Skip to main content
Log in

Nanocellulosic fiber-modified carbon paste electrode for ultra trace determination of Cd (II) and Pb (II) in aqueous solution

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In recent years, increasing awareness of the environmental impact of heavy metals has prompted a demand for monitoring and decontaminating industrial wastes prior to discharging into natural water bodies. This paper describes the preparation and electrochemical application of carbon paste electrode modified with nanocellulosic fibers for the determination of cadmium and lead in water samples using anodic stripping voltammetry. First, cadmium and lead were adsorbed on the carbon paste electrode surface at open circuit potential, followed by anodic stripping voltammetric scan from -1 to 0 V. Different factors affecting sensitivity and precision of the electrode, including accumulating solvent, pH of the accumulating solvent, accumulation time, supporting electrolyte, and scan rate were investigated. The proposed method was also applied to the determination of Cd (II) and Pb (II) in the presence of other interfering metal ions and cetyl trimethyl ammonium bromide, sodium dodecyl sulfate, and Triton X-100 as a representative of cationic, anionic, and neutral surfactants. Linear calibration curves were obtained in the concentration ranges of 150–650 μg L−1 and 80–300 μg L−1, respectively, for cadmium and lead at an accumulated time of 10 min with limits of detection 88 and 33 μg L−1. Optimized working conditions are defined as acetate buffer of pH 5 as accumulating solvent, hydrochloric acid as supporting electrolyte, and scan rate 50 mV/s. This technique does not use mercury and therefore has a positive environmental benefit. The method is reasonably sensitive and selective and has been successfully applied to the determination of trace amounts of Cd (II) and Pb (II) in water samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bagheri H, Afkhami A, Saber-Tehrani M, Shirzadmehr A, Husain SW, Khoshsafar H, Tabatabaee M (2012a) Novel sensor fabrication for the determination of nanomolar concentrations of Ce3+ in aqueous solution. Anal Meth. doi:10.1039/C2AY00005A

  • Bagheri H, Afkhami A, Shirzadmehr A, Khoshsafar H, Khoshsafar H, Ghaedi H (2012b) Novel potentiometric sensor for the determination of Cd2+ based on a new nano-composite. Int J Environ Anal Chem. doi:10.1080/03067319.2011.649741

  • Bartlett PN, Denuarret G, Souza MFB (2000) A study of the preconcentration and stripping voltammetry of Pb(II) at carbon electrodes. Analyst 125:1135–1138

    Article  CAS  Google Scholar 

  • Brainina KZ, Malakhova NA, Stojko NY (2000) Stripping voltammetry in environmental and food analysis. Fres J Anal Chem 368:307–325

    Article  CAS  Google Scholar 

  • Cesarino I, Cavalheiro ETG, Brett CMA (2010) Simultaneous determination of cadmium, lead, copper and mercury ions using organo functionalized SBA-15 nanostructured silica modified graphite–polyurethane composite electrode. Electroanal 22(1):61–68

    Article  CAS  Google Scholar 

  • Chuparina EV, Aisueva TS (2011) Determination of heavy metal levels in medicinal plant Hemerocallis minor Miller by X-ray fluorescence spectrometry. Environ Chem Lett 9:19–23

    Article  CAS  Google Scholar 

  • Daniele S, Baldo MA, Bragato C (2008) Recent developments in stripping analysis on microelectrodes. Curr Anal Chem 4(3):215–228

    Article  CAS  Google Scholar 

  • Dey MK, Satpati AK, Sahoo S, Kameswaran R, Reddy AVR, Mukherjee T (2011) Bi-Film on a carbon paste electrode modified with nafion film embedded with multiwall carbon nano tubes for the determination of heavy metals. Anal Meth 3:2540–2546

    Article  CAS  Google Scholar 

  • Economou A, Fielden PR (1998) Selective determination of Ni (II) and Co (II) by flow injection analysis and adsorptive cathodic stripping voltammetry on a wall jet mercury film electrode. Talanta 46(5):1137–1146

    Article  CAS  Google Scholar 

  • Economou A (2005) Bismuth-film electrodes: recent developments and potentialities for electroanalysis. Trend Anal Chem 24:334–340

    Article  CAS  Google Scholar 

  • Gholivand MB, Parvin MH (2010) Differential pulse anodic stripping voltammetric simultaneous determination of copper(II) and silver(I) with bis(2-hydroxyacetophenone) butane-2,3-dihydrazone modified carbon paste electrodes. Electroanal 22(19):2291–2296

    Article  CAS  Google Scholar 

  • Goyal N, Gupta VK, Bachheti N (2007a) Voltammetric determination of adenosine and guanosine using fullerene-C60-modified glassy carbon electrode. Talanta 71(3):1110–1117

    Article  CAS  Google Scholar 

  • Goyal N, Gupta VK, Oyama M, Bachheti N (2007b) Gold nanoparticles modified indium tin oxide electrode for the simultaneous determination of dopamine and serotonin: application in pharmaceutical formulations and biological fluids. Talanta 72(3):976–983

