Skip to main content

Advertisement

Log in

Electrochemical advanced oxidation and biological processes for wastewater treatment: a review of the combined approaches

  • Electrochemical advanced oxidation processes for removal of toxic/persistent organic pollutants from water
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

As pollution becomes one of the biggest environmental challenges of the twenty-first century, pollution of water threatens the very existence of humanity, making immediate action a priority. The most persistent and hazardous pollutants come from industrial and agricultural activities; therefore, effective treatment of this wastewater prior to discharge into the natural environment is the solution. Advanced oxidation processes (AOPs) have caused increased interest due to their ability to degrade hazardous substances in contrast to other methods, which mainly only transfer pollution from wastewater to sludge, a membrane filter, or an adsorbent. Among a great variety of different AOPs, a group of electrochemical advanced oxidation processes (EAOPs), including electro-Fenton, is emerging as an environmental-friendly and effective treatment process for the destruction of persistent hazardous contaminants. The only concern that slows down a large-scale implementation is energy consumption and related investment and operational costs. A combination of EAOPs with biological treatment is an interesting solution. In such a synergetic way, removal efficiency is maximized, while minimizing operational costs. The goal of this review is to present cutting-edge research for treatment of three common and problematic pollutants and effluents: dyes and textile wastewater, olive processing wastewater, and pharmaceuticals and hospital wastewater. Each of these types is regarded in terms of recent scientific research on individual electrochemical, individual biological and a combined synergetic treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aggelis GG, Gavala HN, Lyberatos G (2001) Combined and separate aerobic and anaerobic biotreatment of green olive debittering wastewater. J Agric Eng Res 80(3):283–292. doi:10.1006/jaer.2001.0732

    Google Scholar 

  • Anglada A, Urtiaga A, Ortiz I (2009) Contributions of electrochemical oxidation to waste-water treatment: fundamentals and review of applications. J Chem Technol Biotechnol 84(12):1747–1755. doi:10.1002/jctb.2214

    CAS  Google Scholar 

  • Ayoub K, van Hullebusch ED, Cassir M, Bermond A (2010) Application of advanced oxidation processes for TNT removal: a review. J Hazard Mater 178(1–3):10–28. doi:10.1016/j.jhazmat.2010.02.042

    CAS  Google Scholar 

  • Azbar N, Bayram A, Filibeli A, Muezzinoglu A, Sengul F, Ozer A (2004) A review of waste management options in olive oil production. Crit Rev Environ Sci Technol 34(3):209–247. doi:10.1080/10643380490279932

    CAS  Google Scholar 

  • Belkheiri D, Fourcade F, Geneste F, Floner D, Ait-Amar H, Amrane A (2011) Feasibility of an electrochemical pre-treatment prior to a biological treatment for tetracycline removal. Sep Purif Technol 83:151–156. doi:10.1016/j.seppur.2011.09.029

    Google Scholar 

  • Bellakhal N, Oturan MA, Oturan N, Dachraoui M (2006) Olive oil mill wastewater treatment by the electro-Fenton process. Environ Chem 3(5):345. doi:10.1071/en05080

    CAS  Google Scholar 

  • Bouafia-Chergui S, Oturan N, Khalaf H, Oturan MA (2012) Electrochemical and photochemical oxidation of cationic dyes: a comparative study. Curr Org Chem 16(18):2073–2082

    CAS  Google Scholar 

  • Boye B, Dieng MM, Brillas E (2003) Electrochemical degradation of 2,4,5-trichlorophenoxyacetic acid in aqueous medium by peroxi-coagulation. Effect of pH and UV light. Electrochim Acta 48(7):781–790. doi:10.1016/s0013-4686(02)00747-8

    CAS  Google Scholar 

  • Brillas E, Martinez-Huitle CA (2011) Synthetic diamond films: preparation, electrochemistry, characerization and application. Wiley, New Jersey

    Google Scholar 

  • Brillas E, Sires I, Oturan MA (2009) Electro-Fenton process and related electrochemical technologies based on Fenton's reaction chemistry. Chem Rev 109(12):6570–6631. doi:10.1021/cr900136g

    CAS  Google Scholar 

  • Bulc TG, Ojstrsek A (2008) The use of constructed wetland for dye-rich textile wastewater treatment. J Hazard Mater 155(1–2):76–82. doi:10.1016/j.jhazmat.2007.11.068

    CAS  Google Scholar 

  • Cañizares P, Martinez L, Paz R, Saez C, Lobato J, Rodrigo MA (2006) Treatment of Fenton-refractory olive oil mill wastes by electrochemical oxidation with boron-doped diamond anodes. J Chem Technol Biotechnol 81(8):1331–1337. doi:10.1002/jctb.1428

    Google Scholar 

  • Cañizares P, Paz R, Saez C, Rodrigo MA (2009) Costs of the electrochemical oxidation of wastewaters: a comparison with ozonation and Fenton oxidation processes. J Environ Manag 90(1):410–420. doi:10.1016/j.jenvman.2007.10.010

