Skip to main content

Advertisement

Log in

The zebrafish embryo model in environmental risk assessment—applications beyond acute toxicity testing

  • AREA 6 • BIOASSAYS • REVIEW ARTICLE
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Background, aim, and scope

The use of fish embryos is not regulated by current legislations on animal welfare and is therefore considered as a refinement, if not replacement of animal experiments. Fish embryos represent an attractive model for environmental risk assessment of chemicals since they offer the possibility to perform small-scale, high-throughput analyses.

Main features

Beyond their application for determining the acute toxicity, fish embryos are also excellent models for studies aimed at the understanding of toxic mechanisms and the indication of possible adverse and long-term effects. Therefore, we have reviewed the scientific literature in order to indicate alternative applications of the fish embryo model with focus on embryos of the zebrafish.

Results and discussions

The analysis of the mode of action is important for the risk assessment of environmental chemicals and can assist in indicating adverse and long-term effects. Toxicogenomics present a promising approach to unravel the potential mechanisms. Therefore, we present examples of the use of zebrafish embryos to study the effect of chemicals on gene and protein patterns, and the potential implications of differential expression for toxicity. The possible application of other methods, such as kinase arrays or metabolomic profiling, is also highlighted. Furthermore, we show examples of toxicokinetic studies (bioconcentration, ABC transporters) and discuss limitations that might be caused by the potential barrier function of the chorion. Finally, we demonstrate that biomarkers of endocrine disruption, immune modulation, genotoxicity or chronic toxicity could be used as indicators or predictors of sub-acute and long-term effects.

Conclusions

The zebrafish embryo represents a model with an impressive range of possible applications in environmental sciences. Particularly, the adaptation of molecular, system-wide approaches from biomedical research is likely to extend its use in ecotoxicology.

Recommendations and perspectives

Challenges for future research are (1) the identification of further suitable molecular markers as indicators of the mode of action, (2) the establishment of strong links between (molecular) effects in short-term assays in embryos and long-term (toxic) effects on individuals, (3) the definition of limitations of the model and (4) the development of tests that can be used for regulatory purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alexander JB, Ingram GA (1992) Noncellular nonspecific defence mechanisms of fish. Annu Rev Fish Dis 2:249–279

    Article  Google Scholar 

  • Amanuma K, Takeda H, Amanuma H, Aoki Y (2000) Transgenic zebrafish for detecting mutations caused by compounds in aquatic environments. Nat Biotechnol 18:62–65

    Article  CAS  Google Scholar 

  • Ankley GT, Daston GP, Degitz SJ, Denslow ND, Hoke RA, Kennedy SW, Miracle AL, Perkins EJ, Snape J, Tillitt DE, Tyler CR, Versteeg D (2006) Toxicogenomics in regulatory ecotoxicology. Environ Sci Technol 40:4055–4065

    CAS  Google Scholar 

  • Bachmann J (2002) Entwicklung und Erprobung eines Teratogenitäts-Screening-Testes mit Embryonen des Zebrabärblings Danio rerio. PhD Thesis, TU Dresden

  • Bard SM (2000) Multixenobiotic resistance as a cellular defense mechanism in aquatic organisms. Aquat Toxicol 48:357–389

    Article  CAS  Google Scholar 

  • Bhogal N (2005) The EU REACH system: blessing in disguise or wolf in wolf’s clothing? ATLA Altern Lab Anim 33:81–82

    CAS  Google Scholar 

  • Blechinger SR, Kusch RC, Haugo K, Matz C, Chivers DP, Krone PH (2007) Brief embryonic cadmium exposure induces a stress response and cell death in the developing olfactory system followed by long-term olfactory deficits in juvenile zebrafish. Toxicol Appl Pharmacol 224(1):72–80

    Article  CAS  Google Scholar 

  • Bols NC, Brubacher JL, Ganassin RC, Lee LEJ (2001) Ecotoxicology and innate immunity in fish. Dev Comp Immunol 25:853–873

