Skip to main content
Log in

Cadmium (Cd2+) removal by nano zerovalent iron: surface analysis, effects of solution chemistry and surface complexation modeling

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Nano zerovalent iron (nZVI) is an effective remediant for removing various organic and inorganic pollutants from contaminated water sources. Batch experiments were conducted to characterize the nZVI surface and to investigate the effects of various solution properties such as pH, initial cadmium concentration, sorbent dosage, ionic strength, and competitive ions on cadmium removal by nZVI. Energy-dispersive X-ray and X-ray photoelectron spectroscopy results confirmed removal of Cd2+ ions by nZVI through adsorption. Cd2+ adsorption decreased in the presence of competitive cations in the order: Zn2+ > Co2+ > Mg2+ > Mn2+ = Cu2+ > Ca2+ > Na2+ = K+. Higher concentrations of Cl significantly decreased the adsorption. Cadmium removal increased with solution pH and reached a maximum at pH 8.0. The effects of various solution properties indicated Cd2+ adsorption on nZVI to be a chemisorption (inner-sphere complexation) process. The three surface complexation models (diffuse layer model, constant capacitance model, and triple layer model) fitted well to the adsorption edge experimental data indicating the formation of nZVI–Cd bidentate inner-sphere surface complexes. Our results suggest that nZVI can be effectively used for the removal of cadmium from contaminated water sources with varying chemical conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • ATSDR (2008) ToxFAQs for cadmium. Agency for Toxic Substances and Disease Registry, Atlanta, GA. http://www.atsdr.cdc.gov/tfacts5.pdf. Accessed 30 Nov 2012

  • ATSDR (2011) Detailed data table for the 2011 priority list of hazardous substances that will be the subject of toxicological profiles. Agency for Toxic Substances and Disease Registry, Atlanta, GA. http://www.atsdr.cdc.gov/SPL/resources/ATSDR_2011_SPL_Detailed_Data_ Table.pdf. Accessed 30 Nov 2012

  • Balistrieri LS, Murray JW (1982) The adsorption of Cu, Pb, Zn, and Cd on goethite from major ion sea-water. Geochim Cosmochim Acta 46:1253–1265. doi:10.1016/0016-7037(82)90010-2

    Article  CAS  Google Scholar 

  • Benguella B, Benaissa H (2002) Effects of competing cations on cadmium biosorption by chitin. Colloid Surf A 201:143–150. doi:10.1016/S0927- 7757(01)00899-8

    Article  CAS  Google Scholar 

  • Benjamin MM, Leckie JO (1981) Competitive adsorption of Cd, Cu, Zn, and Pb on amorphous iron oxyhydroxide. J Colloid Interf Sci 83:410–419. doi:10.1016/0021-9797(81)90337-4

    Article  CAS  Google Scholar 

  • Boekhold AE, Temminghoff EJM, Vanderzee SEATM (1993) Influence of electrolyte-composition and pH on cadmium sorption by an acid sandy soil. J Soil Sci 44:85–96. doi:10.1111/j.1365-2389.1993.tb00436.x

    Article  CAS  Google Scholar 

  • Boparai HK, Joseph M, O’Carroll DM (2011) Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. J Hazard Mater 186:458–465. doi:10.1016/j.jhazmat.2010.11.029

    Article  CAS  Google Scholar 

  • Bose DN, Hedge MS, Basu S, Mandal KC (1989) XPS investigation of Cdte surfaces—effect of Ru modification. Semicond Sci Tech 4:866–870. doi:10.1088/0268-1242/4/10/006

    Article  CAS  Google Scholar 

  • Calareso C, Grasso V, Silipigni L (2001) The cadmium seleniophosphate (CdPSe3) XPS and XAES spectra. Appl Surf Sci 171:306–313. doi:10.1016/S0169-4332(00)00818-7

    Article  CAS  Google Scholar 

  • Celebi O, Uzum C, Shahwan T, Erten HN (2007) A radiotracer study of the adsorption behavior of aqueous Ba2+ ions on nanoparticles of zero-valent iron. J Hazard Mater 148:761–767. doi:10.1016/j.jhazmat.2007.06.122

    Article  CAS  Google Scholar 

  • Davis JA, James RO, Leckie JO (1978) Surface ionization and complexation at oxide/water interface. 1. Computation of electrical double-layer properties in simple electrolytes. J Colloid Interf Sci 63:480–499. doi:10.1016/S0021-9797(78)80009-5

