Skip to main content
Erschienen in: Experimental Mechanics 3/2013

01.03.2013

Predicting the Dynamic Compressive Strength of Carbonate Rocks from Quasi-Static Properties

verfasst von: H. Yavuz, K. Tufekci, R. Kayacan, H. Cevizci

Erschienen in: Experimental Mechanics | Ausgabe 3/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this study, the split Hopkinson pressure bar testing method was used to quantify the dynamic strength characteristics of rocks with short cylindrical specimens. Seventy dynamic compression tests were conducted on 10 different carbonate rocks with the split Hopkinson pressure bar apparatus. Experimental procedure for testing dynamic compressive strength and elastic behaviour of rock material at high strain rate loading is presented in the paper. Pulse-shaper technique was adopted to obtain dynamic stress equilibrium at the ends of the sample and to provide nearly a constant strain rate during the dynamic loading. In addition to dynamic tests, the physical properties covering bulk density, effective porosity, P-wave velocity and Schmidt hardness of rocks, and mechanical properties such as quasi-static compressive strength and tensile strength were determined through standard testing methods. Multiple linear regression analyses were carried out to investigate the variation of dynamic compressive strength depending on physical and mechanical properties of rocks and loading rate. A three parameter model was found to be simple and provided the best surface fit to data. It was found that dynamic compressive strength of rocks increases with increase in loading rate and/or increase in rock property values except porosity. Statistical tests of regression results showed that quasi-static compressive strength and Schmidt hardness are most significant rock properties to adequately predict the dynamic compressive strength value among the other properties. However, P-wave velocity, quasi-static tensile strength of rocks could also be used to estimate the dynamic compressive strength value of rocks, as well, except the bulk density and effective porosity.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Zhou Z, Li X, Ye Z, Liu K (2010) Obtaining constitutive relationship for rate-dependent rock in SHPB tests. Rock Mech Rock Eng 43(6):697–706CrossRef Zhou Z, Li X, Ye Z, Liu K (2010) Obtaining constitutive relationship for rate-dependent rock in SHPB tests. Rock Mech Rock Eng 43(6):697–706CrossRef
2.
Zurück zum Zitat Wang QZ, Li W, Song XL (2006) A method for testing dynamic tensile strength and elastic modulus of rock materials using SHPB. Pure Appl Geophys 163:1091–1100CrossRef Wang QZ, Li W, Song XL (2006) A method for testing dynamic tensile strength and elastic modulus of rock materials using SHPB. Pure Appl Geophys 163:1091–1100CrossRef
3.
Zurück zum Zitat Zhu WC (2008) Numerical modelling of the effect of rock heterogeneity on dynamic tensile strength. Rock Mech Rock Eng 41(5):771–779CrossRef Zhu WC (2008) Numerical modelling of the effect of rock heterogeneity on dynamic tensile strength. Rock Mech Rock Eng 41(5):771–779CrossRef
4.
Zurück zum Zitat Kolsky H (1949) An investigation of the mechanical properties of materials at very high rates of strain. Proc R Phys Soc B 62:676–700CrossRef Kolsky H (1949) An investigation of the mechanical properties of materials at very high rates of strain. Proc R Phys Soc B 62:676–700CrossRef
5.
Zurück zum Zitat Dai F, Huang S, Xia K, Tan Z (2010) Some fundamental issues in dynamic compression and tension tests of rocks using split Hopkinson pressure bar. Rock Mech Rock Eng 43(6):657–666CrossRef Dai F, Huang S, Xia K, Tan Z (2010) Some fundamental issues in dynamic compression and tension tests of rocks using split Hopkinson pressure bar. Rock Mech Rock Eng 43(6):657–666CrossRef
6.
Zurück zum Zitat Kumar A, Mies LTS, Pengjun Z (2004) Design of an impact striker for a split Hopkinson pressure bar. J Inst Eng 44(1):119–130 Kumar A, Mies LTS, Pengjun Z (2004) Design of an impact striker for a split Hopkinson pressure bar. J Inst Eng 44(1):119–130
7.
