Skip to main content
Log in

Sorption and cosorption of lead and sulfapyridine on carbon nanotube-modified biochars

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

New, sustainable, and low-cost materials that can simultaneously remove a range of wastewater contaminants, such as heavy metals and pharmaceutical residues, are needed. In this work, modified biochars were produced by dip-coating hickory or bagasse biomass in carbon nanotube (CNT) suspensions with or without sodium dodecylbenzenesulfonate (SDBS)-aided dispersion prior to slow pyrolysis in a N2 environment at 600 °C. The sulfapyridine (SPY) and lead (Pb) sorption ability of pristine hickory (HC) and bagasse (BC) biochars and the modified biochars with (HC-SDBS-CNT and BC-SDBS-CNT, respectively) and without (HC-CNT and BC-CNT) SDBS was assessed in laboratory aqueous batch single- and binary-solute system. The greatest removal of SPY and Pb was observed for HC-SDBS-CNT (86 % SPY and 71 % Pb) and BC-SDBS-CNT (56 % SPY and 53 % Pb), whereas HC-CNT, BC-CNT, and the pristine biochars removed far less. This can be attributed to the fact that surfactant could prevent the aggregation of CNTs and thus promote the distribution and stabilization of individual CNT nanoparticle on the biochar surface to adsorb the contaminants. The observation of no significant change in Pb sorption capacities of the surfactant-dispersed CNT-modified biochars in the presence of SPY, or vice versa, was indicative of site-specific sorption interactions and a lack of significant competition for functional groups by the two sorbates. These results suggest that products of hybrid technologies, such as biochars modified with CNTs, can yield multi-sorbents and may hold excellent promise as a sustainable wastewater treatment alternative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bellinger DC, Burger J, Cade TJ, Cory-Slechta DA, Finkelstein M, Hu H, Kosnett M, Landrigan PJ, Lanphear B, Pokras MA, Redig PT, Rideout BA, Silbergeld E, Wright R, Smith DR (2013) Health risks from lead-based ammunition in the environment. Environ Health Perspect 121:A178–A179

    Article  Google Scholar 

  • Bernardo M, Mendes S, Lapa N, Goncalves M, Mendes B, Pinto F, Lopes H, Fonseca I (2013) Removal of lead (Pb2+) from aqueous medium by using chars from co-pyrolysis. J Colloid Interface Sci 409:158–165

    Article  CAS  Google Scholar 

  • Cao XD, Ma L, Gao B, Harris W (2009) Dairy-manure derived biochar effectively sorbs lead and atrazine. Environ Sci Technol 43:3285–3291

    Article  CAS  Google Scholar 

  • Chen B, Chen Z, Lv S (2011a) A novel magnetic biochar efficiently sorbs organic pollutants and phosphate. Bioresour Technol 102:716–723

    Article  CAS  Google Scholar 

  • Chen H, Gao B, Li H, Ma LQ (2011b) Effects of pH and ionic strength on sulfamethoxazole and ciprofloxacin transport in saturated porous media. J Contam Hydrol 126:29–36

    Article  CAS  Google Scholar 

  • Clark MD, Subramanian S, Krishnamoorti R (2011) Understanding surfactant aided aqueous dispersion of multi-walled carbon nanotubes. J Colloid Interface Sci 354:144–151

    Article  CAS  Google Scholar 

  • Garcia-Galan MJ, Diaz-Cruz MS, Barcelo D (2011) Occurrence of sulfonamide residues along the Ebro river basin: removal in wastewater treatment plants and environmental impact assessment. Environ Int 37:462–473

    Article  CAS  Google Scholar 

  • Gardner M, Jones V, Comber S, Scrimshaw MD, Coello-Garcia T, Cartmell E, Lester J, Ellor B (2013) Performance of UK wastewater treatment works with respect to trace contaminants. Sci Total Environ 456–457:359–69

    Article  Google Scholar 

  • Gbaguidi-Haore H, Dumartin C, L'Heriteau F, Pefau M, Hocquet D, Rogues AM, Bertrand X, Comm A-RNS (2013) Antibiotics involved in the occurrence of antibiotic-resistant bacteria: a nationwide multilevel study suggests differences within antibiotic classes. J Antimicrob Chemother 68:461–470

    Article  CAS  Google Scholar 

  • Gros M, Petrovic M, Ginebreda A, Barcelo D (2010) Removal of pharmaceuticals during wastewater treatment and environmental risk assessment using hazard indexes. Environ Int 36:15–26

