Skip to main content

Advertisement

Log in

Carbon dioxide capturing technologies: a review focusing on metal organic framework materials (MOFs)

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In this study, a relevant literature has been reviewed focusing on the carbon dioxide capture technologies in general, such as amine-based absorption as conventional carbon dioxide capturing technology, aqueous ammonia-based absorption, membranes, and adsorption material (e.g., zeolites, and activated carbons). In more details, metal organic frameworks (MOFs) as new emerging technologies for carbon dioxide adsorption are discussed. The MOFs section is intended to provide a comprehensive overview of MOFs including material characteristics and synthesis, structural features, CO2 adsorption capacity, heat of adsorption and selectivity of CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ahmadpour A, Do DD (1996) The preparation of active carbons from coal by chemical and physical activation. Carbon 34:471–479

    CAS  Google Scholar 

  • Ahnfeldt T, Guillou N, Gunzelmann D, Margiolaki I, Loiseau T, Férey G et al (2009) [Al4(OH)2(OCH3)4(H2N–bdc)3]-xH2O: a 12-connected porous metal-organic framework with an unprecedented aluminum-containing brick. Angew Chem Int Ed 48:5163–5166

    CAS  Google Scholar 

  • An J, Geib SJ, Rosi NL (2010) High and selective CO2 uptake in a cobalt adeninate metal-organic framework exhibiting pyrimidine- and amino-decorated pores. J Am Chem Soc 132:38–39

    CAS  Google Scholar 

  • Aprea P, Caputo D, Gargiulo N, Iucolano F, Pepe F (2010) Modeling carbon dioxide adsorption on microporous substrates: comparison between Cu-BTC metal-organic framework and 13X zeolitic molecular sieve. J Chem Eng Data 55:3655–3661

    CAS  Google Scholar 

  • Aroua MK, Daud WMAW, Yin CY, Adinata D (2008) Adsorption capacities of carbon dioxide, oxygen, nitrogen and methane on carbon molecular basket derived from polyethyleneimine impregnation on microporous palm shell activated carbon. Sep Purif Technol 62:609–613

    CAS  Google Scholar 

  • Arstad B, Fjellvåg H, Kongshaug KO, Swang O, Blom R (2008) Amine functionalised metal organic frameworks (MOFs) as adsorbents for carbon dioxide. Adsorption 14:755–762

    CAS  Google Scholar 

  • Bae Y, Farha OK, Spokoyny AM, Mirkin CA, Hupp JT, Snurr RQ (2008) Carborane-based metal-organic frameworks as highly selective sorbents for CO2 over methane. Chem Commun 4135–4137

  • Bae Y, Farha OK, Hupp JT, Snurr RQ (2009) Enhancement of CO2/N2 selectivity in a metal-organic framework by cavity modification. J Mater Chem 19:2131–2134

    CAS  Google Scholar 

  • Banerjee R, Furukawa H, Britt D, Knobler C, O’Keeffe M, Yaghi OM (2009) Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties. J Am Chem Soc 131:3875–3877

    CAS  Google Scholar 

  • Bao Z, Yu L, Ren Q, Lu X, Deng S (2011) Adsorption of CO2 and CH4 on a magnesium-based metal organic framework. J Colloid Interface Sci 353:549–556

    CAS  Google Scholar 

  • Barcia PS, Bastin L, Hurtado EJ, Silva JAC, Rodrigues AE, Chen B (2008) Single and multicomponent sorption of CO2, CH4 and N2 in a microporous metal-organic framework. Sep Sci Technol 43:3494–3521

    CAS  Google Scholar 

  • Barrer RM, Gibbons RM (1965) Zeolitic carbon dioxide: energetics and equilibria in relation to exchangeable cations in faujasite. Trans Faraday Soc 61:948–961

    CAS  Google Scholar 

  • Bastin L, Bárcia PS, Hurtado EJ, Silva JAC, Rodrigues AE, Chen B (2008) A microporous metal-organic framework for separation of CO2/N2 and CO2/CH4 by fixed-bed adsorption. J Phys Chem C 112:1575–1581

    CAS  Google Scholar 

  • Batten SR, Robson R (1998) Angew Chem Int Ed 37:1460–1494

    Google Scholar 

  • Belandria V, Mohammadi AH, Eslamimanesh A, Richon D, Sánchez-Mora MF, Galicia-Luna LA (2012) Phase equilibrium measurements for semi-clathrate hydratesof the (CO2 + N2 + tetra-n-butylammonium bromide) aqueous solution systems: part 2. Fluid Phase Equilib 322–323:105–112

    Google Scholar 

  • Biemmi E, Christian S, Stock N, Bein T (2009) High-throughput screening of synthesis parameters in the formation of the metal-organic frameworks MOF-5 and HKUST-1. Microporous Mesoporous Mater 117:111–117

