Skip to main content

Advertisement

Log in

Biosorption of arsenic in drinking water by submerged plant: Hydrilla verticilata

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

To evaluate the biosorption efficacy of submerged aquatic plant Hydrilla verticilata for arsenic uptake from drinking water. H. verticillata, a submerged aquatic plant was utilized successfully for arsenic uptake from aqueous solution. Batch studies with various parameters viz. pH, sorbent dose, contact time, initial metal ion concentration, and temperature were carried out. Data were utilized to plot Lagergren graph along with pseudo-second-order graphs for kinetic studies to estimate the removal efficacy and to determine the nature of reaction. Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) have been performed for characterization of metals on biomass. The study showed 96.35 % maximum absorption of arsenic by H. verticilata at initial concentration of 100 ppb with 0.5 g of biomass/100 ml for 5 h contact time at pH 6.0 with 150 rpm agitation rate. Data followed Langmuir isotherm showing sorption to be monolayer on homogeneous surface of biosorbent. The negative values of ΔG° indicated spontaneous nature; whereas ΔH° indicates exothermic nature of system and negative value of ∆S° entropy change correspond to a decrease in the degree of freedom to the adsorbed species followed by pseudo-second-order adsorption kinetics. FTIR and SEM results showed apparent changes in functional group regions after metal chelation and the changes in surface morphology of biosorbent. This is a comparatively more effective, economic, easily available, and environmentally safe source for arsenic uptake from solution due to its high biosorption efficacy than other biosorbents already used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agrawal A, Sahu KK, Pandey BD (2004) Removal of zinc from aqueous solutions using sea nodule residue. Coll Surf A 237:133–140

    Article  CAS  Google Scholar 

  • Aksu Z (2001) Equilibrium and kinetic modeling of cadmium(II) biosorption by C. vulgaris in a batch system: effect of temperature. Sep Purif Technol 21:285–294

    Article  CAS  Google Scholar 

  • Aksu Z, Akpinar D (2001) Competitive biosorption of phenol and chromium(VI) from binary mixtures onto dried anaerobic activated sludge. Biochem Eng J 7:183–193

    Article  CAS  Google Scholar 

  • Altundogan HS, Altundogan S, Tumen F, Bildik M (2000) Arsenic removal from aqueous solutions by adsorption on red mud. Waste Manage 20:761–767

    Article  CAS  Google Scholar 

  • APHA (2012) Standard methods for the examination of water and wastewater, 22nd edn. American Public Health Association, Washington, DC

    Google Scholar 

  • Bleeker PM, Hakvoort HWJ, Bliek M, Souer E, Schat H (2006) Enhanced arsenate reduction by a CDC 25-like tyrosine phosphatase explains increased phytochelatin accumulation in arsenate-tolerant Holcus lanatus. Plant J 45:917–929

    Article  CAS  Google Scholar 

  • Chaung CL, Fan M, Xu M, Brown RC, Sung S, Saha B, Huang CP (2005) Adsorption of arsenic(V) by activated carbon prepared from oat hulls. Chemosphere 61:478–483

    Article  Google Scholar 

  • Chu BS, Baharin BS, Che Man YB, Quek SY (2004) Separation of vitamin E using silica: I Batch adsorption equilibrium. J Food Eng 62:97–103

    Article  Google Scholar 

  • Cullen WR, Reimer KJ (1989) Arsenic specification in the environment. Chem Rev 89:713–764

    Article  CAS  Google Scholar 

  • Daifullah AE, Reefy SE, Gad H (1997) Adsorption of p-nitrophenol on inshas incinerator ash and on pyrolysis residue of animal bones. Adsor Sci Technol 15:485–496

    CAS  Google Scholar 

  • Davis TA, Volesky B, Vieira RHSF (2000) Sargassum seaweed as biosorbent for heavy metals. Water Res 34:4270–4278

    Article  CAS  Google Scholar 

  • Dentel SK, Bottero JY, Khatib K, Demougeot H, Duguet JP, Anselme C (1995) Sorption of tannic acid, phenol and 2,4,5-trichlorophenol on organoclays. Water Res 29:1273–1280

    Article  CAS  Google Scholar 

  • Flora SJ, Bhadauria S, Pant SC, Dhaked RK (2005) Arsenic induced blood and brain oxidative stress and its responses to its responses to some thiol chelators in rats. Life Sci 77:2324–2337

    Article  CAS  Google Scholar 

  • Fourest E, Canal C, Roux JC (1994) Improvement of heavy metals biosorption by mycelia dead biomasses (Rhizopus arrhizus, Muchor miehei, and Pencillium chrysogenum): pH control and cationic activation. FEMS Microbiol Rev 14:325–332

    Article  CAS  Google Scholar 

  • Fourest E, Volesky B (1996) Contribution of sulfonate groups and alginate to heavy metal biosorption by the dry biomass. Environ Sci Technol 30:277–282