Zurück zum Zitat Zhao H (2003) Material behavior characterization using SHPB techniques, tests and simulations. Comp Struct 81:1301–1310CrossRef Zhao H (2003) Material behavior characterization using SHPB techniques, tests and simulations. Comp Struct 81:1301–1310CrossRef
8.
Zurück zum Zitat Gray GT (2000) Classic Split-Hopkinson pressure bar testing. Mechanical Testing and Evaluation, Metals Handbook, American Society for Metals, Materials Park, OH, 8:462–476 Gray GT (2000) Classic Split-Hopkinson pressure bar testing. Mechanical Testing and Evaluation, Metals Handbook, American Society for Metals, Materials Park, OH, 8:462–476
9.
Zurück zum Zitat Brown EN, Willms RB, Gray GT, Rae PJ, Cady CM, Vecchio KS, Flowers J, Martinez MY (2007) Influence of molecular conformation on the constitutive response of polyethylene: a comparison of HDPE, UHMWPE, and PEX. Exp Mech 47(3):381–393CrossRef Brown EN, Willms RB, Gray GT, Rae PJ, Cady CM, Vecchio KS, Flowers J, Martinez MY (2007) Influence of molecular conformation on the constitutive response of polyethylene: a comparison of HDPE, UHMWPE, and PEX. Exp Mech 47(3):381–393CrossRef
10.
Zurück zum Zitat Vecchio KS, Jiang F (2007) Improved pulse shaping to achieve constant strain rate and stress equilibrium in split-Hopkinson pressure bar testing. Metall Mater Trans 38(11):2655–2665CrossRef Vecchio KS, Jiang F (2007) Improved pulse shaping to achieve constant strain rate and stress equilibrium in split-Hopkinson pressure bar testing. Metall Mater Trans 38(11):2655–2665CrossRef
11.
Zurück zum Zitat Pan Y, Chen W, Song B (2005) Upper limit of constant strain rates in a split Hopkinson pressure bar experiment with elastic specimens. Exp Mech 45(5):440–446CrossRef Pan Y, Chen W, Song B (2005) Upper limit of constant strain rates in a split Hopkinson pressure bar experiment with elastic specimens. Exp Mech 45(5):440–446CrossRef
12.
Zurück zum Zitat Frew DJ, Forrestal MJ, Chen W (2001) A split Hopkinson pressure bar technique to determine compressive stress–strain data for rock materials. Exp Mech 41(1):40–46CrossRef Frew DJ, Forrestal MJ, Chen W (2001) A split Hopkinson pressure bar technique to determine compressive stress–strain data for rock materials. Exp Mech 41(1):40–46CrossRef
13.
Zurück zum Zitat Frew DJ, Forrestal MJ, Chen W (2002) Pulse shaping techniques for testing brittle materials with a Split Hopkinson Pressure Bar. Exp Mech 42(1):93–106CrossRef Frew DJ, Forrestal MJ, Chen W (2002) Pulse shaping techniques for testing brittle materials with a Split Hopkinson Pressure Bar. Exp Mech 42(1):93–106CrossRef
14.
Zurück zum Zitat Forrestal MJ, Wright TW, Chen W (2007) The effect of radial inertia on brittle samples during the split Hopkinson pressure bar test. Int J Impact Eng 34(3):405–411CrossRef Forrestal MJ, Wright TW, Chen W (2007) The effect of radial inertia on brittle samples during the split Hopkinson pressure bar test. Int J Impact Eng 34(3):405–411CrossRef
15.
Zurück zum Zitat Christensen RJ, Swansow SR, Brown WS (1972) Split Hopkinson bar test on rock under confining pressure. Exp Mech 12:508–513CrossRef Christensen RJ, Swansow SR, Brown WS (1972) Split Hopkinson bar test on rock under confining pressure. Exp Mech 12:508–513CrossRef
16.
Zurück zum Zitat Shan R, Jiang Y, Li B (2000) Obtaining dynamic complete stress–strain curves for rock using the split Hopkinson pressure bar technique. Int J Rock Mech Min Sci 37:983–992CrossRef Shan R, Jiang Y, Li B (2000) Obtaining dynamic complete stress–strain curves for rock using the split Hopkinson pressure bar technique. Int J Rock Mech Min Sci 37:983–992CrossRef
17.
Zurück zum Zitat Li XB, Hong L, Yin TB, Zhou Z, Ye Z (2008) Relationship between diameter of split Hopkinson pressure bar and minimum loading rate under rock failure. J Cent South Univ Technol 15:218–223CrossRef Li XB, Hong L, Yin TB, Zhou Z, Ye Z (2008) Relationship between diameter of split Hopkinson pressure bar and minimum loading rate under rock failure. J Cent South Univ Technol 15:218–223CrossRef
18.
