Skip to main content
Log in

Organic-coated nanoparticulate zero valent iron for remediation of chemical oxygen demand (COD) and dissolved metals from tropical landfill leachate

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The use of nanoparticulate zero valent iron (NZVI) in the treatment of inorganic contaminants in landfill leachate and polluted plumes has been the subject of many studies, especially in temperate, developed countries. However, NZVI’s potential for reduction of chemical oxygen demand (COD) and treatment of metal ion mixtures has not been explored in detail. We investigated the efficiency of NZVI synthesized in the presence of starch, mercaptoacetic, mercaptosuccinic, or mercaptopropenoic acid for the reduction of COD, nutrients, and metal ions from landfill leachate in tropical Sri Lanka. Synthesized NZVI were characterized with X-ray diffraction (XRD), transmission electron microscopy, X-ray photoelectron spectroscopy, scanning electron microscopy (SEM), thermal gravimetric analysis, Fourier transform infrared spectroscopy (FTIR) and Brunauer–Emmett–Teller. Of the samples tested, Starch-NZVI (S-NZVI) and mercaptoacetic-NZVI (MA-NZVI) performed well for treatment both COD and metal mixture. The removal percentages for COD, nitrate-nitrogen, and phosphate from S-NZVI were 50, 88, and 99 %, respectively. Heavy metal removal was higher in S-NZVI (>95 %) than others. MA-NZVI, its oxidation products, and functional groups of its coating showed the maximum removal amounts for both Cu (56.27 mg g−1) and Zn (28.38 mg g−1). All mercapto-NZVI showed well-stabilized nature under FTIR and XRD investigations. Therefore, we suggest mercapto acids as better agents to enhance the air stability for NZVI since chemically bonded thiol and carbonyl groups actively participation for stabilization process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdul J, Vigneswaran S, Shon H, Nathaporn A, Kandasamy J (2009) Comparison of granular activated carbon bio-sorption and advanced oxidation processes in the treatment of leachate effluent. Korean J Chem Eng 26(3):724–730. doi:10.1007/s11814-009-0121-y

    Article  Google Scholar 

  • Alidokht L, Khataee AR, Reyhanitabar A, Oustan S (2011) Reductive removal of Cr(VI) by starch-stabilized Fe0 nanoparticles in aqueous solution. Desalination 270(1–3):105–110. doi:10.1016/j.desal.2010.11.028

    Article  CAS  Google Scholar 

  • Allabaksh MB, Mandal BK, Kesarla MK, Kumar KS, Reddy PS (2010) Preparation of stable zero valent iron nanoparticles using different chelating agents. J Chem Pharm Res 2(5):67–74

    CAS  Google Scholar 

  • Allison JD, Brown DS, and Novo-Gradac KJ (1990) MINTEQA2/PRODEFA2—a geochemical assessment model for environmental systems: Version 30 User’s Manual US Environmental Protection Agency Athens, GA

  • Almeelbi T, Bezbaruah A (2012) Aqueous phosphate removal using nanoscale zero-valent iron. J Nanopart Res 14(900):1–14. doi:10.1007/s11051-012-0900-y

    Google Scholar 

  • Al-Wabel MI, Al Yehya WS, AL-Farraj AS, El-Maghraby SE (2011) Characteristics of landfill leachates and bio-solids of municipal solid waste (MSW) in Riyadh City, Saudi Arabia. J Saudi Soc Agric Sci 10:65–70. doi:10.1016/j.jssas.2011.03.009

    CAS  Google Scholar 

  • American public health association (2005) Standard methods for the examination of water and wastewater. 21st ed, Washington

  • Ariyawansha RTK, Basnayake BFA, Pathirana KPMN, Chandrasena ASH (2009) Open dump simulation for estimation of pollution levels in wet tropical climates. 21st Annual congress, Postgraduate Institute of Agriculture, University of Peradeniya

  • Asadi M (2008) Investigation of heavy metals concentration in landfill leachate and reduction by different coagulants. The 7th International Conference on Environmental Engineering Faculty of Environmental Engineering, Vilnius Gediminas Technical University