    Article  CAS  Google Scholar 

  • Dermatas D, Meng X (2004) Removal of As, Cr and Cd by adsorptive filtration. Global Nest J 6:73–80

    Google Scholar 

  • Dinis ML, Fiuza A (2011) Exposure assessment to heavy metals in the environment: measures to eliminate or reduce the exposure to critical receptors. In: Simeonov LI, Kochubovski MH, Simeonova BG (eds) Environmental heavy metal pollution and effects on child mental development. Springer, Dordrecht, pp 27–50

    Chapter  Google Scholar 

  • Dzombak DA, Morel FMM (1990) Surface complexation modeling: hydrous ferric oxide. Wiley Inter Science, New York

    Google Scholar 

  • Efecan N (2008) Characterization of the adsorption behaviour of aqueous Cd(II) and Ni(II) ions on nanoparticles of zero-valent iron. M.S. Thesis. İzmir Institute of Technology, Turkey

  • Efecan N, Shahwan T, Eroglu AE, Lieberwirth I (2009) Characterization of the uptake of aqueous Ni2+ ions on nanoparticles of zero-valent iron (nZVI). Desalination 249:1048–1054. doi:10.1016/j.desal.2009.06.054

    Article  CAS  Google Scholar 

  • Fairley N (1999) CasaXPS Version 2.2.19. www.casaxps.com

  • Good NE, Izawa S (1972) Hydrogen ion buffers. Method Enzymol 24:53–68. doi:10.1016/0076-6879(72)24054-X

    Article  CAS  Google Scholar 

  • Grosvenor AP, Kobe BA, Biesinger MC, McIntyre NS (2004a) Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf Interface Anal 36:1564–1574. doi:10.1002/sia.1984

    Article  CAS  Google Scholar 

  • Grosvenor AP, Kobe BA, McIntyre NS (2004b) Studies of the oxidation of iron by air after being exposed to water vapour using angle-resolved X-ray photoelectron spectroscopy and QUASES. Surf Interface Anal 36:1637–1641. doi:10.1002/sia.1992

    Article  CAS  Google Scholar 

  • Grosvenor AP, Kobe BA, McIntyre NS (2004c) Studies of the oxidation of iron by water vapour using X-ray photoelectron spectroscopy and QUASES (TM). Surf Sci 572:217–227. doi:10.1016/j.susc.2004.08.035

    Article  CAS  Google Scholar 

  • Gustafsson JP (2011) Visual MINTEQ version 3.0 [Online]. Department of Land and Water Resources Engineering, Royal Institute of Technology, Stockholm, Sweden. http://www.lwr.kth.se/English/OurSoftware/vminteq/. Accessed 22 Oct 2012

  • Hanawa T, Hiromoto S, Yamamoto A, Kuroda D, Asami K (2002) XPS characterization of the surface oxide film 316 L stainless steel samples that were located in quasi-biological environments. Mater Trans 43:3088–3092

    Article  CAS  Google Scholar 

  • Hayes KF, Redden G, Ela W, Leckie JO (1991) Surface complexation models—an evaluation of model parameter-estimation using FITEQL and oxide mineral titration data. J Colloid Interf Sci 142:448–469. doi:10.1016/0021-9797(91)90075-J

    Article  CAS  Google Scholar 

  • Huang QY, Chen WL, Xu LH (2005) Adsorption of copper and cadmium by Cu- and Cd-resistant bacteria and their composites with soil colloids and kaolinite. Geomicrobiol J 22:227–236. doi:10.1080/01490450590947779

    Article  CAS  Google Scholar 

  • Kanel SR, Manning B, Charlet L, Choi H (2005) Removal of arsenic(III) from groundwater by nanoscale zero-valent iron. Environ Sci Technol 39:1291–1298. doi:10.1021/Es048991u

    Article  CAS  Google Scholar 

  • Kanel SR, Greneche JM, Choi H (2006) Arsenic(V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Environ Sci Technol 40:2045–2050. doi:10.1021/Es0520924

    Article  CAS  Google Scholar 

  • Kumar PS, Ramakrishnan K, Kirupha SD, Sivanesan S (2010) Thermodynamic and kinetic studies of cadmium adsorption from aqueous solution onto rice husk. Braz J Chem Eng 27:347–355. doi:10.1590/S0104-66322010000200013

