Skip to main content
Log in

Study of TiO2 anatase nano and microstructures with dominant {001} facets for NO oxidation

  • Photocatalysis: fundamentals and applications in JEP 2011, Bordeaux
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Introduction

TiO2 anatase nanoplates and hollow microspheres were fabricated by a solvothermal–hydrothermal method using titanium isopropoxide as a titanium precursor and hydrofluoric acid as a capping agent in order to enhance the formation of the {001} crystal facets of the anatase nanocrystals.

Methods

These different morphological structures of TiO2 anatase can be achieved by only changing the solvent, keeping the amount of the precursor and of the capping agent identical during the solvothermal–hydrothermal process.

Results and discussion

After calcination of the samples, the adsorbed fluoride atoms on the {001} crystal facets of the TiO2 anatase nanocrystals were completely removed from their surface according to XPS analysis. The calcined TiO2 anatase structures were higher crystallized and the specific surface area of the catalysts increased, enhancing their photocatalytic activity in comparison to the non-calcined TiO2 anatase structures. All TiO2 anatase samples with adsorbed as well as non-adsorbed fluoride atoms on their {001} crystal facets, exhibited a higher photonic efficiency than Degussa P25, which was used as a reference.

Conclusion

The fluoride free TiO2 anatase nanoplates exhibited the best photocatalytic activity in oxidizing the NO gas to NO2 and NO3 .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Blomquist J, Walle LE, Uvdal P, Borg A, Sandell A (2008) Water dissociation on single crystalline anatase TiO2 (001) studied by photoelectron spectroscopy. J Phys Chem C 112:16616–16621. doi:10.1021/jp805664b

    Article  CAS  Google Scholar 

  • Dalton JS, Janes PA, Jones NG, Nicholson JA, Hallam KR, Allen GC (2002) Photocatalytic oxidation of NO x gases using TiO2: a surface spectroscopic approach. Environ Pollut 120:415–422. doi:10.1016/S0269-7491(02)00107-0

    Article  CAS  Google Scholar 

  • Fang WQ, Gong XQ, Yang HG (2011) On the unusual properties of anatase TiO2 exposed by highly reactive facets. J Phys Chem Lett 2:725–734. doi:org/10.1021/jz200117r

    Article  CAS  Google Scholar 

  • Feldhoff A, Mendive C, Bredow T, Bahnemann DW (2007) Direct measurement of size, three-dimensional shape, and specific surface area of anatase nanocrystals. ChemPhys Chem 8:805–809. doi:10.1002/cphc.200700084

    Article  CAS  Google Scholar 

  • Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38. doi:10.1038/238037a0

    Article  CAS  Google Scholar 

  • Giannakopoulou T, Todorova N, Vaimakis T, Ladas S, Trapalis C (2008) Study of fluorine-doped TiO2 sol–gel thin coatings. J Sol Energy Eng 130(4):041007.1–041007.5. doi:10.1115/1.2969804

    Article  Google Scholar 

  • Gong XQ, Selloni A (2005) Reactivity of anatase TiO2 nanoparticles: the role of the minority (001) surface. J Phys Chem B 109:19560–19562. doi:10.1021/jp055311g

    Article  CAS  Google Scholar 

  • Goss C, Newsom S, Schildcrout J, Sheppard L, Kaufman J (2004) Effect of ambient air pollution on pulmonary exacerbations and lung function in cystic fibrosis. Am J Respir Crit Care Med 7:816–821. doi:10.1164/rccm.200306-779OC

    Article  Google Scholar 

  • Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96. doi:10.1021/cr00033a004

    Article  CAS  Google Scholar 

  • Li YF, Liu ZP, Liu LL, Gao W (2010) Mechanism and activity of photocatalytic oxygen evolution on titania anatase in aqueous surroundings. J Am Chem Soc 132:13008–13015. doi:10.1021/ja105340b

    Article  CAS  Google Scholar 

  • Liu M, Lv KL, Wang G, Wang Z, Zhao Y, Deng Y (2010a) Effect of fluoride on the photocatalytic activity of hollow TiO2 microspheres prepared by fluoride-mediated self- transformation. Chem Eng Technol 33:1531–1536. doi:10.1002/ceat.201000144

    Article  CAS  Google Scholar 

  • Liu SW, Yu JG, Jaroniec M (2010b) Tunable photocatalytic selectivity of hollow TiO2 microspheres composed of anatase polyhedra with exposed 001 facets. J Am Chem Soc 132:11914–11916. doi:10.1021/ja105283s

    Article  CAS  Google Scholar 

  • Liu SW, Yu JG, Mann S (2009) Synergetic codoping in fluorinated Ti1-xZrxO2 hollow microspheres. J Phys Chem C 113:10712–10717. doi:10.1021/jp902449b

    Article  CAS  Google Scholar 

  • Matsuda S, Hatano H (2005) Photocatalytic removal of NO x in a circulating fluidized bed system. Powder Technol 151:61–67. doi:10.1016/j.powtec.2004.11.031

    Article  CAS  Google Scholar 

  • Park HC, Choi W (2004) Effects of TiO2 surface fluorination on photocatalytic reactions and photoelectrochemical behaviors. J Phys Chem B 108:4086–4093. doi:10.1021/jp036735i