    Article  CAS  Google Scholar 

  • Bradbury J (2004) Small fish, big science. PLoS Biology 2:e148

    Article  CAS  Google Scholar 

  • Braunbeck T, Lammer E (2005) Draft detailed review paper on fish embryo toxicity assays. Report prepared for the German Federal Environmental Agency (UBA Contract Number 203 85 422)

  • Braunbeck T, Boettcher M, Hollert H, Kosmehl T, Lammer E, Leist E, Rudolf M, Seitz N (2005) Towards an alternative for the acute fish LC(50) test in chemical assessment: the fish embryo toxicity test goes multi-species—an update. ALTEX 22:87–102

    Google Scholar 

  • Breithaupt H (2006) The costs of REACH. REACH is largely welcomed, but the requirement to test existing chemicals for adverse effects is not good news for all. EMBO Rep 7:968–971

    Article  CAS  Google Scholar 

  • Burns CG, MacRae CA (2006) Purification of hearts from zebrafish embryos. Biotechniques 40:274, 276, 278 passim

    Article  CAS  Google Scholar 

  • Carney S, Peterson R, Heideman W (2004) 2,3,7,8-Tetrachlorodibenzo-p-dioxin activation of the aryl hydrocarbon receptor/aryl hydrocarbon receptor nuclear translocator pathway causes developmental toxicity through a CYP1A-independent mechanism in zebrafish. Mol Pharmacol 66:512–521

    CAS  Google Scholar 

  • Carney SA, Chen J, Burns CG, Xiong KM, Peterson RE, Heideman W (2006) Aryl hydrocarbon receptor activation produces heart-specific transcriptional and toxic responses in developing zebrafish. Mol Pharmacol 70:49–61

    Article  CAS  Google Scholar 

  • Cheng J, Flahaut E, Cheng SH (2007) Effect of carbon nanotubes on developing zebrafish (Danio rerio) embryos. Environ Toxicol Chem 26:708–716

    Article  CAS  Google Scholar 

  • Commission of the European Communities (1967) Council Directive 67/548/EEC of 18 August 1967 on the approximation of the laws, regulations and administrative provisions relating to the classification, packaging and labelling of dangerous substances. Official Journal of the European Communities L96/1

  • Commission of the European Communities (1986) Council Directive 86/609/EEC of 24 November 1986 on the approximation of laws, regulations and administrative provisions of the Member States regarding the protection of animals used for experimental and other scientific purposes. Official Journal L 358 , 18/12/1986 P. 0001–0028

  • Commission of the European Communities (1991) Council Directive 91/414/EEC of 15 July 1991 concerning the placing of plant protection products on the market. Official Journal of the European Communities L 230/1

  • Commission of the European Communities (1992) Council Directive 92/32/EEC of 30 April 1992 amending for the seventh time Directive 67/548/EEC on the approximation of the laws, regulations and administrative provisions relating to the classification, packaging and labelling of dangerous substances

  • Commission of the European Communities (1993a) Council Regulation 793/93/EEC of 23 March 1993 on the evaluation and control of risks of existing substances. Official Journal of the European Communities L84/1

  • Commission of the European Communities (1993b) Commission Directive 93/67/EEC of 20 July 1993, laying down the principles for assessment of risks to man and the environment of substances notified in accordance with Council Directive 67/548/EEC. Official Journal of the European Communities L227/9

  • Commission of the European Communities (1994) Regulation 1488/94/EEC of 28 June 1994, laying down the principles for the assessment of risks to man and the environment of existing substances in accordance with Council Regulation 793/93/EEC. Official Journal of the European Communities L161/3

  • Connell DW, Hawker DW (1988) Use of polynomial expressions to describe the bioconcentration of hydrophobic chemicals by fish. Ecotoxicol Environ Saf 16:242–257

