Skip to main content
Log in

Removal of aluminium from aqueous solutions using PAN-based adsorbents: characterisation, kinetics, equilibrium and thermodynamic studies

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Economic adsorbents in bead form were fabricated and utilised for the adsorption of Al3+ from aqueous solutions. Polyacrylonitrile (PAN) beads, PAN powder and the thermally treated PAN beads (250 °C/48 h/Ar and 600 °C/48 h/Ar-H2) were characterised using different techniques including Fourier transform infrared spectroscopy, X-ray diffraction, specific surface analysis (Brunauer–Emmett–Teller), thermogravimetric analysis as well as scanning electron microscopy. Effects of pH, contact time, kinetics and adsorption isotherms at different temperatures were investigated in batch mode experiments. Aluminium kinetic data best fit the Lagergren pseudo-second-order adsorption model indicating a one-step, surface-only, adsorption process with chemisorption being the rate limiting step. Equilibrium adsorption data followed a Langmuir adsorption model with fairly low monolayer adsorption capacities suitable for freshwater clean-up only. Various constants including thermodynamic constants were evaluated from the experimental results obtained at 20, 40 and 60 °C. Positive values of ΔH° indicated that the adsorption of Al3+ onto all three adsorbents was endothermic with less energy input required for PAN powder compared to PAN beads and low-temperature thermally treated PAN. Negative ΔG° values indicated that the aluminium adsorption process was spontaneous for all adsorbents examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Abdulkareem SA, Muzenda E, Afolabi AS, Kabuba J (2013) Treatment of Clinoptilolite as an adsorbent for the removal of copper ion from synthetic wastewater solution. Arab J Sci Eng 38:2263–2272

    Article  CAS  Google Scholar 

  • Akbari A, Sheshhedi FJ, Jabbari V (2012) Novel nanofiberous membrane fabricated via electrospinning of wastage fuzzes of mechanized carpet used for dye removal of the carpet dyeing wastewater. Environ Sci Health Part A 47:847–853

    Article  CAS  Google Scholar 

  • Alimohammadi N, Shadizadeh SR, Kazeminezhad I (2013) Removal of cadmium from drilling fluid using nano-adsorbent. Fuel 111:505–509

    Article  CAS  Google Scholar 

  • Al-Muhtaseb SA, El-Naas MH, Abdallah S (2008) Removal of aluminium from aqueous solutions by adsorption on date-pit and BDH activated carbons. J Hazard Mater 158:300–307

    Article  CAS  Google Scholar 

  • Aly Z, Luca V (2013) Uranium extraction from aqueous solution using dried and pyrolyzed tea and coffee wastes. J Radioanal Nucl Chem 295(2):889–900

    Article  CAS  Google Scholar 

  • An F, Gao B, Huang X, Zhang Y, Li Y, Xu Y, Zhang Z, Gao J, Chen Z (2013) Selective removal of Al(III) from Pr(III) and Nd(III) rare earth solution using surface imprinted polymer. React Funct Polym 73:60–65

    Article  CAS  Google Scholar 

  • Azizian S (2004) Kinetic models of sorption: a theoretical analysis. J Colloid Interf Sci 276:47–52

    Article  CAS  Google Scholar 

  • Boudenne J, Boussetta S, Brach-papa C, Branger C, Margaillan A, Theraulaz F (2002) Modification of poly(styrene-divinylbenzene) resin by grafting on an Al(III) selective ligand. Polym Int 51:1050

    Article  CAS  Google Scholar 

  • Boyd GE, Adamson AW, Myers LS Jr (1947) The exchange adsorption of ions from aqueous solutions by organic zeolites. II. Kinetics. J Am Chem Soc 69:2836–2848

    Article  CAS  Google Scholar 

  • Burdekin Shire Council (2011) www.burdekin.qld.gov.au/services/water/documents/aluminium.pdf. Accessed 19 Dec 2011

  • Choksi PM, Joshi VY (2007) Adsorption kinetic study for the removal of nickel (II) and Al (III) from an aqueous solution by natural adsorbents. Desalination 208:216–231