    CAS  Google Scholar 

  • Bloch ED, Britt D, Doonan CJ, Uribe-Romo FJ, Furukawa H, Long JR et al (2010) Metal insertion in a microporous metal-organic framework lined with 2,2′-bipyridine. Am Chem Soc 132:14382–14384

    CAS  Google Scholar 

  • Bourrelly S, Llewellyn PL, Serre C, Millange F, Loiseau T, Férey G (2005) Different adsorption behaviors of methane and carbon dioxide in the isotypic nanoporous metal terephthalates MIL-53 and MIL-47. J Am Chem Soc 127:13519–13521

    CAS  Google Scholar 

  • Brandani F, Ruthven DM (2004) The effect of water on the adsorption of CO2 and C3H8 on type X zeolites. Ind Eng Chem Res 43:8339–8344

    CAS  Google Scholar 

  • Britt D, Furukawa H, Wang B, Glover TG, Yaghi OM (2009) Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites. Proc Natl Acad Sci U S A 106:20637–20640

    CAS  Google Scholar 

  • Caskey SR, Wong-Foy AG, Matzger AJ (2008) Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores. J Am Chem Soc 130:10870–10871

    CAS  Google Scholar 

  • Cavenati S, Grande CA, Rodrigues AE (2004) Adsorption equilibrium of methane, carbon dioxide, and nitrogen on zeolite 13X at high pressures. J Chem Eng Data 49:1095–1101

    CAS  Google Scholar 

  • Cavka JH, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S et al (2008) A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J Am Chem Soc 130:13850–13851

    Google Scholar 

  • Chen B, Ockwig NW, Millward AR, Contreras DS, Yaghi OM (2005) High H2 adsorption in a microporous metal-organic framework with open metal sites. Angew Chem Int Ed 44:4745–4749

    CAS  Google Scholar 

  • Chen S, Chen M, Takamizawa S, Chen M, Su Z, W- S (2011a) Temperature dependent selective gas sorption of the microporous metal-imidazolate framework [Cu(L)] [H2L = 1,4-di(1H-imidazol-4-yl) benzene]. Chem Commun 47:752–754

    CAS  Google Scholar 

  • Chen S, Chen M, Takamizawa S, Wang P, Lv G, W- S (2011b) Porous cobalt(ii)-imidazolate supramolecular isomeric frameworks with selective gas sorption property. Chem Commun 47:4902–4904

    CAS  Google Scholar 

  • Choi H, Suh MP (2009) Highly selective CO2 capture in flexible 3d coordination polymer networks. Angew Chem Int Ed 48:6865–6869

    CAS  Google Scholar 

  • Choi J, Son W, Kim J, Ahn W (2008) Metal–organic framework MOF-5 prepared by microwave heating: factors to be considered. Microporous Mesoporous Mater 116:727–731

    CAS  Google Scholar 

  • Choi S, Drese JH, Jones CW (2009) Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem 2:796–854

    CAS  Google Scholar 

  • Chowdhury P, Bikkina C, Gumma S (2009) Gas adsorption properties of the chromium-based metal organic framework MIL-101. J Phys Chem C 113:6616–6621

    CAS  Google Scholar 

  • Chue KT, Kim JN, Yoo YJ, Cho SH, Yang RT (1995) Comparison of activated carbon and zeolite 13X for CO2 recovery from flue gas by pressure swing adsorption. Ind Eng Chem Res 34:591–598

    CAS  Google Scholar 

  • Chui SS, Lo SM, Charmant JPH, Orpen AG, Williams ID (1999) A chemically functionalizable nanoporous material [Cu3(TMA)2 (H2O)3](n). Science 283:1148–1150

    CAS  Google Scholar 

  • Couck S, Denayer JFM, Baron GV, Rémy T, Gascon J, Kapteijn F (2009) An amine-functionalized MIL-53 metal-organic framework with large separation power for CO2 and CH4. J Am Chem Soc 131:6326–6327

    CAS  Google Scholar 

  • D’Alessandro DM, McDonald T (2011) Toward carbon dioxide capture using nanoporous materials. Pure Appl Chem 83:57–66

    Google Scholar 

  • D’Alessandro DM, Smit B, Long JR (2010) Carbon dioxide capture: prospects for new materials. Angew Chem Int Ed 49:6058–6082

    Google Scholar 

  • Davini P (2002) Flue gas treatment by activated carbon obtained from oil-fired fly ash. Carbon 40:1973–1979

    CAS  Google Scholar 

  • Debatin F, Thomas A, Kelling A, Hedin N, Bacsik Z, Senkovska I, Kaskel S, Junginger M, Müller H, Schilde U, Jäger C, Friedrich A, Holdt H-J (2010) In situ synthesis of an imidazolate-4-amide-5-imidate ligand and formation of a microporous zinc–organic framework with H2-and CO2-storage ability. Angew Chem Int Ed 49:1258–1262

