Skip to main content

Advertisement

Log in

Potential malaria outbreak in Germany due to climate warming: risk modelling based on temperature measurements and regional climate models

Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Purpose

Climate warming can change the geographic distribution and intensity of the transmission of vector-borne diseases such as malaria. The transmitted parasites usually benefit from increased temperatures as both their reproduction and development are accelerated. Lower Saxony (northwestern Germany) has been a malaria region until the 1950s, and the vector species are still present throughout Germany. This gave reason to investigate whether a new autochthonous transmission could take place if the malaria pathogen was introduced again in Germany.

Materials and methods

The spatial distribution of potential temperature-driven malaria transmissions was investigated using the basic reproduction rate (R 0) to model and geostatistically map areas at risk of an outbreak of tertian malaria based on measured (1961–1990, 1991–2007) and predicted (1991–2020, 2021–2050, 2051–2080) monthly mean air temperature data.

Results

From the computations, maps were derived showing that during the period 1961–1990, the seasonal transmission gate ranges from 0 to 4 months and then expands up to 5 months in the period 1991–2007. For the projection of future trends, the regional climate models REMO and WettReg were used each with two different scenarios (A1B and B1). Both modelling approaches resulted in prolonged seasonal transmission gates in the future, enabling malaria transmissions up to 6 months in the climate reference period 2051–2080 (REMO, scenario A1B).

Discussion

The presented risk prognosis is based on the R 0 formula for the estimation of the reproduction of the malaria pathogen Plasmodium vivax. The presented model focuses on mean air temperatures; thus, other driving factors like the distribution of water bodies (breeding habitats) or population density are not integrated. Nevertheless, the modelling presented in this study can help identify areas at risk and initiate prevention. The described findings may also help in the investigation and assessment of related diseases caused by temperature-dependent vectors and pathogens, including those being dangerous for livestock as well, e.g. insect-borne bluetongue disease transmitted by culicoids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. http://www.ngdc.noaa.gov/mgg/topo/globe.html.

  2. http://www.mpimet.mpg.de/home.html.

  3. http://www.cec-potsdam.de.

References

  • Bryan JH, Foley DH, Sutherst RW (1996) Malaria transmission and climate change in Australia. Med J Aust 164:345–347

    CAS  Google Scholar 

  • Dalitz MK (2005) Autochthone Malaria im mitteldeutschen Raum. Dissertation, University of Halle

  • Doudier B, Bogreau H, DeVries A, Ponçon N, Stauffer WM, Fontenille D, Rogier C, Parola P (2007) Possible autochtonous malaria from Marseille to Minneapolis. Emerg Infect Dis 13(8):1236–1238

    Google Scholar 

  • Ebert B, Fleischer B (2008) Malaria: Stellungnahmen des Arbeitskreises Blut des Bundesministeriums für Gesundheit. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 51:236–249

    Article  Google Scholar 

  • Gimnig JE, Hightower AW, Hawley WA (2005) Application of geographic information systems to the study of the ecology of mosquitoes and mosquito-borne diseases. In: Takken W, Martens P, Bogers RJ (eds) Environmental change and malaria risk: global and local implications. Springer, Dordrecht, pp 15–26

    Google Scholar 

  • Gubler DJ, Reiter P, Ebi KL, Yap W, Nasci R, Patz JA (2001) Climate variability and change in the United States: potential impacts on vector- and rodent-borne diseases. Environ Health Persp 109(2):223–233

    Article  Google Scholar 

  • Hackett LW, Missiroli A (1935) The varieties of Anopheles maculipennis and their relation to the distribution of malaria in Europe. Riv Malariol XIV(1):1

    Google Scholar 

  • Hartelt K, Pluta S, Oehme R, Kimmig P (2008) Spread of ticks and tick-borne diseases in Germany due to global warming. Parasitol Res 103(Suppl 1):109–116

    Article  Google Scholar 

  • Heinz HJ (1950) Neuere Untersuchungen über die Verbreitung von Anopheles maculipennis in Hamburg. Z Angew Entomol 31(2):304–333

    Article  Google Scholar 

  • Hoshen MB, Morse AP (2004) A weather-driven model of malaria transmission. Malar J 3:32

    Article  Google Scholar 

  • Jetten TH, Takken W (1994) Anophelism without malaria: a review of the ecology and distribution of the genus Anopheles in Europe. Wageningen Agricultural University Papers 94(5)