    Article  CAS  Google Scholar 

  • Cordon-Cardo C, O’Brien JP, Boccia J, Casals D, Bertino JR, Melamed MR (1990) Expression of the multidrug resistance gene product (P-glycoprotein) in human normal and tumor tissues. J Histochem Cytochem 38:1277–1287

    CAS  Google Scholar 

  • Corvi R et al (2006) Meeting report—validation of toxicogenomics-based test systems: ECVAM-ICCVAM/NICEATM considerations for regulatory use. Environ Health Perspect 114:420–429

    Article  CAS  Google Scholar 

  • Coverdale LE, Lean D, Martin CC (2004) Not just a fishing trip—Environmental genomics using zebrafish. Current Genomics 5:395–407

    Article  CAS  Google Scholar 

  • Cowan KJ, Storey KB (2003) Mitogen-activated protein kinases: new signaling pathways functioning in cellular responses to environmental stress. J Exp Biol 206:1107–1115

    Article  CAS  Google Scholar 

  • Creton R (2004) The calcium pump of the endoplasmic reticulum plays a role in midline signaling during early zebrafish development. Brain Res Dev Brain Res 151:33–41

    Article  CAS  Google Scholar 

  • CVMP/VICH (2000) Guideline on environmental impact assessment (EIAS) for veterinary medicinal products—phase I. VICH Topic GL6 (Ecotoxicity Phase I) Step 7 (CVMP/VICH/592/98)

  • de Longueville F, Bertholet V, Remacle J (2004) DNA microarrays as a tool in toxicogenomics. Comb Chem High Throughput Screen 7:207–211

    Google Scholar 

  • Dean M, Annilo T (2005) Evolution of the ATP-binding cassette (ABC) transporter superfamily in vertebrates. Annu Rev Genomics Hum Genet 6:123–142

    Article  CAS  Google Scholar 

  • Eaton RC, Farley RD (1974) Spawning cycle and egg production of zebrafish, Brachydanio rerio, in the laboratory. Copeia 1:195–209

    Article  Google Scholar 

  • EMEA/CHMP (2006) Guideline on the environmental risk assessment of medicinal products for human use. Doc. ref. EMEA/CHMP/SWP/4447/00

  • Federal Law Gazette (2005) Volume 2005 Part I No. 5, published in Bonn on 01. 25.2005. Announcement of the amendment of the Wastewater Charges Act on the 18th January 2005 [Bundesgesetzblatt (2005). Jahrgang 2005 Teil I Nr. 5, ausgegeben zu Bonn am 25.01.2005. Bekanntmachung der Neufassung des Abwasserabgabengesetzes vom 18. Januar 2005]

  • Fischer S (2007) Nachweis der Expression und Aktivität von ABC-Xenobiotika-Transportern in Embryonen des Zebrabärblings. Diploma thesis, Martin-Luther-University of Halle-Wittenberg. Division of Biochemistry/Biotechnology

  • Fleming A (2007) Zebrafish as an alternative model organism for disease modelling and drug discovery: implications for the 3Rs. NC3Rs, Iss. 10, National Centre for the Replacement, Refinement and Reduction of Animals in research, www.nc3rs.org.uk

  • Fraysse B, Mons R, Garric J (2006) Development of a zebrafish 4-day embryo-larval bioassay to assess toxicity of chemicals. Ecotoxicol Environ Saf 63:253–267

    Article  CAS  Google Scholar 

  • Goldsmith P (2004) Zebrafish as a pharmacological tool: the how, why and when. Curr Opin Pharmacol 4:504–512

    Article  CAS  Google Scholar 

  • Gorge G, Nagel R (1990) Kinetics and metabolism of 14c-lindane and 14c-atrazine in early life stages of zebrafish (Brachydanio-Rerio). Chemosphere 21:1125–1137

    Article  Google Scholar 

  • Gulati-Leekha A, Goldman D (2006) A reporter-assisted mutagenesis screen using [alpha]1-tubulin-GFP transgenic zebrafish uncovers missteps during neuronal development and axonogenesis. Dev Biol 296:29–47