    Google Scholar 

  • Carvalho C, Fernandes A, Lopes A, Pinheiro H, Goncalves I (2007) Electrochemical degradation applied to the metabolites of Acid Orange 7 anaerobic biotreatment. Chemosphere 67(7):1316–1324. doi:10.1016/j.chemosphere.2006.10.062

    CAS  Google Scholar 

  • Chen G (2004) Electrochemical technologies in wastewater treatment. Sep Purif Technol 38(1):11–41. doi:10.1016/j.seppur.2003.10.006

    Google Scholar 

  • Cheng H, Xu W, Liu J, Wang H, He Y, Chen G (2007) Pretreatment of wastewater from triazine manufacturing by coagulation, electrolysis, and internal microelectrolysis. J Hazard Mater 146(1–2):385–392. doi:10.1016/j.jhazmat.2006.12.038

    CAS  Google Scholar 

  • Chinwekitvanich S, Tuntoolvest M, Panswad T (2000) Anaerobic decolorization of reactive dyebath effluents by a two-stage UASB system with tapioca as a co-substrate. Water Res 34(8):2223–2232. doi:10.1016/s0043-1354(99)00403-0

    Google Scholar 

  • Comninellis C, Pulgarin C (1993) Electrochemical oxidation of phenol for wastewater treatment using SnO2 anodes. J Appl Electrochem 23(2):108–112

    CAS  Google Scholar 

  • Comninellis C, Kapalka A, Malato S, Parsons SA, Poulios L, Mantzavinos D (2008) Advanced oxidation processes for water treatment: advances and trends for R&D. J Chem Technol Biotechnol 83(6):769–776. doi:10.1002/jctb.1873

    CAS  Google Scholar 

  • Daughton CG (2004) Pharmaceuticals in the environment: overview of significance, concerns and solutions. Abstr Pap Am Chem Soc 228:U616–U616

    Google Scholar 

  • Daughton CG, Ruhoy IS (2009) Environmental footprint of pharmaceuticals: the significance of factors beyond direct excretion to sewers. Environ Toxicol Chem 28(12):2495–2521

    CAS  Google Scholar 

  • de Witte B, van Langenhove H, Demeestere K, Dewulf J (2011) Advanced oxidation of pharmaceuticals: chemical analysis and biological assessment of degradation products. Crit Rev Environ Sci Technol 41(3):215–242. doi:10.1080/10643380902728698

    Google Scholar 

  • Dhaouadi H, Marrot B (2008) Olive mill wastewater treatment in a membrane bioreactor: process feasibility and performances. Chem Eng J 145(2):225–231. doi:10.1016/j.cej.2008.04.017

    CAS  Google Scholar 

  • Dirany A, Sires I, Oturan N, Oturan MA (2010) Electrochemical abatement of the antibiotic sulfamethoxazole from water. Chemosphere 81(5):594–602. doi:10.1016/j.chemosphere.2010.08.032

    CAS  Google Scholar 

  • Dirany A, Sires I, Oturan N, Ozcan A, Oturan MA (2012) Electrochemical treatment of the antibiotic sulfachloropyridazine: kinetics, reaction pathways, and toxicity evolution. Environ Sci Technol 46(7):4074–4082. doi:10.1021/es204621q

    CAS  Google Scholar 

  • Domínguez JR, González T, Palo P, Sánchez-Martín J (2010) Anodic oxidation of ketoprofen on boron-doped diamond (BDD) electrodes. Role of operative parameters. Chem Eng J 162(3):1012–1018. doi:10.1016/j.cej.2010.07.010

    Google Scholar 

  • El Hajjouji H, Bailly JR, Winterton P, Merlina G, Revel JC, Hafidi M (2008) Chemical and spectroscopic analysis of olive mill waste water during a biological treatment. Bioresour Technol 99(11):4958–4965. doi:10.1016/j.biortech.2007.09.025

    Google Scholar 

  • El-Ghenymy A, Cabot PL, Centellas F, Garrido JA, Rodriguez RM, Arias C, Brillas E (2013) Mineralization of sulfanilamide by electro-Fenton and solar photoelectro-Fenton in a pre-pilot plant with a Pt/air-diffusion cell. Chemosphere 91(9):1324–1331. doi:10.1016/j.chemosphere.2013.03.005

    CAS  Google Scholar 

  • Elias B, Guihard L, Nicolas S, Fourcade F, Amrane A (2011) Effect of electro-Fenton application on azo dyes biodegradability. Environ Prog Sustain Energy 30(2):160–167. doi:10.1002/ep.10457

    CAS  Google Scholar 

  • Elmolla ES, Chaudhuri M (2010) Comparison of different advanced oxidation processes for treatment of antibiotic aqueous solution. Desalination 256(1–3):43–47. doi:10.1016/j.desal.2010.02.019