    CAS  Google Scholar 

  • Demessence A, D’Alessandro DM, Foo ML, Long JR (2009) Strong CO2 binding in a water-stable, triazolate-bridged metal-organic framework functionalized with ethylenediamine. J Am Chem Soc 131:8784–8786

    CAS  Google Scholar 

  • Díaz E, Muñoz E, Vega A, Ordóñez S (2008) Enhancement of the CO2 retention capacity of Y zeolites by Na and Cs treatments: effect of adsorption temperature and water treatment. Ind Eng Chem Res 47:412–418

    Google Scholar 

  • Dietzel PDC, Johnsen RE, Fjellvåg H, Bordiga S, Groppo E, Chavan S et al (2008) Adsorption properties and structure of CO2 adsorbed on open coordination sites of metal-organic framework Ni2(dhtp) from gas adsorption, IR spectroscopy and X-ray diffraction. Chem Commun 5125-7

  • Dietzel PDC, Besikiotis V, Blom R (2009) Application of metal-organic frameworks with coordinatively unsaturated metal sites in storage and separation of methane and carbon dioxide. J Mater Chem 19:7362–7370

    CAS  Google Scholar 

  • Do DD, Wang K (1998) A new model for the description of adsorption kinetics in heterogeneous activated carbon. Carbon 36:1539–1554

    CAS  Google Scholar 

  • Ebner AD, Ritter JA (2009) State-of-the-art adsorption and membrane separation processes for carbon dioxide production from carbon dioxide emitting industries. Sep Sci Technol 44:1273–1421

    CAS  Google Scholar 

  • Eddaoudi M, Moler DB, Li H, Chen B, Reineke TM, O’Keeffe M et al (2001) Modular chemistry: Secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. Acc Chem Res 34:319–330

    CAS  Google Scholar 

  • Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O’Keeffe M et al (2002) Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295:469–472

    CAS  Google Scholar 

  • EIA (2010) International Energy Outlook 2010. US DOE. http://www.eia.doe.gov/oiaf/ieo/index.html. Accessed December 2010

  • Eslamimanesh A, Mohammadi A, Richon D, Naidoo P, Ramjugernath D (2012) Application of gas hydrate formation in separation processes: a review of experimental studies. J Chem Therm 46:6212

    Google Scholar 

  • Farrusseng D, Daniel C, Gaudillère C, Ravon U, Schuurman Y, Mirodatos C et al (2009) Heats of adsorption for seven gases in three metal—organic frameworks: systematic comparison of experiment and simulation. Langmuir 25:7383–7388

    CAS  Google Scholar 

  • Férey G (2008) Hybrid porous solids: past, present, future. Chem Soc Rev 37:191–214

    Google Scholar 

  • Férey G (2009) Some suggested perspectives for multifunctional hybrid porous solids. Dalton Trans (23):4400–4415

  • Férey G, Serre C, Mellot-Draznieks C, Millange F, Surblé S, Dutour J et al (2004) A hybrid solid with giant pores prepared by a combination of targeted chemistry, simulation, and powder diffraction. Angew Chem Int Ed 43:6296–6301

    Google Scholar 

  • Figueroa JD, Fout T, Plasynski S, McIlvried H, Srivastava RD (2008) Advances in CO2 capture technology—The U.S. Department of Energy’s Carbon Sequestration Program. Int J Greenh Gas Control 2:9–20

    CAS  Google Scholar 

  • Fletcher AJ, Cussen EJ, Prior TJ, Rosseinsky MJ, Kepert CJ, Thomas KM (2001) Adsorption dynamics of gases and vapors on the nanoporous metal organic framework material Ni 2(4,4′-bipyridine) 3(NO 3) 4: guest modification of host sorption behavior. J Am Chem Soc 123:10001–10011

    CAS  Google Scholar 

  • Franchi RS, Harlick PJE, Sayari A (2005) Applications of pore-expanded mesoporous silica. 2. Development of a high-capacity, water-tolerant adsorbent for CO2. Ind Eng Chem Res 44:8007–8013

    CAS  Google Scholar 

  • Freguia S, Rochelle GT (2003) Modeling of CO2 capture by aqueous monoethanolamine. AICHE J 49:1676–1686

    CAS  Google Scholar 

  • Furukawa H, Ko N, Go YB, Aratani N, Choi SB, Choi E et al (2010) Ultrahigh porosity in metal-organic frameworks. Science 329:424–428