    Article  CAS  Google Scholar 

  • Gündel U, Benndorf D, von Bergen M, Altenburger R, Küster E (2007) Vitellogenin cleavage products as indicators for toxic stress in zebra fish embryos: a proteomic approach. Proteomics 7:4541–4554

    Article  CAS  Google Scholar 

  • Heasman J (2002) Morpholino oligos: making sense of antisense? Dev Biol 243:209–214

    Article  CAS  Google Scholar 

  • Herbomel P, Thisse B, Thisse C (1999) Ontogeny and behaviour of early macrophages in the zebrafish embryo. Development 126:3735–3745

    CAS  Google Scholar 

  • Higgins CF (2007) Multiple molecular mechanisms for multidrug resistance transporters. Nature 446:749–757

    Article  CAS  Google Scholar 

  • Hill A, Howard CV, Strahle U, Cossins A (2003) Neurodevelopmental defects in zebrafish (Danio rerio) at environmentally relevant dioxin (TCDD) concentrations. Toxicol Sci 76:392–399

    Article  CAS  Google Scholar 

  • Hill AJ, Teraoka H, Heideman W, Peterson RE (2005) Zebrafish as a model vertebrate for investigating chemical toxicity. Toxicol Sci 86:6–19

    Article  CAS  Google Scholar 

  • Hisaoka K (1958) Microscopic studies of the teleost chorion. Trans Am Microsc Soc 77:240–243

    Article  Google Scholar 

  • Hoyt PR, Doktycz MJ, Beattie KL, Greeley MS (2003) DNA microarrays detect 4-nonylphenol-induced alterations in gene expression during zebrafish early development. Ecotoxicology 12:469–474

    Article  CAS  Google Scholar 

  • Incardona JP, Day HL, Collier TK, Scholz NL (2006) Developmental toxicity of 4-ring polycyclic aromatic hydrocarbons in zebrafish is differentially dependent on AH receptor isoforms and hepatic cytochrome P4501A metabolism. Toxicol Appl Pharmacol 217:308–321

    Article  CAS  Google Scholar 

  • Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203:253–310

    CAS  Google Scholar 

  • Konemann H, van Leeuwen K (1980) Toxicokinetics in fish: accumulation and elimination of six chlorobenzenes by guppies. Chemosphere 9:3–19

    Article  CAS  Google Scholar 

  • Kosmehl T, Hallare AV, Reifferscheid G, Manz W, Braunbeck T, Hollert H (2006) A novel contact assay for testing genotoxicity of chemicals and whole sediments in zebrafish embryos. Environ Toxicol Chem 25:2097–2106

    Article  CAS  Google Scholar 

  • Kosmehl T, Krebs F, Manz W, Braunbeck T, Hollert H (2007) Differentiation between bioavailable and total hazard potential of sediment-induced DNA fragmentation as measured by the comet assay with zebrafish embryos. J Soils Sediments 7:377–387

    Article  CAS  Google Scholar 

  • Kosmehl T (2007) Molecular biomarkers in zebrafish embryos—towards a more realistic approach in sediment assessment. PhD thesis, University of Heidelberg, Institute of Zoology

  • Kurelec B (1997) A new type of hazardous chemical: the chemosensitizers of multixenobiotic resistance. Environ Health Perspect 105(Suppl 4):855–860

    Article  CAS  Google Scholar 

  • Küster E, Altenburger R (2007) Suborganismic and organismic effects of aldicarb and its metabolite aldicarb-sulfoxide to the zebrafish embryo (Danio rerio). Chemosphere 68:751–760

    Article  CAS  Google Scholar 

  • Legler J, Zeinstra LM, Schuitemaker F, Lanser PH, Bogerd J, Brouwer A, Vethaak AD, De Voogt P, Murk AJ, Van der Burg B (2002) Comparison of in vivo and in vitro reporter gene assays for short-term screening of estrogenic activity. Environ Sci Technol 36:4410–4415