    Article  CAS  Google Scholar 

  • Gupta VK, Carrott PJM, Carrott MMLR, Suhas TL (2009) Low-cost adsorbents: growing approach to wastewater treatment—a review. Crit Rev Environ Sci Technol 39:783–842

    Article  Google Scholar 

  • Haham H, Oren A, Chefetz B (2012) Insight into the role of dissolved organic matter in sorption of sulfapyridine by semiarid soils. Environ Sci Technol 46:11870–11877

    Article  CAS  Google Scholar 

  • Insel G, Guder B, Gunes G, Cokgor EU (2012) Are standard wastewater treatment plant design methods suitable for any municipal wastewater? Water Sci Technol 66:328–335

    Article  CAS  Google Scholar 

  • Inyang M, Gao B, Pullammanappallil P, Ding W, Zimmerman AR (2010) Biochar from anaerobically digested sugarcane bagasse. Bioresour Technol 101:8868–8872

    Article  CAS  Google Scholar 

  • Inyang MD, Gao B, Ding WC, Pullammanappallil P, Zimmerman AR, Cao XD (2011) Enhanced lead sorption by biochar derived from anaerobically digested sugarcane bagasse. Sep Sci Technol 46:1950–1956

    Article  CAS  Google Scholar 

  • Inyang M, Gao B, Yao Y, Xue Y, Zimmerman AR, Pullammanappallil P, Cao X (2012) Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass. Bioresour Technol 110:50–56

    Article  CAS  Google Scholar 

  • Inyang M, Gao B, Zimmerman A, Zhang M (2014) Synthesis, characterization, and dye sorption ability of carbon nanotube-biochar nanocomposites. Chem Eng J 236:39–46

    Article  CAS  Google Scholar 

  • Jeppu GP, Clement TP (2012) A modified Langmuir-Freundlich isotherm model for simulating pH-dependent adsorption effects. J Contam Hydrol 129:46–53

    Article  Google Scholar 

  • Kasozi GN, Zimmerman AR, Nkedi-Kizza P, Gao B (2010) Catechol and humic acid sorption onto a range of laboratory-produced black carbons (biochars). Environ Sci Technol 44:6189–6195

    Article  CAS  Google Scholar 

  • Katsou E, Malamis S, Kosanovic T, Souma K, Haralambous KJ (2012) Application of adsorption and ultrafiltration processes for the pre-treatment of several industrial wastewater streams. Water Air Soil Pollut 223:5519–5534

    Article  CAS  Google Scholar 

  • Keiluweit M, Nico PS, Johnson MG, Kleber M (2010) Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ Sci Technol 44:1247–1253

    Article  CAS  Google Scholar 

  • Lou JC, Lin YC (2008) Assessing the feasibility of wastewater recycling and treatment efficiency of wastewater treatment units. Environ Monit Assess 137:471–479

    Article  CAS  Google Scholar 

  • Lu HL, Zhang WH, Yang YX, Huang XF, Wang SZ, Qiu RL (2012) Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar. Water Res 46:854–862

    Article  CAS  Google Scholar 

  • Machida M, Yamazaki R, Aikawa M, Tatsumoto H (2005) Role of minerals in carbonaceous adsorbents for removal of Pb(II) ions from aqueous solution. Sep Purif Technol 46:88–94

    Article  CAS  Google Scholar 

  • Radjenovic J, Petrovic M, Barcelo D (2009) Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment. Water Res 43:831–841

    Article  CAS  Google Scholar 

  • Subbiah M, Shah DH, Besser TE, Ullman JL, Call DR (2012) Urine from treated cattle drives selection for cephalosporin resistant Escherichia coli in soil. Plos ONE 7:e48919–e48919

    Article  CAS  Google Scholar 

  • Sun Y, Gao B, Yao Y, Fang J, Zhang M, Zhou Y, Chen H, Yang L (2014) Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties. Chem Eng J 240:574–578

    Article  CAS  Google Scholar 

  • Thiele-Bruhn S (2003) Pharmaceutical antibiotic compounds in soils—a review. J Plant Nutr Soil Sci-Z Pflanzenernahr Bodenkd 166:145–167

    Article  CAS  Google Scholar 

  • Tian Y, Gao B, Morales VL, Wu L, Wang Y, Munoz-Carpena R, Cao C, Huang Q, Yang L (2012) Methods of using carbon nanotubes as filter media to remove aqueous heavy metals. Chem Eng J 210:557–563