    Article  CAS  Google Scholar 

  • Dhiwar C, Tiwari A, Bajpai AK (2013) Nano-iron oxide-encapsulated chitosan microspheres as novel adsorbent for the removal of Ni(II) ions from aqueous solution. Res Chem Intermed 39:2989–3009

    Article  CAS  Google Scholar 

  • Wickipedia the free encyclopedia Accessed on 19 Dec 2011

  • Gregg SJS, Sing KSW (1991) Adsorption, surface area and porosity (second edition). Academic, London

  • Gupta SS, Battacharya KG (2011) Kinetics of adsorption of metal ions on organic materials: a review. Adv Colloid Interf Sci 162:39–58

    Article  Google Scholar 

  • Haerifar M, Haerifar M, Azizian S (2013) Mixed surface reaction and diffusion-controlled kinetic model for adsorption at the solid/solution interface. J Phys Chem C 117:8310–8317

    Article  CAS  Google Scholar 

  • Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465

    Article  CAS  Google Scholar 

  • Horsfall M Jr, Spiff AI (2005) Equilibrium sorption study of Al3+, Co2+ and Ag+ in aqueous solutions by fluted pumpkin (Telfairia occidentalis HOOK f) waste biomass. Acta Chim Slov 52:174–181

    Google Scholar 

  • Hu X, Johnson DJ, Tomka JG (1995) Molecular modelling of the structure of polyacylonitrile fibres. J Text Inst 86(2):322–331

    Google Scholar 

  • Hua M, Zhang S, Pan B, Zhang W, Lu L, Zhang Q (2012) Heavy metal removal from water/wastewater by nanosized metal oxides: a review. J Hazard Mater 211–212:317–331

    Article  Google Scholar 

  • Idris S, Alotaibi KM, Peshkur TA, Anderson P, Morris M, Gibson LT (2013) Adsorption kinetics: effect of adsorbent pore size distribution on the rate of Cr(VI) uptake. Microporous Mesoporous Mater 165:99–105

    Article  CAS  Google Scholar 

  • Islam A, Hilal A, Zaidi N, Yadav S (2013) Selective separation of aluminium from biological and environmental samples using glyoxal-bis(2-hydroxyanil) functionalized Amerlite XAD-16 resin: kinetics and equilibrium studies. Ind Eng Chem Res 52:5213–5220

    Article  CAS  Google Scholar 

  • Ji F, Li C, Xu J, Liu P (2013) Dynamic adsorption of Cu(II) from aqueous solutions by zeolite/cellulose acetate blend fiber in fixed bed. Colloids Surf A Physicochem Eng Asp 434:88–94

    Article  CAS  Google Scholar 

  • Karacan I, Erdogan G (2012) The role of thermal stabilization on the structure and mechanical properties of polyacrylonitrile precursor fibers. Fibers Polym 13(7):855–863

    Article  CAS  Google Scholar 

  • Lagergren S (1898) Zur theorie der sogenannten adsorption geloster stoffe. K. Sven. Vetenskapsakad. Handl, Band 24(4): p. 1–39

    Google Scholar 

  • Lee HS, Suh JH (2001) Interference of aluminium in heavy metal biosorption by a seaweed biosorbent. Korean J Chem Eng 18:692–697

    Article  CAS  Google Scholar 

  • Lee HS, Suh JH, Kim IB, Yoon T (2004) Effect of aluminium in two-metal biosorption by an algal biosorbent. Miner Eng 17:487–493

    Article  CAS  Google Scholar 

  • Liang X, Zang Y, Xu Y, Tan X, Hou W, Wang L, Sun Y (2013) Sorption of metal cations on layered double hydroxides. Colloids Surf A Physicochem Eng Asp 433:122–131

    Article  CAS  Google Scholar 

  • Lodeiro P, Gudina A, Herrero L, Herrero R, Satre de Vicente ME (2010) Aluminium removal from wastewater by refused beach cast seaweed. Equilibrium and dynamic studies. J Hazard Mater 178:861–866

    Article  CAS  Google Scholar 

  • Luo M, Bi S (2003) Solid phase extraction-spectrophotometric determination of dissolved aluminium in soil extracts and ground waters. J Inorg Biochem 97:173