Zurück zum Zitat Zhai Y, Ma G, Zhao J, Hu C (2008) Dynamic failure analysis on granite under uniaxial impact compressive load. Front Architect Civ Eng China 2(3):253–260CrossRef Zhai Y, Ma G, Zhao J, Hu C (2008) Dynamic failure analysis on granite under uniaxial impact compressive load. Front Architect Civ Eng China 2(3):253–260CrossRef
19.
Zurück zum Zitat Bohloli B (1997) Effects of the geological parameters on rock blasting using the Hopkinson split bar. Int J Rock Mech Min Sci 34(3–4):321–9 Bohloli B (1997) Effects of the geological parameters on rock blasting using the Hopkinson split bar. Int J Rock Mech Min Sci 34(3–4):321–9
20.
Zurück zum Zitat Xia K, Nasseri MHB, Mohanty B, Lu F, Chen R, Luo SN (2008) Effects of microstructures on dynamic compression of Barre granite. Int J Rock Mech Min 45:879–887CrossRef Xia K, Nasseri MHB, Mohanty B, Lu F, Chen R, Luo SN (2008) Effects of microstructures on dynamic compression of Barre granite. Int J Rock Mech Min 45:879–887CrossRef
21.
Zurück zum Zitat Demirdag S, Tufekci K, Kayacan R, Yavuz H, Altindag R (2010) Dynamic mechanical behavior of some carbonate rocks. Int J Rock Mech Min Sci 47:307–312CrossRef Demirdag S, Tufekci K, Kayacan R, Yavuz H, Altindag R (2010) Dynamic mechanical behavior of some carbonate rocks. Int J Rock Mech Min Sci 47:307–312CrossRef
22.
Zurück zum Zitat Gong QM, Zhao J (2009) Development of a rock mass characteristics model for TBM penetration rate prediction. Int J Rock Mech Min Sci 46:8–18CrossRef Gong QM, Zhao J (2009) Development of a rock mass characteristics model for TBM penetration rate prediction. Int J Rock Mech Min Sci 46:8–18CrossRef
23.
Zurück zum Zitat Kahraman S, Fener M, Gunaydin O (2004) Predicting the sawability of carbonate rocks using multiple curvilinear regression analysis. Int J Rock Mech Min Sci 41:1123–1131CrossRef Kahraman S, Fener M, Gunaydin O (2004) Predicting the sawability of carbonate rocks using multiple curvilinear regression analysis. Int J Rock Mech Min Sci 41:1123–1131CrossRef
24.
Zurück zum Zitat Kahraman S, Balcı C, Yazıcı S, Bilgin N (2000) Prediction of the penetration rate of rotary blast hole drills using a new drillability index. Int J Rock Mech Min Sci 37:729–743CrossRef Kahraman S, Balcı C, Yazıcı S, Bilgin N (2000) Prediction of the penetration rate of rotary blast hole drills using a new drillability index. Int J Rock Mech Min Sci 37:729–743CrossRef
25.
Zurück zum Zitat Buyuksagis IS (2007) Effect of cutting mode on the sawability of granites using segmented circular diamond sawblade. J Mater Proc Tech 183:399–406CrossRef Buyuksagis IS (2007) Effect of cutting mode on the sawability of granites using segmented circular diamond sawblade. J Mater Proc Tech 183:399–406CrossRef
26.
Zurück zum Zitat Meyers MA (1994) Dynamic behavior of materials. John Wiley & Sons p. 668 Meyers MA (1994) Dynamic behavior of materials. John Wiley & Sons p. 668
27.
Zurück zum Zitat ISRM (International Society for RockMechanics (1981) Rock characterisation, testing and monitoring. In: Brown ET (ed) ISRM suggested methods. Pergamon, Oxford, p 211 ISRM (International Society for RockMechanics (1981) Rock characterisation, testing and monitoring. In: Brown ET (ed) ISRM suggested methods. Pergamon, Oxford, p 211
28.
Zurück zum Zitat TSE 699 (1987) Methods of testing for natural building stones. Institute of Turkish Standards; Türk Standartları Enstitüsü (TSE). TSE 699 (1987) Methods of testing for natural building stones. Institute of Turkish Standards; Türk Standartları Enstitüsü (TSE).
29.
Zurück zum Zitat Snedecor GW (1989) Statistical methods. Iowa State University, Ames, p 503 Snedecor GW (1989) Statistical methods. Iowa State University, Ames, p 503
Metadaten
Titel
Predicting the Dynamic Compressive Strength of Carbonate Rocks from Quasi-Static Properties
verfasst von
H. Yavuz
K. Tufekci
R. Kayacan
H. Cevizci
Publikationsdatum
01.03.2013
Verlag
Springer US
Erschienen in
Experimental Mechanics / Ausgabe 3/2013
Print ISSN: 0014-4851
Elektronische ISSN: 1741-2765
DOI
https://doi.org/10.1007/s11340-012-9648-7

Weitere Artikel der Ausgabe 3/2013

Experimental Mechanics 3/2013 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.