  • Johnston K, Ver Hoef JM, Krivoruchko K, Lucas N (2001) Using ArcGIS Geostatistical Analyst. ESRI, Redlands

    Google Scholar 

  • Kampen H, Kiel E, Schröder W (2007) Blauzungenkrankheit in Deutschland 2006. Epizootiologischer Hintergrund, entomologische Analyse und notwendige Konsequenzen. Umweltwissenschaften und Schadstoff-Forschung. Z Umweltchemie Ökotoxikologie 19:37–46

    Article  Google Scholar 

  • Krüger A, Rech A, Su XZ, Tannich E (2001) Two cases of autochthonous Plasmodium falciparum malaria in Germany with evidence for local transmission by indigenous Anopheles plumbeus. Trop Med Int Health 6(12):983–985

    Article  Google Scholar 

  • Kuhn KG, Campbell-Lendrum DH, Armstrong B, Davies CR (2003) Malaria in Britain: past, present, and future. PNAS 100(17):9997–10001

    Article  CAS  Google Scholar 

  • Leemans R (2005) Global environmental change and health. Integrating knowledge form natural, socioeconomic and medical sciences. In: Takken W, Martens P, Bogers RJ (eds) Environmental change and malaria risk. Global and local implications. Springer, Dordrecht, pp 15–26

    Chapter  Google Scholar 

  • Lindsay SW, Thomas CJ (2001) Global warming and risk of vivax malaria in Great Britain. Glob Change Hum Health 2(1):80–84

    Article  Google Scholar 

  • Maier WA, Grunewald J, Habedank B, Hartelt K, Kampen H, Kimmig P, Naucke T, Oehme R, Vollmer A, Schöler A, Schmitt C (2003) Mögliche Auswirkungen von Klimaveränderung auf die Ausbreitung von primär humanmedizinisch relevanten Krankheitserregern über tierische Vektoren sowie auf die wichtigen Humanparasiten in Deutschland. Climate Change 05/03, 389 pp

  • Malecki JM, Kumar S, Johnson BF et al (2003) Local transmission of Plasmodium vivax malaria—Palm Beach county, Florida, 2003. MMWR 52(38):908–911

    Google Scholar 

  • Martens P, Kovats RS, Nijhof S, de Vries P, Livermore MTJ, Bradley DJ, Cox J, McMichael AJ (1999) Climate change and future population at risk of malaria. Glob Environ Change 9:89–107

    Article  Google Scholar 

  • Martini E (1920) Anopheles in Niedersachsen und die Malariagefahr. Hyg Rundsch 22:673–677

    Google Scholar 

  • Martini E (1946) Lehrbuch der medizinischen Entomologie. Gustav Fischer, Jena

    Google Scholar 

  • Mehlhorn H, Walldorf V, Klimpel S, Schmahl G (2008) Outbreak of bluetongue disease (BTD) in Germany and the danger for Europe. Parasitol Res 103(Suppl):79–86

    Article  Google Scholar 

  • Millet JP, Gercia de Olalla P, Carillo-Santisteve P, Gascón J, Treviňo B, Muňoz J, Gomez i Prat J, Cabezos J, Gonzáles Cordón A, Caylà JA (2008) Imported malaria in a cosmopolitan European city: a mirror image of the world epidemiological situation. Malar J 7:56

    Article  Google Scholar 

  • Mohrig W (1969) Die Culiciden Deutschlands. Parasitologische Schriftenreihe 18

  • Mühlberger N et al (2004) Epidemiology and clinical features of vivax malaria imported to Europe: sentinel surveillance data from TropNetEurop. Malar J 3:5

    Article  Google Scholar 

  • Mühlens P (1930) Malaria. Neue Dtsch Klin VII(31):122–149

    Google Scholar 

  • Odeh IOA, McBratney AB, Chittleborough DJ (1995) Further results on prediction of soil properties from terrain attributes: heterotopic cokriging and regression-kriging. Geoderma 67(3–4):215–226

    Article  Google Scholar 

  • Omumbo JA, Hay SI, Guerra CA, Snow RW (2004) The relationship between the Plasmodium falciparum parasite ratio in childhood and climate estimates of malaria transmission in Kenya. Malar J 3:17

    Article  Google Scholar 

  • Pastor A, Neely J, Goodfriend D et al (2002) Local transmission of Plasmodium vivax malaria—Virginia, 2002. MMWR 51(41):921–923