    CAS  Google Scholar 

  • Gallei E, Stumpf G (1976) Infrared spectroscopic studies of the adsorption of carbon dioxide and the coadsorption of carbon dioxide and water on CaY- and NiY-zeolites. J Colloid Interface Sci 55:415–420

    CAS  Google Scholar 

  • Hamon L, Llewellyn PL, Devic T, Ghoufi A, Clet G, Guillerm V et al (2009) Co-adsorption and separation of CO2–CH4 mixtures in the highly flexible MIL-53(Cr) MOF. J Am Chem Soc 131:17490–17499

    CAS  Google Scholar 

  • Hamon L, Jolimaître E, Pirngruber GD (2010) CO2 and CH4 separation by adsorption using Cu-BTC metal-organic framework. Ind Eng Chem Res 49:7497–7503

    CAS  Google Scholar 

  • Hamon L, Heymans N, Llewellyn PL, Guillerm V, Ghoufi A, Vaesen S et al (2012) Separation of CO2–CH4 mixtures in the mesoporous MIL-100(Cr) MOF: experimental and modelling approaches. Dalton Trans 41:4052–4059

    CAS  Google Scholar 

  • Harlick PJE, Sayari A (2006) Applications of pore-expanded mesoporous silicas. 3. Triamine silane grafting for enhanced CO2 adsorption. Ind Eng Chem Res 45:3248–3255

    CAS  Google Scholar 

  • Harlick PJE, Tezel FH (2004) An experimental adsorbent screening study for CO2 removal from N2. Microporous Mesoporous Mater 76:71–79

    CAS  Google Scholar 

  • Henke S, Fischer RA (2011) Gated channels in a honeycomb-like zinc-dicarboxylate-bipyridine framework with flexible alkyl ether side chains. J Am Chem Soc 133:2064–2067

    CAS  Google Scholar 

  • Herm ZR, Swisher JA, Smit B, Krishna R, Long JR (2011) Metal-organic frameworks as adsorbents for hydrogen purification and precombustion carbon dioxide capture. J Am Chem Soc 133:5664–5667

    CAS  Google Scholar 

  • Hernández-Huesca R, Díaz L, Aguilar-Armenta G (1999) Adsorption equilibria and kinetics of CO2, CH4 and N2 in natural zeolites. Sep Purif Technol 15:163–173

    Google Scholar 

  • Himeno S, Komatsu T, Fujita S (2005) High-pressure adsorption equilibria of methane and carbon dioxide on several activated carbons. J Chem Eng Data 50:369–376

    CAS  Google Scholar 

  • Ho MT, Allinson GW, Wiley DE (2008) Reducing the cost of CO2 capture from flue gases using pressure swing adsorption. Ind Eng Chem Res 47:4883–4890

    CAS  Google Scholar 

  • Horike S, Shimomura S, Kitagawa S (2009) Soft porous crystals. Nat Chem 1:695–704

    CAS  Google Scholar 

  • IPCC. Climate Change (2001) Impacts, Adaptation and Vulnerability 2001

  • Jung D, Yang D, Kim J, Kim J, Ahn W (2010a) Facile synthesis of MOF-177 by a sonochemical method using 1-methyl-2-pyrrolidinone as a solvent. Dalton Trans 9(11):2883–2887

    Google Scholar 

  • Jung D, Yang D, Kim J, Kim J, W- A (2010b) Facile synthesis of MOF-177 by a sonochemical method using 1-methyl-2-pyrrolidinone as a solvent. Dalton Trans 39:2883–2887

    CAS  Google Scholar 

  • Kikkinides ES, Yang RT, Cho SH (1993) Concentration and recovery of CO2 from flue gas by pressure swing adsorption. Ind Eng Chem Res 32:2714–2720

    CAS  Google Scholar 

  • Kim J, Yang S, Choi SB, Sim J, Kim J, Ahn W (2011) Control of catenation in CuTATB-n metal-organic frameworks by sonochemical synthesis and its effect on CO2 adsorption. J Mater Chem 21:3070

    CAS  Google Scholar 

  • Klinowski J, Almeida Paz FA, Silva P, Rocha J (2011) Microwave-assisted synthesis of metal-organic frameworks. Dalton Trans 40(2):321–330

    Google Scholar 

  • Kramer M, Schwarz U, Kaskel S (2006) Synthesis and properties of the metal-organic framework Mo3(BTC)2(TUDMOF-1). J Mater Chem 16:2245–2248

    CAS  Google Scholar 

  • Lal R (2008) Sequestration of atmospheric CO2 in global carbon pools. Energy Environ Sci 1:86–100

    CAS  Google Scholar 

  • Li D, Kaneko K (2001) Hydrogen bond-regulated microporous nature of copper complex-assembled microcrystals. Chem Phys Lett 335:50–56

