Skip to main content
Log in

Strain-Rate-Dependent Failure of a Toughened Matrix Composite

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

The strain-rate-dependent behavior of a toughened matrix composite (IM7/8552) was characterized under quasi-static and dynamic loading conditions. Unidirectional and off-axis composite specimens were tested at strain rates ranging from 10−4 to 103 s−1 using a servo-hydraulic testing machine and split Hopkinson pressure bar apparatus. The nonlinear response and failure were analyzed and evaluated based on classical failure criteria and the Northwestern (NU) failure theory. The predictive NU theory was shown to be in excellent agreement with experimental results and to accurately predict the strain-rate-dependent failure of the composite system based on measured average lamina properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hinton MJ, Kaddour AS, Soden PD (2002) A comparison of the predictive capabilities of current failure theories for composite laminates, judged against experimental evidence. Compos Sci Technol 62(12–13):1725–1797

    Article  Google Scholar 

  2. Hinton MJ, Kaddour AS, Soden PD (2004) A further assessment of the predictive capabilities of current failure theories for composite laminates: comparison with experimental evidence. Compos Sci Technol 64(3–4):549–588

    Article  Google Scholar 

  3. Hinton MJ, Kaddour AS, Soden PD (2002) Evaluation of failure prediction in composite laminates: background to ‘part B’ of the exercise. Compos Sci Technol 62(12–13):1481–1488

    Article  Google Scholar 

  4. Hinton MJ, Kaddour AS, Soden PD (2004) Evaluation of failure prediction in composite laminates: background to ‘part C’ of the exercise. Compos Sci Technol 64(3–4):321–327

    Article  Google Scholar 

  5. Bogetti TA, Hoppel CPR, Harik VM, Newill JF, Burns BP (2004) Predicting the nonlinear response and progressive failure of composite laminates. Compos Sci Technol 64(3–4):329–342

    Article  Google Scholar 

  6. Wang C, Sun CT, Gates TS (1996) Elastic/viscoplastic behavior of fiber-reinforced thermoplastic composites. J Reinf Plast Compos 15(4):360–377

    Google Scholar 

  7. Thiruppukuzhi SV, Sun CT (2001) Models for the strain-rate-dependent behavior of polymer composites. Compos Sci Technol 61(1):1–12

    Article  Google Scholar 

  8. Bogetti TA, Hoppel CPR, Harik VM, Newill JF, Burns BP (2004) Predicting the nonlinear response and failure of composite laminates: correlation with experimental results. Compos Sci Technol 64(3–4):477–485

    Article  Google Scholar 

  9. Xing L, Reifsnider KL (2008) Progressive failure modeling for dynamic loading of woven composites. Appl Compos Mater 15(1):1–11

    Article  Google Scholar 

  10. Donadon MV, Almeida SFM, Arbelo MA, Faria AR (2009) A three-dimensional ply failure model for composite structures. Int J Aerosp Eng Article ID 486063. doi:10.1155/2009/

  11. Sun CT, Chen JL (1989) A simple flow rule for characterizing nonlinear behavior of fiber composites. J Compos Mater 23(10):1009–1020

    Article  Google Scholar 

  12. Daniel IM, Cho J-M, Werner BT, Fenner JS (2011) Characterization and constitutive modeling of composite materials under static and dynamic loading. AIAA J 49(8):1658–1664

    Article  Google Scholar 

  13. Puck A, Schürmann H (1998) Failure analysis of FRP laminates by means of physically based phenomenological models. Compos Sci Technol 58(7):1045–1067

    Article  Google Scholar 

  14. Cuntze RG (2004) The predictive capability of failure mode concept-based strength criteria for multi-directional laminates-part B. Compos Sci Technol 64(3–4):487–516

    Article  Google Scholar 

  15. Daniel IM, Luo J-J, Schubel PM, Werner BT (2009) Interfiber/interlaminar failure of composites under multi-axial states of stress. Compos Sci Technol 69(6):764–771

    Article  Google Scholar 

  16. Daniel IM, Werner BT, Fenner JS (2011) Strain-rate-dependent failure criteria for composites. Compos Sci Technol 71(3):357–364

    Article  Google Scholar 

  17. Leong M, Hvejsel CF, Thomsen OT, Lund E, Daniel IM (2012) Fatigue failure of sandwich beams with face sheet wrinkle defects. Compos Sci Technol 72(13):1539–1547

    Article  Google Scholar 

  18. Leong M, Overgaard LCT, Thomsen OT, Lund E, Daniel IM (2012) Investigation of failure mechanisms in GFRP sandwich structures with face sheet wrinkle defects used for wind turbine blades. Compos Struct 94(2):768–778

    Article  Google Scholar 

  19. Leong M, Daniel IM, Thomsen OT, Lund E, (2013) Interlaminar/interfiber failure of unidirectional GFRP used for wind turbine blades. J Compos Mater 47(3):353–368

    Google Scholar 

  20. McVeigh C, Liu WK (2008) Linking microstructure and properties through a predictive multiresolution continuum. Comput Methods Appl Mech Eng 197(41–42):3268–3290