    Article  CAS  Google Scholar 

  • Rehman S, Ullah R, Butt AM, Gohar ND (2009) Strategies of making TiO2 and ZnO visible light active. J Hazard Mater 170:560–569. doi:10.1016/j.jhazmat.2009.05.064

    Article  CAS  Google Scholar 

  • Rodriquez-Carvajial J (1990) FULLPROF: a program for Rietveld refinement and pattern matching analysis. Abstracts of the Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr p.197 Touluse, France

  • Su YL, Zhang XW, Zhou MH, Han S, Lei LC (2008) Preparation of high efficient photoelectrode of N-F-codoped TiO2 nanotubes. J Photochem Photobiol A Chem 194:152–160. doi:10.1016/j.jphotochem.2007.08.002

    Article  CAS  Google Scholar 

  • Sumita M, Hu C, Tateyama Y (2010) Interface water on TiO2 anatase (101) and (001) surfaces: first-principles study with TiO2 slabs dipped in bulk water. J Phys Chem C 114:18529–18537. doi:10.1021/jp105364z

    Article  CAS  Google Scholar 

  • Sunyer J (2001) Urban air pollution and chronic obstructive pulmonary disease: a review. Eur Respir J 5:1024–1033. doi:10.1183/09031936.01.17510240

    Article  Google Scholar 

  • Tachikawa T, Yamashita S, Majima T (2011) Evidence for crystal-face-dependent TiO2 photocatalysis from single-molecule imaging and kinetic analysis. J Am Chem Soc 133:7197–7204. doi:org/10.1021/ja201415j

    Article  CAS  Google Scholar 

  • Tagushi T, Saito Y, Sarukawa K, Ohno T, Matsumura M (2003) Formation of new crystal faces on TiO2 particles by treatment with aqueous HF solution or hot sulfuric acid. New J Chem 27:1304–1306. doi:10.1039/b304518h

    Article  Google Scholar 

  • Todorova N, Giannakopoulou T, Romanos G, Vaimakis T, Yu JG, Trapalis C (2008) Preparation of fluorine-doped TiO2 photocatalysts with controlled crystalline structure. Int J Photoenergy. doi:10.1155/2008/534038

  • Vittadini A, Selloni A, Rotzinger FP, Grätzel M (1998) Structure and energetics of water adsorbed at TiO2 anatase (101) and (001) surfaces. Phys Rev Lett 81:2954–2957. doi:10.1103/PhysRevLett.81.2954

    Article  CAS  Google Scholar 

  • Xiang QJ, Lv KL, Yu JG (2010) Pivotal role of fluorine in enhanced photocatalytic activity of anatase TiO2 nanosheets with dominant (001) facets for the photocatalytic degradation of acetone in air. Appl Catal B: Environ 96:557–564. doi:10.1016/j.apcatb.2010.03.020

    Article  CAS  Google Scholar 

  • Wang XN, Huang BB, Wang ZY, Qin XY, Zhang XY, Dai Y, Whangbo MH (2010a) Synthesis of anatase TiO2 tubular structures microcrystallites with a high percentage of 001 facets by a simple one-step hydrothermal template process. Chem Eur J 16:7106–7109. doi:10.1002/chem.200903503

    CAS  Google Scholar 

  • Wang Z, Lv KL, Wang G, Deng KJ, Tang D (2010b) Study on the shape control and photocatalytic activity of high-energy anatase titania. Appl Catal Environ 100:378–385. doi:10.1016/j.apcatb.2010.08.014

    Article  CAS  Google Scholar 

  • Yu JC, Ho WK, Jiang ZT, Zhang LZ (2002) Effects of F- doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders. Chem Mater 14:3808–3816. doi:10.1021/cm020027c

    Article  CAS  Google Scholar 

  • Yu JG, Fan JJ, Lv KL (2010a) Anatase TiO2 nanosheets with exposed (001) facets: improved photoelectric conversion efficiency in dye-sensitized solar cells. Nanoscale 2:2144–2129. doi:10.1039/c0nr00427h

    Article  CAS  Google Scholar 

  • Yu JG, Xiang QJ, Ran JR, Mann S (2010b) One-step hydrothermal fabrication and photocatalytic activity of surface-fluorinated TiO2 hollow microspheres and tabular anatase single micro-crystals with high-energy facets. CrystEngComm 12:872–879. doi:10.1039/b914385h

    Article  CAS  Google Scholar 

  • Yuan S, Kawasaki S, Mori K, Yamashita H (2008) Synthesis and photocatalytic activity of TiO2 nanoparticles fluorine-modified with TiF4. Res Chem Intermed 34:331–337. doi:10.1163/156856708784040687

    Article  CAS  Google Scholar 

  • Zhang DQ, Li GS, Wang HB, Chan KM, Yu JC (2010) Biocompatible anatase single-crystal photocatalysts with tunable percentage of reactive facet. Cryst Growth Des 10:1130–1137. doi:10.1021/cg900961k

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the General Secretary of Research and Technology of Greece (09SYN-42-925) and by National Natural Science Foundation of China (20877061 and 51072154), Natural Science Foundation of Hubei Province (2010CDA078).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos Trapalis.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sofianou, MV., Trapalis, C., Psycharis, V. et al. Study of TiO2 anatase nano and microstructures with dominant {001} facets for NO oxidation. Environ Sci Pollut Res 19, 3719–3726 (2012). https://doi.org/10.1007/s11356-012-0747-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-012-0747-x

Keywords

Navigation