    CAS  Google Scholar 

  • Li H, Eddaoudi M, Groy TL, Yaghi OM (1998) Establishing microporosity in open metal-organic frameworks: gas sorption isotherms for Zn(BDC) (BDC = 1,4-benzenedicarboxylate). J Am Chem Soc 120:8571–8572

    CAS  Google Scholar 

  • Li H, Eddaoudi M, O’Keeffe M, Yaghi OM (1999) Design and synthesis of an exceptionally stable and highly porous metal- organic framework. Nature 402:276–279

    CAS  Google Scholar 

  • Li J, Kuppler RJ, H- Z (2009) Selective gas adsorption and separation in metal-organic frameworks. Chem Soc Rev 38:1477–1504

    CAS  Google Scholar 

  • Li J, Ma Y, McCarthy MC, Sculley J, Yu J, Jeong H et al (2011) Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks. Coord Chem Rev 255:1791–1823

    CAS  Google Scholar 

  • Liang Z, Marshall M, Chaffee AL (2009a) CO2 adsorption-based separation by metal organic framework (Cu-BTC) versus zeolite (13X). Energy Fuels 23:2785–2789

    CAS  Google Scholar 

  • Liang Z, Marshall M, Chaffee AL (2009b) Comparison of Cu-BTC and zeolite 13X for adsorbent based CO2 separation. Energy Procedia 1:1265–1271

    CAS  Google Scholar 

  • Lin X, Telepeni I, Blake AJ, Dailly A, Brown CM, Simmons JM, Zoppi M, Walker GS, Thomas KM, Mays TJ, Hubberstey P, Champness NR, Schröder M (2009) High capacity hydrogen adsorption in Cu(II) tetracarboxylate framework materials: the role of pore size, ligand functionalization, and exposed metal sites. J Am Chem Soc 131(6):2159–2171

    CAS  Google Scholar 

  • Linhua Xie,Shuxia Liu, Chaoying Gao,Ruige Cao,Jianfang Cao,Chunyan Sun, and, and Zhongmin Su (2007) Mixed-valence iron(II, III) trimesates with open frameworks modulated by solvents. Inorganic Chemistry 46(19):7782–7788

    Google Scholar 

  • Liu J, Tian J, Thallapally PK, McGrail BP (2012) Selective CO2 capture from flue gas using metal-organic frameworks-a fixed bed study. J Phys Chem C 116:9575–9581

    CAS  Google Scholar 

  • Llewellyn PL, Bourrelly S, Serre C, Filinchuk Y, Férey G (2006) How hydration drastically improves adsorption selectivity for CO2 over CH4 in the flexible chromium terephthalate MIL-53. Angew Chem Int Ed 45:7751–7754

    CAS  Google Scholar 

  • Llewellyn PL, Bourrelly S, Serre C, Vimont A, Daturi M, Hamon L, Guy De W, Jong-San C, Hong D-Y, Hwang YK, Jhung SH, Férey G (2008) High uptakes of CO2 and CH4 in mesoporous metal-organic frameworks MIL-100 and MIL-101. Langmuir 24(14):7245–7250

    CAS  Google Scholar 

  • Lozano-Castelló D, Cazorla-Amorós D, Linares-Solano A (2002) Powdered activated carbons and activated carbon fibers for methane storage: a comparative study. Energy Fuels 16:1321–1328

    Google Scholar 

  • Mason JA, Sumida K, Herm ZR, Krishna R, Long JR (2011) Evaluating metal-organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption. Energy Environ Sci 4:3030–3040

    CAS  Google Scholar 

  • Maurin G, Llewellyn PL, Bell RG (2005) Adsorption mechanism of carbon dioxide in faujasites: grand canonical monte carlo simulations and microcalorimetry measurements. J Phys Chem B 109:16084–16091

    CAS  Google Scholar 

  • Miller SR, Pearce GM, Wright PA, Bonino F, Chavan S, Bordiga S et al (2008) Structural transformations and adsorption of fuel-related gases of a structurally responsive nickel phosphonate metal-organic framework, Ni-STA-12. J Am Chem Soc 130:15967–15981

    CAS  Google Scholar 

  • Millward AR, Yaghi OM (2005) Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J Am Chem Soc 127:17998–17999

    CAS  Google Scholar 

  • Min Wang Q, Shen D, Bülow M, Ling Lau M, Deng S, Fitch FR et al (2002) Metallo-organic molecular sieve for gas separation and purification. Microporous Mesoporous Mater 55:217–230

    Google Scholar 

  • Moellmer J, Moeller A, Dreisbach F, Glaeser R, Staudt R (2011) High pressure adsorption of hydrogen, nitrogen, carbon dioxide and methane on the metal-organic framework HKUST-1. Microporous Mesoporous Mater 138:140–148