    CAS  Google Scholar 

  • Li XQ, Elliott DW, Zhang WX (2006) Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects. Crit Rev Solid State 31:111–122. doi:10.1080/10408430601057611

    Article  CAS  Google Scholar 

  • Li XQ, Zhang WX (2006) Iron nanoparticles: the core–shell structure and unique properties for Ni(II) sequestration. Langmuir 22:4638–4642. doi:10.1021/La060057k

    Article  CAS  Google Scholar 

  • Li XQ, Zhang WX (2007) Sequestration of metal cations with zerovalent iron nanoparticles—a study with high resolution X-ray photoelectron spectroscopy (HR-XPS). J Phys Chem C 111:6939–6946. doi:10.1021/Jp0702189

    Article  CAS  Google Scholar 

  • Lindsay WL (1979) Chemical equilibria in soils. Wiley, New York

    Google Scholar 

  • Manning BA, Kiser JR, Kwon H, Kanel SR (2007) Spectroscopic investigation of Cr(III)- and Cr(VI)-treated nanoscale zerovalent iron. Environ Sci Technol 41:586–592. doi:10.1021/Es061721m

    Article  CAS  Google Scholar 

  • Mohapatra M, Mohapatra L, Singh P, Anand S, Mishra BK (2010) A comparative study on Pb(II), Cd(II), Cu(II), Co(II) adsorption from single and binary aqueous solutions on additive assisted nano-structured goethite. Int J Eng, Sci Technol 2(8):89–103. http://www.ajol.info/index.php/ijest/article/view/63784

  • Mondal K, Jegadeesan G, Lalvani SB (2004) Removal of selenate by Fe and NiFe nanosized particles. Ind Eng Chem Res 43:4922–4934. doi:10.1021/ie0307151

    Article  CAS  Google Scholar 

  • Moreno-Castilla C, Alvarez-Merino MA, Lopez-Ramon MV, Rivera-Utrilla J (2004) Cadmium ion adsorption on different carbon adsorbents from aqueous solutions. Effect of surface chemistry, pore texture, ionic strength, and dissolved natural organic matter. Langmuir 20:8142–8148. doi:10.1021/La049253m

    Article  CAS  Google Scholar 

  • O’Carroll D, Sleep B, Krol M, Boparai H, Kocur C (2012) Nanoscale zerovalent iron and bimetallic particles for contaminated site remediation. Adv Water Resour In Press. doi:10.1016/j.advwatres.2012.02.005

    Google Scholar 

  • Petersen EJ, Pinto RA, Shi X, Huang Q (2012) Impact of size and sorption on degradation of trichloroethylene and polychlorinated biphenyls by nano-scale zerovalent iron. J Hazard Mater 243:73–79. doi:10.1016/j.jhazmat.2012.09.070

    Article  CAS  Google Scholar 

  • Rao KS, Anand S, Venkateswarlu P (2011) Adsorption of cadmium from aqueous solution by Ficus religiosa leaf powder and characterization of loaded biosorbent. Clean-Soil Air Water 39:384–391. doi:10.1002/clen.201000098

    Article  CAS  Google Scholar 

  • Sakulchaicharoen N, O’Carroll DM, Herrera JE (2010) Enhanced stability and dechlorination activity of pre-synthesis stabilized nanoscale FePd particles. J Contam Hydrol 118:117–127. doi:10.1016/j.jconhyd.2010.09.004

    Article  CAS  Google Scholar 

  • Satapanajaru T, Anurakpongsatorn P, Pengthamkeerati P, Boparai H (2008) Remediation of atrazine-contaminated soil and water by nano zerovalent iron. Water Air Soil Poll 192:349–359. doi:10.1007/s11270-008-9661-8

    Article  CAS  Google Scholar 

  • Schaller MS, Koretsky CM, Lund TJ, Landry CJ (2009) Surface complexation modeling of Cd(II) adsorption on mixtures of hydrous ferric oxide, quartz and kaolinite. J Colloid Interf Sci 339:302–309. doi:10.1016/j.jcis.2009.07.053

    Article  CAS  Google Scholar 

  • Soltani RDC, Jafari AJ, Khorramabadi GS (2009) Investigation of cadmium (II) ions biosorption onto pretreated dried activated sludge. Am J Environ Sci 5:41–46. doi:10.3844/ajes.2009.41.46