    Article  CAS  Google Scholar 

  • McKay G, Ho YS, Ng JCY (1999) Biosorption of copper from waste waters: a review. Sep Purif Methods 28(1):87–125

    Article  CAS  Google Scholar 

  • Moon J-K, Jung C-H, Lee E-H, Kim H-T, Shul Y-G (2002) Preparation of PAN-Zeolite 4A composite ion exchanger and its uptake behaviour for Sr and Cs ions in acid solution. Korean J Chem Eng 19(5):838–842

    Article  CAS  Google Scholar 

  • Nilchi A, Saberi R, Moradi M, Azizpou H (2012) Evaluation of AMP-PAN composite for the adsorption of Cs+ ions from aqueous solution using batch and fixed bed operations. J Radioanal Nucl Chem 292:609–617

    Article  CAS  Google Scholar 

  • Rabinovich D (2013) The allure of aluminium. Nat Chem 5:76

    Article  CAS  Google Scholar 

  • Saberi R, Nilchi A, Garmarodi R, Zarghami R (2010) Adsorption characteristic of 137Cs from aqueous solution using PAN-based sodium titanosilicate composite. J Radioanal Nucl Chem 284:461–469

    Article  CAS  Google Scholar 

  • Sainte-Claire Deville H (1859) De l’aluminium: ses proprietes sa fabrication et ses applications. Malet-Bachelier

  • Septhum C, Rattanaphani S, Bremner JB, Rattanaphani V (2007) An adsorption study of Al(III) ions onto chitosan. J Hazard Mater 148:185–191

    Article  CAS  Google Scholar 

  • Simsek S, Ulosoy U (2012) Uranium and lead adsorption onto bentonite and zeolite modified with polyacrylamidoxime. J Radioanal Nucl Chem 292:41–51

    Article  CAS  Google Scholar 

  • Srinivasan PT, Viraraghavan T, Subramanyam KS (1999) Aluminium in drinking water: an overview. Water SA 25:47

    CAS  Google Scholar 

  • Tassist A, Lounici H, Abdi N, Mameri N (2010) Equilibrium, kinetic and thermodynamic studies on aluminium biosorption by a mycelial biomass (Streptomyces rimosus). J Hazard Mater 183:35–43

    Article  CAS  Google Scholar 

  • Tomko J, Backor M, Stofko M (2006) Biosorption of heavy metals by dry fungi biomass. Acta Metal Slov 12:447–451

    Google Scholar 

  • Weber WJ, Morris JC (1963) Kinetics of adsorption on carbon from solution. J Sanit Eng Div Am Soc Civ Eng 89:31–60

    Google Scholar 

  • WHO (1998) Guidelines for drinking water quality, second edition. Addendum to vol.2. World Health Organisation, Geneva

    Google Scholar 

  • Xue TJ, McKinney MA, Wilkie CA (1997) The thermal degradation of polyacrylonitrile. Polym Degrad Stab 58:193–202

    Article  CAS  Google Scholar 

  • Yokel RA (2002) Aluminium chelation principles and recent advances. Coord Chem Rev 228:97–113

    Article  CAS  Google Scholar 

  • Yusan S, Erenturk S (2011) Adsorption characterisation of strontium on PAN/zeolite composite adsorbent. World J Nucl Sci Technol 1:6–12

    Article  CAS  Google Scholar 

  • Zhao Y, Wang C, Bai Y, Chen G, Jing M, Zhu B (2009) Property changes of powdery polyacrylonitrile synthesized by aqueous suspension polymerization during heat-treatment process under air atmosphere. Colloid Interf 329:48–53

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thanks are due to T. Cao (ANSTO waste operations), J. Davis, S. Deen, C. Jennison and I. Karachevseva for technical assistance and E. R. Vance for editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaynab Aly.

Additional information

Responsible editor: Bingcai Pan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aly, Z., Graulet, A., Scales, N. et al. Removal of aluminium from aqueous solutions using PAN-based adsorbents: characterisation, kinetics, equilibrium and thermodynamic studies. Environ Sci Pollut Res 21, 3972–3986 (2014). https://doi.org/10.1007/s11356-013-2305-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-013-2305-6

Keywords

Navigation