    CAS  Google Scholar 

  • Mohammadi A, Eslamimanesh A, Belandria V, Richon D, Naidoo P, Ramjugernath D (2012) Phase equilibrium measurements for semi-clathrate hydrates of the (CO2 + N2 + tetra-n-butylammonium bromide) aqueous solution system. J Chem Thermodyn 46:62–67

    Google Scholar 

  • Morris W, Leung B, Furukawa H, Yaghi OK, He N, Hayashi H et al (2010) A combined experimental-computational investigation of carbon dioxide capture in a series of isoreticular zeolitic imidazolate frameworks. J Am Chem Soc 132:11006–11008

    CAS  Google Scholar 

  • Mu B, Schoenecker PM, Walton KS (2010) Gas adsorption study on mesoporous metal-organic framework UMCM-1. J Phys Chem C 114:6464–6471

    CAS  Google Scholar 

  • Murray LJ, Dinca M, Yano J, Chavan S, Bordiga S, Brown CM et al (2010) Highly-selective and reversible O2 binding in Cr 3(1,3,5-benzenetricarboxylate)2. J Am Chem Soc 132:7856–7857

    CAS  Google Scholar 

  • Myers AL, Prausnitz JM (1965) Thermodynamics of mixed-gas adsorption. AICHE J 11:121–127

    CAS  Google Scholar 

  • Na B, Koo K, Eum H, Lee H, Song HK (2001) CO2 recovery from flue gas by psa process using activated carbon. Korean J Chem Eng 18:220–227

    CAS  Google Scholar 

  • Ockwig NW, Delgado-Friedrichs O, O’Keeffe M, Yaghi OM (2005) Reticular chemistry: occurrence and taxonomy of nets and grammar for the design of frameworks. Acc Chem Res 38:176–182

    CAS  Google Scholar 

  • Olajire AA (2010) CO2 capture and separation technologies for end-of-pipe applications—a review. Energy 35:2610–2628

    CAS  Google Scholar 

  • Pachauri RK, Reisinger A (2007) IPCC fourth assessment report. Climate change 2007: synthesis report. IPCC, Geneva

  • Park HJ, Suh MP (2010) Stepwise and hysteretic sorption of N2, O2, CO2, and H2 gases in a porous metal-organic framework [Zn2(BPnDC)2(bpy)]. Chem Commun 46:610–612

    CAS  Google Scholar 

  • Park YK, Sang BC, Kim H, Kim K, Won B, Choi K et al (2007) Crystal structure and guest uptake of a mesoporous metal-organic framework containing cages of 3.9 and 4.7 nm in diameter. Angew Chem Int Ed 46:8230–8233

    CAS  Google Scholar 

  • Phan A, Doonan CJ, Uribe-Romo FJ, Knobler CB, Okeeffe M, Yaghi OM (2010) Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc Chem Res 43:58–67

    CAS  Google Scholar 

  • Pichon A, James SL (2008) An array-based study of reactivity under solvent-free mechanochemical conditions-insights and trends. CrystEngComm 10:1839–1847

    CAS  Google Scholar 

  • Prasad TK, Hong DH, Suh MP (2010) High gas sorption and metal-ion exchange of microporous metal-organic frameworks with incorporated imide groups. Chem Eur J 16:14043–14050

    CAS  Google Scholar 

  • Rackley SA (2010) Carbon capture and storage. Butterworth-Heinemann/Elsevier, Burlington

    Google Scholar 

  • Rallapalli P, Prasanth K, Patil D, Somani R, Jasra R, Bajaj H (2011) Sorption studies of CO2, CH4, N2, CO, O2 and Ar on nanoporous aluminum terephthalate [MIL-53(Al)]. J Porous Mater 18:205–210

    CAS  Google Scholar 

  • Resnik KP, Garber W, Hreha DC, Yeh JT, Pennline HW (2006) A parametric scan for regenerative ammonia-based scrubbing for the capture of CO2. Proc 23rd Ann Int Pittsburgh Coal Conf

  • Rodriguez-Reinozo F, Molina-Sabio M (1992) Carbon 30:111

    Google Scholar 

  • Rosi NL, Kim J, Eddaoudi M, Chen B, O’Keeffe M, Yaghi OM (2005) Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units. J Am Chem Soc 127:1504–1518

    CAS  Google Scholar 

  • Rowsell JLC, Yaghi OM (2006) Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks. J Am Chem Soc 128:1304–1315

    CAS  Google Scholar 

  • Ruthven DM (1984) Principles of adsorption and adsorption processes. Wiley, Toronto

    Google Scholar 

  • Saha D, Bao Z, Jia F, Deng S (2010) Adsorption of CO2, CH4, N2O, and N2 on MOF-5, MOF-177, and zeolite 5A. Environ Sci Technol 44:1820–1826