    Article  CAS  Google Scholar 

  • Lemeer S, Jopling C, Naji F, Ruijtenbeek R, Slijper M, Heck AJ, den Hertog J (2007) Protein-tyrosine kinase activity profiling in knock down zebrafish embryos. PLoS ONE 2:e581

    Article  CAS  Google Scholar 

  • Leslie EM, Deeley RG, Cole SP (2001) Toxicological relevance of the multidrug resistance protein 1, MRP1 (ABCC1) and related transporters. Toxicology 167:3–23

    Article  CAS  Google Scholar 

  • Leslie EM, Deeley RG, Cole SP (2005) Multidrug resistance proteins: role of P-glycoprotein, MRP1, MRP2, and BCRP (ABCG2) in tissue defense. Toxicol Appl Pharmacol 204:216–237

    Article  CAS  Google Scholar 

  • Link V, Shevchenko A, Heisenberg CP (2006) Proteomics of early zebrafish embryos. BMC Dev Biol 6:1

    Article  CAS  Google Scholar 

  • Mattingly CJ, McLachlan JA, Toscano WA Jr (2001) Green fluorescent protein (GFP) as a marker of aryl hydrocarbon receptor (AhR) function in developing zebrafish (Danio rerio). Environ Health Perspect 109:845–849

    Article  CAS  Google Scholar 

  • Mitchelmore CL, Chipman JK (1998) DNA strand breakage in aquatic organisms and the potential value of the comet assay in environmental monitoring. Mutat Research-Fund Mol M 399:135–147

    Article  CAS  Google Scholar 

  • Monsinjon T, Knigge T (2007) Proteomic applications in ecotoxicology. Proteomics 7:2997–3009

    Article  CAS  Google Scholar 

  • Muncke J, Eggen RI (2006) Vitellogenin 1 mRNA as an early molecular biomarker for endocrine disruption in developing zebrafish (Danio rerio). Environ Toxicol Chem 25:2734–2741

    Article  CAS  Google Scholar 

  • Muncke J, Junghans M, Eggen R (2007) Testing estrogenicity of known and novel (xeno-)estrogens in the MolDarT using developing zebrafish Danio rerio. Environ Toxicol 22:185–193

    Article  CAS  Google Scholar 

  • Nagel R (2002) DarT: The embryotest with the zebrafish Danio rerio—a general model in ecotoxicology and toxicology. ALTEX 19(Suppl 1/02):38–48

    Google Scholar 

  • Newman JW, Denton DL, Morisseau C, Koger CS, Wheelock CE, Hinton DE, Hammock BD (2001) Evaluation of fish models of soluble epoxide hydrolase inhibition. Environ Health Perspect 109:61–66

    Article  CAS  Google Scholar 

  • OECD (2006) Fish embryo toxicity (FET) test. Draft OECD guideline for the testing of chemicals, http://www.oecd.org/dataoecd/39/59/36817070.pdf

  • OSPAR—Convention for the Protection of the Marine Environment of the North-East Atlantic (2000) Background document concerning the elaboration of programmes and measures relating to whole effluent assessment. Report 117; London: OSPAR

  • Parng C, Seng WL, Semino C, McGrath P (2002) Zebrafish: a preclinical model for drug screening. Assay Drug Dev Technol 1:41–48

    Article  CAS  Google Scholar 

  • Pelster B (2002) Developmental plasticity in the cardiovascular system of fish, with special reference to the zebrafish. Comp Biochem Phys A 133:547–553

    Article  Google Scholar 

  • Podrabsky JE, Lopez JP, Fan TWM, Higashi R, Somero GN (2007) Extreme anoxia tolerance in embryos of the annual killifish Austrofundulus limnaeus: insights from a metabolomics analysis. J Exp Biol 210:2253–2266

    Article  CAS  Google Scholar 

  • Pressley ME, Phelan PE 3rd, Witten PE, Mellon MT, Kim CH (2005) Pathogenesis and inflammatory response to Edwardsiella tarda infection in the zebrafish. Dev Comp Immunol 29:501–513