    Article  CAS  Google Scholar 

  • Ganjidoust H, Deyhool F, Samadian M, Chuen HY (1992) Proceeding of the International Conference of Environmental Protection and Control Technology, vol. 3. Environmental Management and Research Association of Malaysia, Kulalampur, Malaysia, pp 903–912

    Google Scholar 

  • Gonzalez Elizalde MP, Mattusch J, Einicke WD, Wennrich R (2001) Sorption on natural solids for removal. Chem Eng J (Lausanne) 81:187–195

    Google Scholar 

  • Gupta VK, Sharama S, Yadav IS, Mohan D (1998) Utilization of bagasse fly ash generated in the sugar industry for the removal and recovery of phenol and p-nitrophenol from waste water. J Chem Technol Biotechnol 71:180–186

    Article  CAS  Google Scholar 

  • Gupta VK, Srivastava SK, Tyagi R (2000) Design parameters for the treatment of phenolic wastes by carbon columns (obtained from fertelizer waste material). Water Res 34:1543–1550

    Article  CAS  Google Scholar 

  • Gupta VK, Ali I (2003) Adsorbents for water treatment: low cost alternatives to carbon. Encyclopedia of surface and colloid science, 2nd ed. Marcel Dekker, New York. pp 1–34

  • Gupta VK, Carrott PJM, Ribeiro Carrott MML, Suhas A (2009) Low cost adsorbents: growing approach to wastewater treatment—a review. Crit Rev Environ Sci Technol 39:783–842

    Article  Google Scholar 

  • Gupta VK, Nayak A, Agrawal S, Dobhal R, Uniyal DP, Singh P, Sharma B, Tyagi S, Singh R (2012) Arsenic speciation analysis and remediation techniques in drinking water. Desal Water Treat 40:231–243

    Article  CAS  Google Scholar 

  • Hall KR, Eagleton LC, Acrivos A, Vermeulen T (1966) Pore- and solid-diffusion kinetics in fixed-bed adsorption under constant-pattern conditions. Ind Eng Chem Fund 5:212–223

    Article  CAS  Google Scholar 

  • Hammaini A, Ballester A, Gonzalez F, Blazques ML, Munoz JA (1999) Activated sludge as biosorbent of heavy metals. Biohydrometallurgy and the environment towards the mining of the 21st century. Int Biohydrometallurgy symp IBS 99:185–192

    Google Scholar 

  • Holan ZR, Volesky B (1994) Biosorption of lead and nickel by biomass of marine algae. Biotechnol Bioengg 43:1001–1009

    Article  CAS  Google Scholar 

  • Jashni AK, Narbaitz RM (1997) Impact of pH on the adsorption and desorption of kinetics of 2-nitro-phenol on activated carbons. Water Res 31:3039–3044

    Article  Google Scholar 

  • Khan AA, Singh RP (1987) Adsorption thermodynamics of carbofuran on Sn(IV) arsenosilicate in Hþ, Naþ and Ca2 þ forms. Colloid and Surfaces 24:33–42

    Article  CAS  Google Scholar 

  • Kundu S, Kavalakatt SS, Pal A, Ghosh SK, Mandal M, Pal T (2004) Removal of arsenic using hardened paste of Portland cement: batch adsorption and column study. Water Res 38:3780–3790

    Article  CAS  Google Scholar 

  • Kundu S, Gupta AK (2007) Adsorption characteristics of As(III) from aqueous solution on iron oxide coated cement (IOCC). J Haz Mat 142:97–104

    Article  CAS  Google Scholar 

  • Lagergren S (1898) Zur theorie der Soggenannten adsorption gel Österstoffe. Kungliga Svenka Vetenskapsakademiens, Handlingar 24:1–39

    Google Scholar 

  • Li Z, Beachner R, McManama Z, Hanlie H (2007) Sorption of arsenic by surfactant-modified zeolite and kaolinite. Micropor Mesopor Mater 105:291–297

    Article  CAS  Google Scholar 

  • Matheickal JT, Yu Q (1996) Biosorption of lead from aqueous solutions by marine alga Ecklonia radiate. Water Sci Technol 34:1–7

    CAS  Google Scholar 

  • Matheickal JT, Yu Q, Woodburn GM (1999) Biosorption of cadmium from aqueous solutions by pretreated biomass of marine alga Durvillaea potatorum. Water Res 33:335–342

    Article  CAS  Google Scholar 

  • Namasivayam C, Ranghanathan K (1995) Removal of Pb (II) by adsorption onto waste Fe(III)/Cr(III) sludge from aqueous solution and radiator manufacturing industry wastewater. Ind Eng Chem Res 34:869–872

    Article  CAS  Google Scholar 

  • Ngah WSW, Hanafiah MAKM (2008) Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: a review. Bioresour Technol 99:3935–3948