    CAS  Google Scholar 

  • Sayari A, Belmabkhout Y, Serna-Guerrero R (2011) Flue gas treatment via CO2 adsorption. Chem Eng J 171:760–774

    CAS  Google Scholar 

  • Seo J, Chun H (2009) Hysteretic gas sorption in a microporous metal-organic framework with nonintersecting 3D channels. Eur J Inorg Chem 2009(33):4946–4949

  • Serre C, Millange F, Thouvenot C, Noguès M, Marsolier G, Louër D et al (2002) Very large breathing effect in the first nanoporous chromium(III)-based solids: MIL-53 or CrIII(OH)·{O2C–C6H4–CO2}·{HO2C–C6H4–CO2H} x ·H2O y . J Am Chem Soc 124:13519–13526

    CAS  Google Scholar 

  • Serre C, Bourrelly S, Vimont A, Ramsahye NA, Maurin G, Llewellyn PL et al (2007a) An explanation for the very large breathing effect of a metal-organic framework during CO2 adsorption. Adv Mater 19:2246–2251

    CAS  Google Scholar 

  • Serre C, Mellot-Draznieks C, Surblé S, Audebrand N, Filinchuk Y, Férey G (2007b) Role of solvent-host interactions that lead to very large swelling of hybrid frameworks. Science 315:1828–1831

    CAS  Google Scholar 

  • Shackley S, Gough C (2006) Carbon capture and its storage: an integrated assessment. Ashgate, Farnham

  • Sircar S, Golden TC (1995) Isothermal and isobaric desorption of carbon dioxide by purge. Ind Eng Chem Res 34:2881–2888

    CAS  Google Scholar 

  • Siriwardane RV, Shen M, Fisher EP, Poston JA (2001) Adsorption of CO2 on molecular sieves and activated carbon. Energy Fuels 15:279–284

    CAS  Google Scholar 

  • Siriwardane RV, Shen M, Fisher EP, Losch J (2005) Adsorption of CO2 on zeolites at moderate temperatures. Energy Fuels 19:1153–1159

    CAS  Google Scholar 

  • Stewart C, Hessami M (2005) A study of methods of carbon dioxide capture and sequestration—the sustainability of a photosynthetic bioreactor approach. Energy Convers Manag 46:403–420

    CAS  Google Scholar 

  • Stylianou KC, Warren JE, Chong SY, Rabone J, Bacsa J, Bradshaw D et al (2011) CO2 selectivity of a 1D microporous adenine-based metal-organic framework synthesised in water. Chem Commun 47:3389

    CAS  Google Scholar 

  • Suh MP, Cheon YE, Lee EY (2007) Reversible transformation of ZnII coordination geometry in a single crystal of porous metal-organic framework [Zn3(ntb) 2(EtOH)2]·4EtOH. Chem Eur J 13:4208–4215

    CAS  Google Scholar 

  • Sumida K, Horike S, Kaye SS, Herm ZR, Queen WL, Brown CM et al (2010) Hydrogen storage and carbon dioxide capture in an iron-based sodalite-type metal-organic framework (Fe-BTT) discovered via high-throughput methods. Chem Sci 1:184–191

    CAS  Google Scholar 

  • Sumida K, Rogow DL, Mason JA, McDonald TM, Bloch ED, Herm ZR, Bae T, Long JR (2012) Carbon doixide capture in metal-organic frameworks. Chem Rev 112(2):724–781

    CAS  Google Scholar 

  • Surblé S, Millange F, Serre C, Düren T, Latroche M, Bourrelly S et al (2006a) Synthesis of MIL-102, a chromium carboxylate metal-organic framework, with gas sorption analysis. J Am Chem Soc 128:14889–14896

    Google Scholar 

  • Surblé S, Serre C, Mellot-Draznieks C, Millange F, Férey G (2006b) A new isoreticular class of metal-organic-frameworks with the MIL-88 topology. Chem Commun 284–286

  • Tan C, Yang S, Champness NR, Lin X, Blake AJ, Lewis W et al (2011) High capacity gas storage by a 4,8-connected metal-organic polyhedral framework. Chem Commun 47:4487–4489

    CAS  Google Scholar 

  • Tarka TJ, Ciferno JP, Gray ML, Fauth D (2006) CO capture systems using amine enhanced solid sorbents. Presented at the Fifth Annual Conference on Carbon Capture & Sequestration. Alexandria, VA, USA May 30 pp152

  • Thomas WJ, Crittenden BD (1998) Adsorption technology and design. Oxford Butterworth-Heinemann, Boston

    Google Scholar 

  • Vaidhyanathan R, Iremonger SS, Dawson KW, Shimizu GKH (2009) An amine-functionalized metal organic framework for preferential CO2 adsorption at low pressures. Chem Commun 5230–5232