  • Baykal A, Toprak MS, Durmus Z, Senel M, Sozeri H, Demir A (2012) Sythesis and characterisation of dendrimer-encapsulated iron and iron-oxide nanoparticles. J Supercond Nov Magn 25:1541–1549

    Article  CAS  Google Scholar 

  • Biesinger MC, Payne BP, Grosvenor AP, Lau LWM, Gerson AR, Smart RSC (2011) Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hyrdoxides: Cr, Mn, Fe, Co and Ni. Appl Surf Sci 257:2717–2730

    Article  CAS  Google Scholar 

  • Blowes DW, Patacek CJ, Benner SG, McRae CWT, Bennett TA, Puls RW (2000) Treatment of inorganic contaminants using permeable reactive barriers. J Contam Hydrol 45:123–137

    Article  CAS  Google Scholar 

  • Bootharaju MS, Pradeep T (2010) Uptake of toxic metal ions from water by naked and monolayer protected silver nanoparticles: an X-ray photoelectron spectroscopic investigation. J Phys Chem C 114:8328–8336

    Article  CAS  Google Scholar 

  • Broadway A, Cave MR, Wragg J, Fordyce FM, Bewley RJF, Graham MC, Ngwenya BT, Farmer JG (2010) Determination of the bioaccessibility of chromium in Glasgow soil and the implications for human health risk assessment. Sci Total Environ 409:267–277

    Article  CAS  Google Scholar 

  • Chen S, Kimura K (2001) Synthesis of thiolate-stabilized platinum nanoparticles in protolytic solvents as isolable colloids. J Phys Chem B 105:5397–5403

    Article  CAS  Google Scholar 

  • Christensen JB, Jensen DL, Gron C, Filip Z, Christensen TH (1998) Characterization of the dissolved organic carbon in landfill leachate-polluted groundwater. War Res 32(1):125–135

    Article  CAS  Google Scholar 

  • Chung C, Lee M (2004) Self-assembled monolayers of mercaptoacetic acid on Ag powder: characterization by FT-IR diffuse reflection spectroscopy. Bull Korean Chem Soc 25(10):1461–1462

    Article  CAS  Google Scholar 

  • Cirtiu CM, Raychoudhury T, Ghoshal S, Moores A (2011) Systematic comparison of the size, surface characteristics and colloidal stability of zero valent iron nanoparticles pre- and post-grafter with common polymers. Colloids Surf A 390:95–104

    Article  CAS  Google Scholar 

  • Deutsch WJ (1997) Groundwater geochemistry fundamentals and applications to contamination. LEWIS Publishers, Boca Raton

    Google Scholar 

  • Devipriya S, Arunadevi N, Vairam S (2013) Synthesis and thermal characterization of lanthanide(III) complexes with mercaptosuccinic acid and hydrazine as ligands. J Chem 2013:10. doi:10.1155/2013/497956

    Article  Google Scholar 

  • Elihn K, Otten F, Fornan M, Kruis FE, Fissan H, Carlsson JO (1999) Nanoparticle formation by laser-assisted photolysis of ferrocene. Nanostruct Mater 12:79–82

    Article  Google Scholar 

  • Faccini F, Fcbrric H, Schubert U, Wendel E, Tsetsgee O, Mu¨ller K, Bertagnolli H, Venzo A, Gross S (2007) ɷ-Mercapto-functionalized hafnium- and zirconium-oxoclusters as nanosized building blocks for inorganic–organic hybrid materials: synthesis, characterization and photothiol-ene polymerization. J Mater Chem 17:3297–3307. doi:10.1039/b702714a

    Article  CAS  Google Scholar 

  • Fang L, Cao Y, Huang Q, Walker SL, Cai P (2012) Reactions between bacterial exopolymers and goethite: a combined macroscopic and spectroscopic investigation. War Res 46:5613–5620

    Article  CAS  Google Scholar 

  • He F, Zhao D (2005) Preparation and characterization a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water. Environ Sci Technol 39:3314–3320

