • Lee, S. (2015). A comparison of methods for recovery of asymmetric item characteristic curves in item response theory. Unpublished masters thesis. University of Wisconsin, Madison.

  • Maris, E. (1995). Psychometric latent response models. Psychometrika, 60(4), 523–547.

    Article  Google Scholar 

  • McDonald, R. P. (1967). Nonlinear factor analysis (Psychometric Monograph No. 15). Richmond, VA: Psychometric Corporation. Retrieved from http://www.psychometrika.org/journal/online/MN15.pdf.

  • Molenaar, D. (2014). Heteroscedastic latent trait models for dichotomous data. Psychometrika, 80(3), 625–644.

    Article  PubMed  Google Scholar 

  • Molenaar, D., Dolan, C. V., & de Boeck, P. (2012). The heteroscedastic graded response model with a skewed latent trait: Testing statistical and substantive hypotheses related to skewed item category functions. Psychometrika, 77(3), 455–478.

    Article  PubMed  Google Scholar 

  • Neidorf, T. S., Binkley, M., Gattis, K., & Nohara, D. (2006). Comparing mathematics content in the National Assessment of Educational Progress (NAEP), Trends in International Mathematics and Science Study (TIMSS), and Program for International Student Assessment (PISA) 2003 assessments. Technical Report, Institute of Education Sciences, NCES 2006-029.

  • Ramsay J. O. (2000). TESTGRAF: A computer program for nonparametric analysis of testing data. Unpublished manuscript, McGill University. ftp://ego.psych.mcgill.ca/pub/ramsay/testgraf

  • Reckase, M. D. (1985). The difficulty of test items that measure more than one ability. Applied Psychological Measurement, 9, 401–412.

    Article  Google Scholar 

  • Rizopoulos, D. (2006). ltm: An R package for latent variable modeling and item response theory analyses. Journal of Statistical Software, 17(5), 1–25.

    Article  Google Scholar 

  • Samejima, F. (1995). Acceleration model in the heterogeneous case of the general graded response model. Psychometrika, 60(4), 549–572.

    Article  Google Scholar 

  • Samejima, F. (2000). Logistic positive exponent family of models: Virtue of asymmetric item characteristic curves. Psychometrika, 65, 319–335.

    Article  Google Scholar 

  • San Martín, E., Del Pino, G., & De Boeck, P. (2006). IRT models for ability-based guessing. Applied Psychological Measurement, 30(3), 183–203.

    Article  Google Scholar 

  • Sympson, J. B. (1978). A model for testing with multidimensional items. In D. J. Weiss (Ed.), Proceedings of the 1977 Computerized Adaptive Testing Conference (pp. 82–98). Minneapolis: University of Minnesota, Department of Psychology, Psychometric Methods Program.

  • Tuerlinckx, F., & De Boeck, P. (2001). The effect of ignoring item interactions on the estimated discrimination parameters in item response theory. Psychological Methods, 6(2), 181–195.

    Article  PubMed  Google Scholar 

  • van der Linden, W. J. (2007). A hierarchical framework for modeling speed and accuracy on test items. Psychometrika, 72(3), 287–308.

    Article  Google Scholar 

  • Webb, N. L. (2002). Depth-of-knowledge levels for four content areas. Madison: University of Wisconsin Center for Educational Research.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sora Lee.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S., Bolt, D.M. Asymmetric Item Characteristic Curves and Item Complexity: Insights from Simulation and Real Data Analyses. Psychometrika 83, 453–475 (2018). https://doi.org/10.1007/s11336-017-9586-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11336-017-9586-5

Keywords

Navigation