    Article  CAS  Google Scholar 

  • Tian Y, Gao B, Chen H, Wang Y, Li H (2013a) Interactions between carbon nanotubes and sulfonamide antibiotics in aqueous solutions under various physicochemical conditions. J Environ Sci Health Part A-Toxic/Hazard Subst Environ Eng 48:1136–1144

    Article  CAS  Google Scholar 

  • Tian Y, Gao B, Morales VL, Chen H, Wang Y, Li H (2013b) Removal of sulfamethoxazole and sulfapyridine by carbon nanotubes in fixed-bed columns. Chemosphere 90:2597–2605

    Article  CAS  Google Scholar 

  • Uchimiya M, Wartelle LH, Klasson KT, Fortier CA, Lima IM (2011) Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil. J Agr Food Chem 59:2501–2510

    Article  CAS  Google Scholar 

  • Vaisman L, Wagner HD, Marom G (2006) The role of surfactants in dispersion of carbon nanotubes. Adv Colloid Interface 128:37–46

    Article  Google Scholar 

  • Verlicchi P, Al Aukidy M, Zambello E (2012) Occurrence of pharmaceutical compounds in urban wastewater: removal, mass load and environmental risk after a secondary treatment—a review. Sci Total Environ 429:123–155

    Article  CAS  Google Scholar 

  • Wu L, Gao B, Tian Y, Munoz-Carpena R, Zigler KJ (2013) DLVO interactions of carbon nanotubes with isotropic planar surfaces. Langmuir 29:3976–3988

    Article  CAS  Google Scholar 

  • Xue Y, Gao B, Yao Y, Inyang M, Zhang M, Zimmerman AR, Ro KS (2012) Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: batch and column tests. Chem Eng J 200:673–680

    Article  Google Scholar 

  • Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788

    Article  CAS  Google Scholar 

  • Yao Y, Gao B, Inyang M, Zimmerman AR, Cao X, Pullammanappallil P, Yang L (2011) Biochar derived from anaerobically digested sugar beet tailings: characterization and phosphate removal potential. Bioresour Technol 102:6273–6278

    Article  CAS  Google Scholar 

  • Yao Y, Gao B, Chen H, Jiang L, Inyang M, Zimmerman AR, Cao X, Yang L, Xue Y, Li H (2012) Adsorption of sulfamethoxazole on biochar and its impact on reclaimed water irrigation. J Hazard Mater 209:408–413

    Article  Google Scholar 

  • Yao Y, Gao B, Chen JJ, Zhang M, Inyang M, Li YC, Alva A, Yang LY (2013) Engineered carbon (biochar) prepared by direct pyrolysis of Mg-accumulated tomato tissues: characterization and phosphate removal potential. Bioresour Technol 138:8–13

    Article  CAS  Google Scholar 

  • Zhang M, Gao B, Yao Y, Xue YW, Inyang M (2012a) Synthesis of porous MgO-biochar nanocomposites for removal of phosphate and nitrate from aqueous solutions. Chem Eng J 210:26–32

    Article  CAS  Google Scholar 

  • Zhang M, Gao B, Yao Y, Xue YW, Inyang M (2012b) Synthesis, characterization, and environmental implications of graphene-coated biochar. Sci Total Environ 435:567–572

    Article  Google Scholar 

  • Zhang M, Gao B, Varnoosfaderani S, Hebard A, Yao Y, Inyang M (2013a) Preparation and characterization of a novel magnetic biochar for arsenic removal. Bioresour Technol 130:457–462

    Article  CAS  Google Scholar 

  • Zhang M, Gao B, Yao Y, Inyang MD (2013b) Phosphate removal ability of biochar/MgAl-LDH ultra-fine composites prepared by liquid-phase deposition. Chemosphere 92:1042–1047

    Article  CAS  Google Scholar 

  • Zhang WH, Mao SY, Chen H, Huang L, Qiu RL (2013c) Pb(II) and Cr(VI) sorption by biochars pyrolyzed from the municipal wastewater sludge under different heating conditions. Bioresour Technol 147:545–552

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was partially supported by the NSF through grants CBET-1054405 and CHE-1213333.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Gao.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inyang, M., Gao, B., Zimmerman, A. et al. Sorption and cosorption of lead and sulfapyridine on carbon nanotube-modified biochars. Environ Sci Pollut Res 22, 1868–1876 (2015). https://doi.org/10.1007/s11356-014-2740-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-2740-z

Keywords

Navigation