    Article  CAS  Google Scholar 

  • He F, Zhao D (2007) Manipulating the size and dispersibility of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizers. Environ Sci Technol 41:6216–6221

    Article  CAS  Google Scholar 

  • Hernandez EA, Posada B, Irizarry R, Castro ME (2005) Role of hydrogen bonding interactions in directing one-dimensional thiol-assisted growth of silver-based nanofibers. J Phys Chem B 109:7251–7257

    Article  CAS  Google Scholar 

  • Hsu JC, Lio CH, Wei YL (2011) Nitrate removal by synthetic nanoscale zerovalent iron in aqueous recirculated reactor. Sustain Environ Res 21(6):353–359

    CAS  Google Scholar 

  • Hwang YH, Kim DG, Shin HS (2011) Mechanism study of nitrate reduction by nano zero valent iron. J Hazard Mater 185:1513–1521

    Article  CAS  Google Scholar 

  • Ichiyanagi Y, Kimishima Y (2002) Structural, magnetic and thermal characterizations of Fe2O3 nanoparticle systems. J Therm Anal Calorim 69:919–923

    Article  CAS  Google Scholar 

  • Irene M (1996) Characteristics and treatment of leachates from domestic landfills. Environ Int 22(4):433–442

    Article  Google Scholar 

  • Jayarathne L, Ng WJ, Bandara A, Vitanage M, Dissanayake CB, Weerasooriya R (2012) Fabrication of succinic acid-γ-Fe2O3 nano core–shells. Colloids Surf A 403:96–102

    Article  CAS  Google Scholar 

  • Jun D, Yongsheng Z, Weihong Z, Mei H (2009) Laboratory study on sequenced permeable reactive barrier remediation for landfill leachate-contaminated groundwater. J Hazard Mater 161:224–230. doi:10.1016/j.jhazmat.2008.03.086

    Article  Google Scholar 

  • Kale SS, Kadam A, Kumar S, Pawar NJ (2010) Evaluating pollution potential of leachate from landfill site, from the Pune metropolitan city and its impact on shallow basaltic aquifers. Environ Monit Assess 162:327–346. doi:10.1007/s10661-009-0799-7

    Article  CAS  Google Scholar 

  • Kanel SR, Greneche J, Choi H (2006) Arsenic(V) removal from groundwater using nano scale zero-valent iron as a colloidal Reactive barrier material. Environ Sci Technol 40:2045–2050

    Article  CAS  Google Scholar 

  • Kanel SR, Goswami RR, Clement TP, Barnett MO, Zhao D (2008) Two dimensional transport characteristics of surface stabilized zero-valent iron nanoparticles in porous media. Environ Sci Technol 42:896–900

    Article  CAS  Google Scholar 

  • Karlsson MNA, Deppert K, Wacaser BA, Karlsson LS, Malm JO (2005) Size-controlled nanoparticles by thermal cracking of iron pentacarbonyl. Appl Phys A 80:1579–1583. doi:10.1007/s00339-004-2987-1

    Article  CAS  Google Scholar 

  • Knittle E, Phillips W, Williams Q (2001) An infrared and raman spectroscopic study of gypsum at high pressure. Phys Chem Miner 28:630–640

    Article  CAS  Google Scholar 

  • Krauskopf KB, Bird DK (1995) Introduction to geochemistry, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  • Kuhn LT, Bojesen A, Timmermann L, Nielsen MM, Mørup S (2002) Structural and magnetic properties of core–shell iron–iron oxide nanoparticles. J Phys Condens Matter 14:13551–13567

    Article  CAS  Google Scholar 

  • Lai P, Zhao HZ, Wang C, Ni JR (2007) Advanced treatment of coking wastewater by coagulation and zero valent irn process. J Hazard Mater 147:232–239

    Article  CAS  Google Scholar 

  • Lee M, Park K, Chung C (2000) Diffuse reflectance infrared Fourier transform spectroscopic (DRIFTS) study of self-assembled monolayers of 4-mercaptobenzoic acid on Ag powder. Bull Korean Chem Soc 21(5):532–534