    Article  Google Scholar 

  • Nigam S, Vankar PS, Gopal K (2012) Biosorption of arsenic from aqueous solution using dye waste. Environ Sci Poll Res. doi:10.1007/s11356-012-0966-1

  • Park D, Yun YS, Park JM (2004) Reduction of hexavalent chromium with brown seaweed Ecklonia biomass. Environ Sci Technol 38:4860–4864

    Article  CAS  Google Scholar 

  • Raab A, Ferreira K, Meharg AA, Feldmann J (2007) Can arsenic–phytochelatin complex formation be used as an indicator for toxicity in Helianthus annuus. J Exp Bot 58:1333–1338

    Article  CAS  Google Scholar 

  • Sag Y, Kutsal T (1995) Biosorption of heavy metals by Zoogloea ramigera: use of adsorption isotherms and a comparison of biosorption characteristics. Biochem Eng J 60:181–8

    CAS  Google Scholar 

  • Sandhu SS, Nelson P (1980) Ionic interferences in the determination of arsenic in water by silver diethyldithiocarbonate method. Anal Chem 50:322–325

    Article  Google Scholar 

  • Sarkar M, Banerjee A, Pramanick PP (2006) Kinetics and mechanism offluoride removal using laterite. Ing Eng Chem Res 45:5920–5927

    Article  CAS  Google Scholar 

  • Schiewer S, Wong MH (2000) Ionic strength effects in biosorption of metals by marine algae. Chemosphere 41:271–282

    Article  CAS  Google Scholar 

  • Scott JA, Karanjkar AM (1992) Repeated cadmium biosorption by regenerated Enterobacter aerogenes biofilm attached to activated carbon. Biotechnol Lett 14(8):737–740

    Article  CAS  Google Scholar 

  • Seki H, Suzuki A, Maruyama H (2005) Biosorption of chromium(VI) and arsenic(V) onto methylated yeast biomass. J coll Inter Sci 281:261–266

    Article  CAS  Google Scholar 

  • Singh TS, Pant KK (2004) Equilibrium, kinetics and thermodynamic studies for adsorption of As(III) on activated alumina. Sep Purif Technol 36:139–147

    Article  CAS  Google Scholar 

  • Streat M, Patrick JW, Perez Comparro MJ (1995) Sorption of phenol and p-chlorophenol from water using conventional and novel activated carbons. Water Res 29:467–472

    Article  CAS  Google Scholar 

  • Vankar PS, Sarswat R (2010) Hibiscus rosasinensis flower waste as biosorbent: lead(II) and cadmium(II) removal. Environ Prog Sust Energy 29:421–427

    Article  CAS  Google Scholar 

  • Vankar PS, Sarswat R, Sahu R (2012) Biosorption of zinc ions from aqueous solutions onto natural dye waste of Hibiscus rosasinensis: thermodynamic and kinetic studies. Environ Prog Sust Energy 31:89–99

    Article  CAS  Google Scholar 

  • Volesky B (1990) Biosorption of heavy metals. CRC Press, Boston, USA, p 408, ISBN 0849349176

    Google Scholar 

  • WHO (2006) World Health Organization. http://www.who.int/mediacentre/ factsheets/Fs210/en.

  • Woolson EA (1975) The persistence and chemical distribution of aesanilic acid in the soils. J Food Chem 23:677–681

    Article  CAS  Google Scholar 

  • Xu XY, McGrath SP, Zhao FJ (2007) Rapid reduction of arsenate in the medium mediated by plant roots. New Phytol 176:590–599

    Article  CAS  Google Scholar 

  • Yu Y, Zhuang YY, Wang Z (2001) Adsorption of water-soluble dye ontofunctionalized resin. J Colloid Interface Sci 242:288–293

    Article  CAS  Google Scholar 

  • Yun YS, Park D, Park JM, Volesky B (2001) Biosorption of trivalent chromium on the brown seaweed biomass. Environ Sci Technol 35:4353–4358

    Article  CAS  Google Scholar 

  • Zhao FJ, Ma JF, Meharg AA, McGrath SP (2009) Arsenic uptake and metabolism in plants. New Phytol 181:777–794

    Article  CAS  Google Scholar 

  • Zouboulis AI, Rousou EG, Matis KA, Hancock IC (1999) Removal of toxic metals from aqueous mixtures: part I. Biosorption J Chem Biotechnol 74:429–436

    Article  CAS  Google Scholar 

Download references

Acknowledgments

One of the authors Dr. Shubha Nigam is thankful to the Women Scientist Scheme (WOS-A), Department of Science and Technology (DST), New Delhi for the financial support to carry out the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shubha Nigam.

Additional information

Responsible editor: Hailong Wang

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nigam, S., Gopal, K. & Vankar, P.S. Biosorption of arsenic in drinking water by submerged plant: Hydrilla verticilata . Environ Sci Pollut Res 20, 4000–4008 (2013). https://doi.org/10.1007/s11356-012-1342-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-012-1342-x

Keywords

Navigation