    Article  CAS  Google Scholar 

  • Ratte HT, Hammers-Wirtz M (2003) Evaluation of the existing data base from the fish embryo test. UBA (German Federal Environmental Agency) report under contract no363 01 062

  • Rubinstein AL (2003) Zebrafish: from disease modeling to drug discovery. Curr Opin Drug Discov Dev 6:218–223

    CAS  Google Scholar 

  • Schirmer K (2006) Proposal to improve vertebrate cell cultures to establish them as substitutes for the regulatory testing of chemicals and effluents using fish. Toxicology 224:163–183

    Article  CAS  Google Scholar 

  • Schreiber R, Altenburger R, Paschke A, Schüürmann G, Küster E (2008) A novel system for the determination of bioconcentration and internal dose in embryos of the zebrafish (Danio rerio) (in prep)

  • Seok S-H, Baek M-W, Lee H-Y, Kim D-J, Na Y-R, Noh K-J, Park S-H, Lee H-K, Lee B-H, Ryu D-Y, Park J-H (2007) Quantitative GFP fluorescence as an indicator of arsenite developmental toxicity in mosaic heat shock protein 70 transgenic zebrafish. Toxicol Appl Pharmacol 225(2):154–161

    Article  CAS  Google Scholar 

  • Shrader EA, Henry TR, Greeley MS Jr, Bradley BP (2003) Proteomics in zebrafish exposed to endocrine disrupting chemicals. Ecotoxicology 12:485–488

    Article  CAS  Google Scholar 

  • Smital T, Luckenbach T, Sauerborn R, Hamdoun AM, Vega RL, Epel D (2004) Emerging contaminants–pesticides, PPCPs, microbial degradation products and natural substances as inhibitors of multixenobiotic defense in aquatic organisms. Mutat Res 552:101–117

    CAS  Google Scholar 

  • Snape JR, Maund SJ, Pickford DB, Hutchinson TH (2004) Ecotoxicogenomics: the challenge of integrating genomics into aquatic and terrestrial ecotoxicology. Aquat Toxicol 67:143–154

    Article  CAS  Google Scholar 

  • Tay T, Lin Q, Seow T, Tan K, Hew C, Gong Z (2006) Proteomic analysis of protein profiles during early development of the zebrafish, Danio rerio. Proteomics 6:3176–3188

    Article  CAS  Google Scholar 

  • Ton C, Stamatiou D, Liew C-C (2003) Gene expression profile of zebrafish exposed to hypoxia during development. Physiol Genomics 13:97–106

    CAS  Google Scholar 

  • Turner MA, Viant MR, Teh SJ, Johnson ML (2007) Developmental rates, structural asymmetry, and metabolic fingerprints of steelhead trout (Oncorhynchus mykiss) eggs incubated at two temperatures. Fish Physiol Biochem 33:59–72

    Article  CAS  Google Scholar 

  • Tyler CR, Jobling S, Sumpter JP (1998) Endocrine disruption in wildlife—a critical review of the evidence. Crit Rev Toxicol 28:319–361

    Article  CAS  Google Scholar 

  • van der Sar AM, Musters RJP, van Eeden FJM, Appelmelk BJ, Vandenbroucke-Grauls CMJE, Bitter W (2003) Zebrafish embryos as a model host for the real time analysis of Salmonella typhimurium infections. Cell Microbiol 5:601–611

    Article  CAS  Google Scholar 

  • van der Sar AM, Appelmelk BJ, Vandenbroucke-Grauls CM, Bitter W (2004) A star with stripes: zebrafish as an infection model. Trends Microbiol 12:451–457

    Article  CAS  Google Scholar 

  • Viant MR, Pincetich CA, Eerderna RST (2006a) Metabolic effects of dinoseb, diazinon and esfenvalerate in eyed eggs and alevins of Chinook salmon (Oncorhynchus tshawytscha) determined by H-1 NMR metabolomics. Aquat Toxicol 77:359–371