    CAS  Google Scholar 

  • Li X-q, Zhang W-x (2007) Sequestration of meta cations with zerovalent iron nanoparticles—a study with high resolution X-ray photoelectron spectroscopy (HR-XPS). J Phys Chem C 111:6939–6946

    Article  CAS  Google Scholar 

  • Li X, Elliott DW, Zhang W (2006) Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects. CRC CR Rev Sol State 31:111–122. doi:10.1080/10408430601057611

    Article  CAS  Google Scholar 

  • Lin Y, Lin M, Liang C (2009) Characteristics and transport properties of two modified zero valent iron. Proceedings of the international conference on chemical biological and environment engineering

  • McIntrye NS, Zetaruk DG (1977) X-ray photoelectron spectroscopy studies of iron oxides. Anal Chem 49:1521–1529

    Article  Google Scholar 

  • Metcalf E (1991) Wastewater engineering: treatment, disposal and reuse, 3rd edn. McGraw Hill, New York

    Google Scholar 

  • Mino T, Loosdrecht MCMV, Heijnen JJ (1998) Microbiology and Biochemistry of the enhanced biological phosphate removal process. War Res 32(11):3193–3207

    Article  CAS  Google Scholar 

  • Mor S, Ravindra K, Dahiya RP, Chandra A (2006) Leachate characterization and assessment of groundwater pollution near municipal solid waste landfill site. Environ Monit Assess 118:435–456. doi:10.1007/s10661-006-1505-7

    Article  CAS  Google Scholar 

  • Mullet M, Guillemin Y, Ruby C (2008) Oxidation and deprotination of sythetic FeII–FeIII(oxy)hydroxycarbonate Green Rust: an X-ray photoelectron study. J Solid State Chem 181:81–89

    Article  CAS  Google Scholar 

  • Nesbitt HW, Bancroft GM, Davidson R, McIntyre NS, Pratt AR (2004) Minimum XPS core-level line widths of insulators, including silicate minerals. Am Mineral 89:878–882

    CAS  Google Scholar 

  • Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (version 2)—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations Water-Resources Investigations Report 99–4259 US Geological Survey Denver

  • Peter A (2001) The elements of physical chemistry, 3rd edn. Oxford University Press, New York

    Google Scholar 

  • Pretsch E, Clerc T, Seibl J, Simon W (1989) Tables of spectral data for structure determination of organic compounds, 2nd edn. Springer-Verlag, Berlin Heideberg

    Book  Google Scholar 

  • Shea PJ, Machacek TA, Comfort SD (2004) Accelerated remediation of pesticide-contaminated soil with zerovalent iron. Environ Pollut 132:183–188. doi:10.1016/j.cnvpol.200405.003

    Article  CAS  Google Scholar 

  • Stuart B (1996) Modern infrared spectroscopy. Wiley, England. ISBN 0471959170

    Google Scholar 

  • Sun B, Zhao FJ, Lombi E, McGrath SP (2001) Leaching of heavy metals from contaminated soil using EDTA. Environ Pollut 113:111–120

    Article  CAS  Google Scholar 

  • Sun Y-p, X-q L, Cao J, W-x Z, Wang HP (2006) Characterisation of zero-valent iron nanoparticles. Adv Colloid Interface Sci 120:47–56

    Article  CAS  Google Scholar 

  • Tomonari M, Sadohara H, Yonezawa T, Mori K, Yamashita H (2007) Synthesis of nano-sized Ag metal particles protected by adsorbed 3-mercapto-propionic acid. J Ceram Process Res 8(3):195–198

    Google Scholar 

  • Trankler J, Visvanathan C, Kuruparan P, Tubtimthai O (2005) Influence of tropical seasonal variations on landfill leachate characteristics—results from lysimeter studies. Waste Manag 25(10):1013–1020. doi:10.1016/j.wasman.2005.05.004