    Article  CAS  Google Scholar 

  • Goyal RN, Gupta VK, Chatterjee S (2009) Fullerene—C60—modified edge plane pyrolytic graphite electrode for the determination of dexamethasone in pharmaceutical formulations and human biological fluids. Biosens Bioelectron 24:1649–1654

    Article  CAS  Google Scholar 

  • Grzes IM (2010) Ants and heavy metal pollution—a review. Eur J Soil Bio 46:350–355

    Article  CAS  Google Scholar 

  • Gupta VK, Jain AK, Singh LP, Khurana U (1997a) Porphyrins as carrier in PVC based membrane potentiometric sensors for nickel(II). Anal Chim Acta 355:33

    Article  CAS  Google Scholar 

  • Gupta VK, Jain S, Khurana U (1997b) A PVC-based pentathia-15-crown-5 membrane potentiometric sensor for mercury(II). Electroanalysis 9(6):478–480

    Article  CAS  Google Scholar 

  • Gupta VK, Kumar P (1999) Cadmium (II) selective sensors based on dibenzo-24-crown-8 in PVC matrix. Anal Chim Acta 389(1–3):205–212

    Article  CAS  Google Scholar 

  • Gupta VK, Mangla R, Khurana U, Kumar P (1999) Determination of uranyl ions using poly (vinyl chloride) based 4-tert-butylcalix [6] arene membrane sensor. Electroanalysis 11(8):573–576

    Article  CAS  Google Scholar 

  • Gupta VK, Mangla R, Agarwal S (2002) Pb (II) selective potentiometric sensor based on 4-tert-butylcalix [4] arene in PVC matrix. Electroanal 14:1127–1132

    Article  CAS  Google Scholar 

  • Gupta VK, Jain S, Chandra S (2003) Chemical sensor for lanthanum(III) determination using aza-crown as ionophore in poly(vinyl chloride) matrix. Anal Chim Acta 486(2):199–207

    Article  CAS  Google Scholar 

  • Gupta VK, Singh AK, Gupta B (2007) Schiff bases as cadmium (II) selective ionophores in polymeric membrane electrodes. Anal Chim Acta 583(2):340–348

    Article  CAS  Google Scholar 

  • Gupta VK, Goyal RN, Sharma RA (2009a) Comparative studies on neodymium (III)-selective membrane sensors. Anal Chim Acta 647:66–71

    Article  CAS  Google Scholar 

  • Gupta VK, Goyal RN, Sharma RA (2009b) Novel alizarin sensor for determination of vanadium, zirconium and molybdenum. Int J Electrochem Sci 4:156–172

    CAS  Google Scholar 

  • Gupta VK, Khayat MA, Singh AK, Pal MK (2009c) Nano level detection of Cd (II) using poly (vinyl chloride) based membranes of Schiff bases. Anal Chim Acta 634(1):36–43

    Article  CAS  Google Scholar 

  • Gupta VK, Jain R, Pal MK (2010a) Mn2+ selective electrode based on 3-(6-aminopyridin-2-ylimino)-1, 3-diphenylpropylidene) pyridine-2, 6-diamine. Int J Electrochem Sci 5:1164–1178

    CAS  Google Scholar 

  • Gupta VK, Rastogi A, Nayak A (2010b) Adsorption studies on the removal of hexavalent chromium from aqueous solution using a low cost fertilizer industry waste material. J Colloid Interface Sci 342:135–141

    Article  CAS  Google Scholar 

  • Jain AK, Gupta VK, Sahoo BB, Singh LP (1995a) Copper (II)-selective electrodes based on macrocyclic compounds. Anal Proc, (RSC) 32:99–101

    Article  Google Scholar 

  • Jain AK, Gupta VK, Singh LP (1995b) Neutral carrier and organic resin based membranes as sensors for uranyl ions. Anal Proc (RSC) 32:263–265

    Article  CAS  Google Scholar 

  • Jain AK, Gupta VK, Singh LP, Khurana U (1997a) Macrocycle based membrane sensors for the determination of cobalt (II) ions. Analyst 122:583–586

    Article  CAS  Google Scholar 

  • Jain AK, Gupta VK, Khurana U, Singh LP (1997b) A new membrane sensor for UO2+, based on 2-hydroxyacetophenoneoxime-thioureatrioxane resin. Electroanalysis 9:857–860

    Article  CAS  Google Scholar 

  • Jain AK, Gupta VK, Radi S, Singh LP, Raisoni JR (2006) A comparative study of Pb2+ sensors based on derivatized tetrapyrazole and calix[4]arene receptors. Electrochim Acta 51(12):2547–2553

    Article  CAS  Google Scholar 

  • Jia G, Wang H, Yan L, Wang X, Pei R, Yan T, Zhao Y, Guo X (2005) Cytotoxicity of carbon nanomaterials: singlewall nanotube, multi-wall nanotube, and fullerene. Env Sci & Tech 39(5):1378–1383