    Google Scholar 

  21. Steven Greene M, Liu Y, Chen W, Liu WK (2011) Computational uncertainty analysis in multiresolution materials via stochastic constitutive theory. Comput Methods Appl Mech Eng 200(1–4):309–325

    Article  Google Scholar 

  22. Kalil T, Wadia C (2011) Materials genome initiative for global competitiveness. National Science and Technology Council Committee on Technology, http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf

  23. Costa ML, Botelho EC, de Paiva JMF, Rezende MC (2005) Characterization of cure of carbon/epoxy prepreg used in aerospace field. Mater Res 8(3):317–322

    Article  Google Scholar 

  24. Ng SJ, Boswell R, Claus SJ, Arnold F, Vizzini A (2000) Degree of cure, heat of reaction, and viscosity of 8552 and 977-3 HM epoxy resin. NAWC Technical Report No: NAWCADPAX/TR-2000/16

  25. Arguelles A, Viña J, Canteli A, Lopez A (2011) Influence of the matrix type on the mode i fracture of carbon-epoxy composites under dynamic delamination. Exp Mech 51(3):293–301

    Article  Google Scholar 

  26. Eibl S (2008) Observing inhomogeneity of plastic components in carbon fiber reinforced polymer materials by ATR-FTIR spectroscopy in the micrometer scale. J Compos Mater 42(12):1231–1246

    Article  Google Scholar 

  27. Murri GB (2013) Evaluation of delamination onset and growth characterization methods under mode I fatigue loading NASA/TM-2013-217966

  28. Lee J, Soutis C (2007) A study on the compressive strength of thick carbon fibre–epoxy laminates. Compos Sci Technol 67(10):2015–2026

    Article  Google Scholar 

  29. Marasco AI, Cartié DDR, Partridge IK, Rezai A (2006) Mechanical properties balance in novel Z-pinned sandwich panels: out-of-plane properties. Compos A: Appl Sci Manuf 37(2):295–302

    Article  Google Scholar 

  30. Tsotsis TK, Keller S, Lee K, Bardis J, Bish J (2001) Aging of polymeric composite specimens for 5000 hours at elevated pressure and temperature. Compos Sci Technol 61(1):75–86

    Article  Google Scholar 

  31. Wolfrum J, Eibl S, Lietch L (2009) Rapid evaluation of long-term thermal degradation of carbon fibre epoxy composites. Compos Sci Technol 69(3–4):523–530

    Article  Google Scholar 

  32. Di Pasquale G, Motto O, Rocca A, Carter JT, McGrail PT, Acierno D (1997) New high-performance thermoplastic toughened epoxy thermosets. Polymer 38(17):4345–4348

    Article  Google Scholar 

  33. Jang K, Cho W-J, Ha C-S (1999) Influence of processing method on the fracture toughness of thermoplastic-modified, carbon-fiber-reinforced epoxy composites. Compos Sci Technol 59(7):995–1001

    Article  Google Scholar 

  34. Wilkinson SP, Ward TC, McGrath JE (1993) Effect of thermoplastic modifier variables on toughening a bismaleimide matrix resin for high-performance composite materials. Polymer 34(4):870–884

    Article  Google Scholar 

  35. Gómez-del Río T, Rodríguez J, Pearson RA (2013) Compressive properties of nano-particle modified epoxy resin at different strain rates. Compos B Eng. doi:10.1016/j.compositesb.2013.10.002

  36. Daniel IM, Ishai O (2006) Engineering mechanics of composite materials. Oxford University Press, Oxford

    Google Scholar 

  37. Koerber H, Xavier J, Camanho PP (2010) High strain rate characterisation of unidirectional carbon-epoxy IM7-8552 in transverse compression and in-plane shear using digital image correlation. Mech Mater 42(11):1004–1019

    Article  Google Scholar 

  38. Hopkinson J (1901) On the rupture of iron wire by a blow (1872) Cambridge University Press. Article 38, pp 316–320

  39. Kolsky H (1949) An investigation of the mechanical properties of materials at very high rates of loading. Proc Phys Soc Lond Sect B 62(II-B):676–700

    Article  Google Scholar 

  40. Gillespie JW Jr, Lopatnikov G (2004) Hopkinson bar experimental technique: a critical review. App Mech Rev 57(4):223–250

    Google Scholar 

  41. Meyers MA (2007) Eastic waves. Dynamic behavior of materials. Wiley, Hoboken. doi:10.1002/9780470172278.ch2

    Google Scholar 

  42. Hashin Z (1980) Failure criteria for unidirectional fiber composites. J Appl Mech 47:329–334

    Article  Google Scholar 

  43. Hashin Z, Rotem A (1973) A fatigue failure criterion for fiber reinforced materials. J Compos Mater 7:448–464

    Article  Google Scholar 

Download references

Acknowledgments

The work described in this paper was sponsored by the Office of Naval Research (ONR). The authors are grateful to Dr. Y.D.S. Rajapakse of ONR for his encouragement and cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Daniel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schaefer, J.D., Werner, B.T. & Daniel, I.M. Strain-Rate-Dependent Failure of a Toughened Matrix Composite. Exp Mech 54, 1111–1120 (2014). https://doi.org/10.1007/s11340-014-9876-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-014-9876-0

Keywords

Navigation