    Article  CAS  Google Scholar 

  • Uegami M, Kawano J, Okita T, Fujii Y, Okinaka K, Kakuya K, Yatagai S (2003) Iron particles for purifyng contiminated soil or groundwater. Process for producing the iron particles, purifying agent comprising the iron particles, process for producing the purifying agent and method of purifying contaminate soil or groundwater U.S Patent 20030217974A1

  • Wang CB, Zhang WX (1997) Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ Sci Technol 31(7):2154–2156

    Article  CAS  Google Scholar 

  • Wang KS, Lin CL, Wei MC, Hsui WL, Li HC, Chang CH, Fang YT, Chang SH (2010) Effect of dissolved oxygen on dye removal by zero valent iron. J Hazard Mater 182:886–895

    Article  CAS  Google Scholar 

  • Xu X, Zhao D (2007) Reductive immobilization of chromate in water and soil using stabilized iron nanoparticulates. War Res 41:2101–2108

    Article  CAS  Google Scholar 

  • Xu Y, Miladinov V, Hanna MA (2004) Synthesis and characterization of starch acetates with high substitution. Cereal Chem 81(6):735–740

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors are most gratefully acknowledged Professor Knud Dideriksen, the Nano-Science Center, University of Copenhagen for sharing his expertise in nanotechnology. The authors are grateful to Professor Susan Stipp and Assistant Professor K.N. Dalby from University of Copenhagen for their support given for the XPS analysis. We would like to thank Fahmida Khurram from University of Copenhagen for XRD analysis. We thank M. Kulathunga and A. Herath, Dr. K. Mahatantila, Anushka, and Lakmal at the Institute of Fundamental Studies, Sri Lanka for their support given.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meththika Vithanage.

Additional information

Responsible editor: Angeles Blanco

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Figures showing transmission FTIR spectra of a NZVI particulates before air exposure, b after air exposure, or after 48 h in air exposure (c). Goethite indicating ∼870 wavenumber representing Fe–OH in plane and out of plane bending vibrations. Line colors: blue, cyan, purple, and red are for the MP-NZVI, S-NZVI, MA-NZVI, and nonstabilized nanozero valent iron, respectively, for both a and b panels (Online Resource 1), Transmission FTIR spectra of NZVI particulates after 48 h air exposure. Line colors: blue, cyan, purple, and red are for the MP-NZVI, S-NZVI, MA-NZVI, and nonstabilized nanozero valent iron, respectively (Online Resource 2), Transmission FTIR spectra plotted against to difference of nonair-exposed and 48 h air-exposed NZVI particulates. Line colors: blue, cyan, purple, and red are for the MP-NZVI, S-NZVI, MA-NZVI, and nonstabilized nanozero valent iron, respectively. An iron oxide phase, goethite indicating Fe–OH in-plane and out-of-plane bending vibrations at ∼880, ∼785, and ∼630 cm−1 highlighted (Online Resource 3), kinetic experiment results of Cr(VI) removal behaviors for 1 g L−1 solid solutions of bare, starch, MA, MS, and MP NZVI (Online Resource 4), Removal of Cu(II) (a), Pb(II) (b), Ni(II) (c), and Zn(II) (d) at pH 6.0 by starch, mercaptoacetic, mercaptosuccinic, and mercaptopropionic acid coated nanozero valent iron solutions (1 g L−1). Symbols represent experimental results (Online Resource 5) and EDX spectra for the residue from the experiment of mercaptopropionic acid coated nano zero valent iron (1 g L−1 solid solution) after treating with synthetic leachate solution (Online Resource 6). (DOCX 558 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wijesekara, S.S.R.M.D.H.R., Basnayake, B.F.A. & Vithanage, M. Organic-coated nanoparticulate zero valent iron for remediation of chemical oxygen demand (COD) and dissolved metals from tropical landfill leachate. Environ Sci Pollut Res 21, 7075–7087 (2014). https://doi.org/10.1007/s11356-014-2625-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-2625-1

Keywords

Navigation