  • Volkringer C, Loiseau T, Haouas M, Taulelle F, Popov D, Burghammer M et al (2009) Occurrence of uncommon infinite chains consisting of edge-sharing octahedra in a porous metal organic framework-type aluminum pyromellitate Al4(OH)8[C10O8H2](MIL-120): synthesis, structure, and gas sorption properties. Chem Mater 21:5783–5791

    CAS  Google Scholar 

  • Walton KS, Abney MB, LeVan MD (2006) CO2 adsorption in y and X zeolites modified by alkali metal cation exchange. Microporous Mesoporous Mater 91:78–84

    CAS  Google Scholar 

  • Walton KS, Millward AR, Dubbeldam D, Frost H, Low JJ, Yaghi OM et al (2008) Understanding inflections and steps in carbon dioxide adsorption isotherms in metal-organic frameworks. J Am Chem Soc 130:406–407

    CAS  Google Scholar 

  • Wang B, Côté AP, Furukawa H, O’Keeffe M, Yaghi OM (2008) Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs. Nature 453:207–211

    CAS  Google Scholar 

  • Xiang Z, Hu Z, Cao D, Yang W, Lu J, Han B et al (2011) Metal-organic frameworks with incorporated carbon nanotubes: Improving carbon dioxide and methane storage capacities by lithium doping. Angew Chem Int Ed 50:491–494

    CAS  Google Scholar 

  • Yamasaki A (2003) An overview of CO2 mitigation options for global warming—emphasizing CO2 sequestration options. J Chem Eng Jpn 36(4):361e75

    Google Scholar 

  • Yang Q, Xue C, Zhong C, J- C (2007) Molecular simulation of separation of CO2 from flue gases in Cu-BTC meta-organic framework. AICHE J 53:2832–2840

    CAS  Google Scholar 

  • Yang Q, Zhong C, Chen J-F (2008a) Computational study of CO2 storage in metal–organic frameworks. J Phys Chem 112(5):1562–1569

    CAS  Google Scholar 

  • Yang H, Xu Z, Fan M, Gupta R, Slimane RB, Bland AE et al (2008b) Progress in carbon dioxide separation and capture: a review. J Environ Sci 20:14–27

    CAS  Google Scholar 

  • Yazaydin AÖ, Benin AI, Faheem SA, Jakubczak P, Low JJ, Willis RR, Snurr RQ (2009a) Enhanced CO2 adsorption in metal-organic frameworks via occupation of open-metal sites by coordinated water molecules. Chem Mater 21:1425–1430

    CAS  Google Scholar 

  • Yazaydin AÖ, Snurr RQ, Park T, Koh K, Liu J, LeVan MD et al (2009b) Screening of metal-organic frameworks for carbon dioxide capture from flue gas using a combined experimental and modeling approach. J Am Chem Soc 131:18198–18199

    CAS  Google Scholar 

  • Yuan D, Zhao D, Sun D, H- Z (2010) An isoreticular series of metal-organic frameworks with dendritic hexacarboxylate ligands and exceptionally high gas-uptake capacity. Angew Chem Int Ed 49:5357–5361

    CAS  Google Scholar 

  • Zhang Y, Zhang W, Feng F, Zhang J, Chen X (2009) A highly connected porous coordination polymer with unusual channel structure and sorption properties. Angew Chem Int Ed 48:5287–5290

    CAS  Google Scholar 

  • Zhang J, Wu H, Emge TJ, Li J (2010) A flexible MMOF exhibiting high selectivity for CO2 over N2, CH4 and other small gases. Chem Commun 46:9152–9154

    CAS  Google Scholar 

  • Zhang Z, Huang S, Xian S, Xi H, Li Z (2011) Adsorption equilibrium and kinetics of CO2 on chromium terephthalate MIL-101. Energy Fuels 25(2):835–842

    CAS  Google Scholar 

  • Zhao Z, Li Z, Lin YS (2009) Adsorption and diffusion of carbon dioxide on metal-organic framework (MOF-5). Ind Eng Chem Res 48:10015–10020

    CAS  Google Scholar 

  • Zheng S, Li Y, Wu T, Nieto RA, Feng P, Bu X (2010) Porous lithium imidazolate frameworks constructed with charge-complementary ligands. Chem Eur J 16:13035–13040

    CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the NSERC (Natural Sciences and Engineering Research Council of Canada).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sohrab Rohani.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sabouni, R., Kazemian, H. & Rohani, S. Carbon dioxide capturing technologies: a review focusing on metal organic framework materials (MOFs). Environ Sci Pollut Res 21, 5427–5449 (2014). https://doi.org/10.1007/s11356-013-2406-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-013-2406-2

Keywords

Navigation