    Google Scholar 

  • IPCC (Intergovernmental Panel of Climate Change) (2007) Climate change 2007. Synthesis report. Geneva, 52 pp

  • Ponçon N, Tran A, Toty C, Luty AJF, Fontenille D (2008) A quantitative risk assessment approach for mosquito-borne diseases: malaria re-emergence in southern France. Malar J 7:147

    Article  Google Scholar 

  • Ramsdale C, Snow K (2000) Distribution of the genus Anopheles in Europe. Eur Mosq Bull 7:1–26

    Google Scholar 

  • Reiter P (2000) Malaria and global warming in perspective? Emerg Infect Dis 6:438–439

    Article  CAS  Google Scholar 

  • RKI (Robert-Koch-Institut) (1999) Zur airport-malaria und baggage-malaria. Epidemiologisches Bulletin 37/99:274

    Google Scholar 

  • Schmidt G, Holy M, Schröder W (2008) Vector-associated diseases in the contect of climate change: analysis and evaluation of the differences in the potential spread of tertian malaria in the ecoregions of Lower Saxony. Ital J Public Health 5(4):245–252

    Google Scholar 

  • Schröder W, Schmidt G (2001) Defining ecoregions as framework for the assessment of ecological monitoring networks in Germany by means of GIS and classification and regression trees (CART). Gate to EHS 1(3):1–9

    Google Scholar 

  • Schröder W, Schmidt G (2008) Mapping the potential temperature-dependent tertian malaria transmission within the ecoregions of Lower Saxony (Germany). Int J Med Microbiol 298(S1):38–49

    Article  Google Scholar 

  • Small J, Goetz SJ, Hay SI (2003) Climatic suitability for malaria transmission in Africa 1911–1995. PNAS 100:15341–15345

    Article  CAS  Google Scholar 

  • Smith DL, McKenzie FE (2004) Statics and dynamics of malaria infection in Anopheles mosquitoes. Malar J 3:13

    Article  Google Scholar 

  • Snow RW, Ikoku A, Omumbo J, Ouma J (1990) The epidemiology, politics and control of malaria epidemics in Kenya: 1900–1998. Roll back malaria, resource network on epidemics. World Health Organisation, Geneva

    Google Scholar 

  • Swellengrebel NH, de Buck A, Kraan MH, van der Torren G (1935) Occurence in fresh and brackish water on the larvae of Anopheles maculipenni,s atroparvus and messeae in some coastal provinces of the Netherlands. Q Bull Health Organ League Nations V(3):280–294

    Google Scholar 

  • Tran A, Ponçon N, Toty C, Linard C, Guis H, Ferré JB, Lo Seen D, Roger F, de la Rocque S, Fontenille D, Baldet T (2008) Using remote sensing to map larval and adult populations of Anopheles hyrcanus (Diptera: Culicidae) potential malaria vector in Southern France. Int J Health Geogr 7:9

    Article  Google Scholar 

  • Tseng WC, Chen CC, Chang CC, Chu YH (2009) Estimating the economic impacts of climate change on infectious diseases: a case study on dengue fever in Taiwan. Clim Change 92:123–140

    Article  Google Scholar 

  • Weyer F (1940) Malaria und Malariaübertragung in Ostfriesland. Deutsche Tropenmedizinische Wochenschrift 44(1–2)

  • WHO (World Health Organization) (2005) World malaria report 2005. World Health Organisation, Geneva

    Google Scholar 

  • Zhang Y, Peng B, Hiller JE (2008) Climate change and the transmission of vector-borne diseases: a review. Asia Pac J Publ Health 20(1):64–76

    Google Scholar 

  • Zoller T, Naucke TJ, May J, Hoffmeister B, Flick H, Williams CJ, Frank C, Bergmann F, Suttorp N, Mockenhaupt P (2009) Malaria transmission in non-endemic areas: case report, review of the literature and implications for public health management. Malar J 8:71

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunther Schmidt.

Additional information

Responsible editor: Zhihong Xu

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holy, M., Schmidt, G. & Schröder, W. Potential malaria outbreak in Germany due to climate warming: risk modelling based on temperature measurements and regional climate models. Environ Sci Pollut Res 18, 428–435 (2011). https://doi.org/10.1007/s11356-010-0388-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-010-0388-x

Keywords

Navigation