    Article  CAS  Google Scholar 

  • Viant MR, Pincetich CA, Hinton DE, Tjeerdema RS (2006b) Toxic actions of dinoseb in medaka (Oryzias latipes) embryos as determined by in vivo 31P NMR, HPLC-UV and 1H NMR metabolomics. Aquat Toxicol 76:329–342

    Article  CAS  Google Scholar 

  • VICH (2004) The European Agency for the Evaluation of Medicinal Products: environmental impact assessment for veterinary medicinal products. Phase II guidance. VICH Topic GL 38 (Ecotoxicity Phase II) Step 7 (CVMP/VICH/790/03-Final)

  • Voelker D, Vess C, Tillmann M, Nagel R, Otto GW, Geisler R, Schirmer K, Scholz S (2007) Differential gene expression as a toxicant-sensitive endpoint in zebrafish embryos and larvae. Aquat Toxicol 81:355–364

    Article  CAS  Google Scholar 

  • Voelker D, Stetefeld N, Schirmer K, Scholz S (2008) The role of cyp1a and heme oxygenase 1 gene expression for the toxicity of 3,4-dichloroaniline in zebrafish (Danio rerio) embryos. Aquat Toxicol 86:112–120

    Article  CAS  Google Scholar 

  • Watzke J, Schirmer K, Scholz S (2007) Bacterial lipopolysaccharides induce genes involved in the innate immune response in embryos of the zebrafish (Danio rerio). Fish Shellfish Immun 23:901–905

    Article  CAS  Google Scholar 

  • Weil M, Sacher F, Scholz S, Zimmer M, Nagel R, Duis K (2008) Gene expression analysis in zebrafish embryos—a potential approach to predict long-term effects and replace chronic fish toxicity tests (in prep)

  • Wiegand C, Pflugmacher S, Oberemm A, Meems N, Beattie K, Steinberg C, Codd G (1999) Uptake and effects of microcystin-LR on detoxication enzymes of early life stages of the zebra fish (Danio rerio). Environ Toxicol 14:89–95

    Article  CAS  Google Scholar 

  • Xu J, Srinivas BP, Tay SY, Mak A, Yu X, Lee SGP, Yang H, Govindarajan KR, Leong B, Bourque G, Mathavan S, Roy S (2006) Genome-wide expression profiling in the zebrafish embryo identifies target genes regulated by hedgehog signaling during vertebrate development. Genetics 174:735–752

    Article  CAS  Google Scholar 

  • Yang L, Kemadjou J, Zinsmeister C, Bauer M, Legradi J, Müller F, Pankratz J, Jaeke J, Straehle U (2007) Transcriptional profiling reveals barcode-like toxicogenomic responses in the zebrafish embryo. Genome Biol 8:R227

    Article  CAS  Google Scholar 

  • Yu RM, Lin CC, Chan PK, Chow ES, Murphy MB, Chan BP, Muller F, Strahle U, Cheng SH (2006) Four-dimensional imaging and quantification of gene expression in early developing zebrafish (Danio rerio) Embryos. Toxicol Sci 90:529–538

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Kristin Schirmer for critical reading of the manuscript and helpful suggestions. Part of our own presented work was supported by the German Ministry for Education and Research BMBF (grant no. PTJ-BIO/0313016) and the Deutsche Forschungsgemeinschaft (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Scholz.

Additional information

Responsible editor: Henner Hollert.

This article has been developed on the basis of several presentations given at the Annual meeting of SETAC Europe German Language Branch 2007 in Leipzig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scholz, S., Fischer, S., Gündel, U. et al. The zebrafish embryo model in environmental risk assessment—applications beyond acute toxicity testing. Environ Sci Pollut Res 15, 394–404 (2008). https://doi.org/10.1007/s11356-008-0018-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-008-0018-z

Keywords

Navigation