    CAS  Google Scholar 

  • Song H, Carraway ER (2005) Reduction of chlorinated ethanes by nanosized zero-valent iron: kinetics, pathways, and effects of reaction conditions. Environ Sci Technol 39:6237–6245. doi:10.1021/Es048262e

    Article  CAS  Google Scholar 

  • Tiller KG, Nayyar VK, Clayton PM (1979) Specific and nonspecific sorption of cadmium by soil clays as influenced by zinc and calcium. Aust J Soil Res 17:17–28. doi:10.1071/SR9790017

    Article  CAS  Google Scholar 

  • Üzüm Ç, Shahwan T, Eroğlu AE, Lieberwirth I, Scott TB, Hallam KR (2008) Application of zero-valent iron nanoparticles for the removal of aqueous Co2+ ions under various experimental conditions. Chem Eng J 144:213–220. doi:10.1016/j.cej.2008.01.024

    Article  Google Scholar 

  • Unuabonah EI, Adebowale KO, Olu-Owolabi BI, Yang LZ, Kong LX (2008) Adsorption of Pb(II) and Cd(II) from aqueous solutions onto sodium tetraborate-modified kaolinite clay: equilibrium and thermodynamic studies. Hydrometallurgy 93:1–9. doi:10.1016/j.hydromet.2008.02.009

    Article  CAS  Google Scholar 

  • Utomo HD, Hunter KA (2006) Adsorption of divalent copper, zinc, cadmium and lead ions from aqueous solution by waste tea and coffee adsorbents. Environ Technol 27:25–32. doi:10.1080/09593332708618619

    Article  CAS  Google Scholar 

  • Xi YF, Mallavarapu M, Naidu R (2010) Reduction and adsorption of Pb2+ in aqueous solution by nano-zero-valent iron—an SEM, TEM and XPS study. Mater Res Bull 45:1361–1367. doi:10.1016/j.materresbull.2010.06.046

    Article  CAS  Google Scholar 

  • Yan S, Hua B, Bao Z, Yang J, Liu C, Deng B (2010) Uranium(VI) removal by nanoscale zerovalent iron in anoxic batch systems. Environ Sci Technol 44:7783–7789. doi:10.1021/es9036308

    Article  CAS  Google Scholar 

  • Zabarskas V, Tamulevicius S, Prosycevas I, Puiso J (2004) Analysis of Fe3O4 protective coatings thermally grown on color picture TV tube structural steel components. Mater Sci-Medzg 10(2):147–151. http://internet.ktu.lt/lt/mokslas/zurnalai/medz/pdf/medz0-77/05%20Zabarsko%20str%20147-151.pdf

  • Zalups RK, Ahmad S (2003) Molecular handling of cadmium in transporting epithelia. Toxicol Appl Pharmacol 186:163–188. doi:10.1016/S0041-008x(02)00021-2

    Article  CAS  Google Scholar 

  • Zasoski RJ, Burau RG (1988) Sorption and sorptive interaction of cadmium and zinc on hydrous manganese oxide. Soil Sci Soc Am J 52:81–87

    Article  CAS  Google Scholar 

  • Zhang L, Manthiram A (1997) Chains composed of nanosize metal particles and identifying the factors driving their formation. Appl Phys Lett 70:2469–2471

    Article  CAS  Google Scholar 

  • Zhang W-x (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5:323–332. doi:10.1023/A:1025520116015

    Article  CAS  Google Scholar 

  • Zhu NR, Luan HW, Yuan SH, Chen J, Wu XH, Wang LL (2010) Effective dechlorination of HCB by nanoscale Cu/Fe particles. J Hazard Mater 176:1101–1105. doi:10.1016/j.jhazmat.2009.11.092

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the EJLB foundation, Natural Sciences and Engineering Research Council (NSERC) of Canada, and Canadian Foundation for Innovation Grant. We would like to thank Mark Biesinger, Qing Mu, and Ross Davison for the XPS and SEM/EDX analysis as well as Clare Robinson for her assistance with the speciation modelling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hardiljeet K. Boparai.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boparai, H.K., Joseph, M. & O’Carroll, D.M. Cadmium (Cd2+) removal by nano zerovalent iron: surface analysis, effects of solution chemistry and surface complexation modeling. Environ Sci Pollut Res 20, 6210–6221 (2013). https://doi.org/10.1007/s11356-013-1651-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-013-1651-8

Keywords

Navigation