    Article  CAS  Google Scholar 

  • John AC, Ibironke LO, Adedeji V, Oladunni O (2011) Equilibrium and kinetic studies of the biosorption of heavy metal (cadmium) on Cassia siamea Bark. American-Eurasian Journal of Scientific Research 6(3):123–130

    CAS  Google Scholar 

  • Jones S, Compton RG (2008) Stripping analysis using boron-doped diamond electrodes. Curr Anal Chem 4(3):170–176

    Article  Google Scholar 

  • Karadjova I, Izgi B, Gucer S (2002) Fractionation and speciation of Cu, Zn and Fe in wine samples by atomic absorption spectrometry. Spectroc Acta Pt B 57:581–590

    Article  Google Scholar 

  • Kardam A, Rohit Raj K, Arora JK, Srivastava S (2012) Artificial neural network modeling for biosorption of Pb (II) ions on nano cellulose fibers. Bionanoscience. doi:10.1007/s12668-012-0045-6, Springer, USA

  • Lam C, James JT, McCluskey R, Hunter RL (2004) Pulmonary toxicity of carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicology Science 77:126–134

    Article  CAS  Google Scholar 

  • Ma H, Burger C, Hsiao BS, Chu B (2011) Ultra-fine cellulose nanofibers: new nano-scale materials for water purification. J Mat Chem 21:7507–7510

    Article  CAS  Google Scholar 

  • Oberdorster G, Oberdorster E, Oberdorster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Persp 113:823–839

    Article  CAS  Google Scholar 

  • Rezaei B, Damiri S (2008) Multiwalled carbon nanotubes modified electrode as a sensor for adsorptive stripping voltammetric determination of hydrochlorothiazide. Sensors 8(9):1523–1529

    Article  CAS  Google Scholar 

  • Sain M, Oksman K (eds) (2006) Cellulose nanocomposites: processing, characterization, and properties, Volume 938 of ACS symposium series. American Chemical Society, Washington, DC

    Google Scholar 

  • Samir MA, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposites field. Biomacromolecules 6:612–626

    Article  CAS  Google Scholar 

  • Srivastava SK, Gupta VK, Dwivedi MK, Jain S (1995) Caesium PVC-crown (dibenzo-24-crown-8) based membrane sensor. Anal Proc (RSC) 32:21–23

    Article  CAS  Google Scholar 

  • Srivastava SK, Gupta VK, Jain S (1996a) A PVC-based benzo-15-crown-5 membrane sensor for cadmium. Electroanalysis 8:938–940

    Article  CAS  Google Scholar 

  • Srivastava SK, Gupta VK, Jain S (1996b) PVC-based 2,2,2-crypt and sensor for zinc ions. Anal Chem 68:1272–1275

    Article  CAS  Google Scholar 

  • Srivastava S, Kardam A, Raj KR (2012) Nanotech reinforcement onto cellulosic fibers: green remediation of toxic metals. International Journal of Green Nanotechnology 4:1–8

    Article  Google Scholar 

  • Svancara I, Vytras K, Kalcher K, Walcarius A, Wang J (2009) Carbon paste electrodes in facts, numbers, and notes: a review on the occasion of the 50-years jubilee of carbon paste in electrochemistry and electroanalysis. Electroanal 21(1):7–28

    Article  CAS  Google Scholar 

  • Visakh PM, Thomas S (2010) Preparation of bionanomaterials and their polymer nanocomposites from waste and biomass. Waste Biomass Valor 1:121–134

    Article  CAS  Google Scholar 

  • Wang J (2005) Stripping analysis at bismuth electrodes: a review. Electroanal 17(15–16):1341–1346

    Article  CAS  Google Scholar 

  • Wu KB, Hu SS, Fei JJ, Bai W (2003) Mercury-free simultaneous determination of Cd2+ and Pb2+ at a glassy carbon electrode modified with multi-wall carbon nanotubes. Anal Chim Acta 489:215–221

    Article  CAS  Google Scholar 

  • Xu H, Zeng LP, Xing SJ, Xian YZ, Shi GY, Jin LT (2008) Ultrasensitive voltammetric detection of trace lead, and cadmium using MWCNTs-Nafion-bismuth composite electrodes. Electroanal 20:2644

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Prof. V.G. Das, Director, and Prof. L.D. Khemani, Head, Department of Chemistry, Dayalbagh Educational Institute, Dayalbagh, Agra, for providing necessary research facilities. The authors also gratefully acknowledge the Ministry of Human Resource and Development, New Delhi, for rendering financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soami Piara Satsangee.

Additional information

Responsible editor: Vinod Kumar Gupta

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajawat, D.S., Kardam, A., Srivastava, S. et al. Nanocellulosic fiber-modified carbon paste electrode for ultra trace determination of Cd (II) and Pb (II) in aqueous solution. Environ Sci Pollut Res 20, 3068–3076 (2013). https://doi.org/10.1007/s11356-012-1194-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-012-1194-4

Keywords

Navigation