    CAS  Google Scholar 

  • Emmanuel E, Perrodin Y, Keck G, Blanchard JM, Vermande P (2005) Ecotoxicological risk assessment of hospital wastewater: a proposed framework for raw effluents discharging into urban sewer network. J Hazard Mater 117(1):1–11. doi:10.1016/j.jhazmat.2004.08.032

    CAS  Google Scholar 

  • Emmanuel E, Pierre MG, Perrodin Y (2009) Groundwater contamination by microbiological and chemical substances released from hospital wastewater: health risk assessment for drinking water consumers. Environ Int 35(4):718–726. doi:10.1016/j.envint.2009.01.011

    CAS  Google Scholar 

  • Esplugas S, Contreras S, Ollis DF (2004) Engineering aspects of the integration of chemical and biological oxidation: simple mechanistic models for the oxidation treatment. J Environ Eng 130(9):967–974. doi:10.1061//asce/0733-9372/2004/130:9/967

    CAS  Google Scholar 

  • Estrada AL, Li YY, Wang A (2012) Biodegradability enhancement of wastewater containing cefalexin by means of the electro-Fenton oxidation process. J Hazard Mater 227–228:41–48. doi:10.1016/j.jhazmat.2012.04.079

    Google Scholar 

  • Fan L, Ni J, Wu Y, Zhang Y (2009) Treatment of bromoamine acid wastewater using combined process of micro-electrolysis and biological aerobic filter. J Hazard Mater 162(2–3):1204–1210. doi:10.1016/j.jhazmat.2008.06.006

    CAS  Google Scholar 

  • Faouzi M, Cañizares P, Gadri A, Lobato J, Nasr B, Paz R, Rodrigo MA, Saez C (2006) Advanced oxidation processes for the treatment of wastes polluted with azoic dyes. Electrochim Acta 52(1):325–331. doi:10.1016/j.electacta.2006.05.011

    CAS  Google Scholar 

  • Feng L, van Hullebusch ED, Rodrigo MA, Esposito G, Oturan MA (2013) Removal of residual anti-inflammatory and analgesic pharmaceuticals from aqueous systems by electrochemical advanced oxidation processes. Chem Eng J 228:944–964. doi:10.1016/j.cej.2013.05.061

    CAS  Google Scholar 

  • Fenton HJH (1894) Oxidation of tartaric acid in the presence of iron. J Chem Soc 65:899–910

    CAS  Google Scholar 

  • Ferrag-Siagh F, Fourcade F, Soutrel I, Aït-Amar H, Djelal H, Amrane A (2012) Tetracycline degradation and mineralization by the coupling of an electro-Fenton pretreatment and a biological process. J Chem Technol Biotechnol 88(7):1380–1386. doi:10.1002/jctb.3990

    Google Scholar 

  • Flox C, Ammar S, Arias C, Brillas E, Vargas-Zavala AV, Abdelhedi R (2006) Electro-Fenton and photoelectro-Fenton degradation of indigo carmine in acidic aqueous medium. Appl Catal B Environ 67(1–2):93–104. doi:10.1016/j.apcatb.2006.04.020

    CAS  Google Scholar 

  • Fontmorin J-M, Fourcade F, Geneste F, Floner D, Huguet S, Amrane A (2013) Combined process for 2,4-Dichlorophenoxyacetic acid treatment—coupling of an electrochemical system with a biological treatment. Biochem Eng J 70:17–22. doi:10.1016/j.bej.2012.09.015

    CAS  Google Scholar 

  • Ghoneim MM, El-Desoky HS, Zidan NM (2011) Electro-Fenton oxidation of Sunset Yellow FCF azo-dye in aqueous solutions. Desalination 274(1–3):22–30. doi:10.1016/j.desal.2011.01.062

    CAS  Google Scholar 

  • Gnanapragasam G, Senthilkumar M, Arutchelvan V, Velayutham T, Nagarajan S (2011) Bio-kinetic analysis on treatment of textile dye wastewater using anaerobic batch reactor. Bioresour Technol 102(2):627–632. doi:10.1016/j.biortech.2010.08.012

    CAS  Google Scholar 

  • Grafias P, Xekoukoulotakis NP, Mantzavinos D, Diamadopoulos E (2010) Pilot treatment of olive pomace leachate by vertical-flow constructed wetland and electrochemical oxidation: an efficient hybrid process. Water Res 44(9):2773–2780. doi:10.1016/j.watres.2010.02.015

    CAS  Google Scholar 

  • Guinea E, Arias C, Cabot PL, Garrido JA, Rodriguez RM, Centellas F, Brillas E (2008) Mineralization of salicylic acid in acidic aqueous medium by electrochemical advanced oxidation processes using platinum and boron-doped diamond as anode and cathodically generated hydrogen peroxide. Water Res 42(1–2):499–511. doi:10.1016/j.watres.2007.07.046

    CAS  Google Scholar 

  • Guivarch E, Trevin S, Lahitte C, Oturan MA (2003) Degradation of azo dyes in water by electro-Fenton process. Environ Chem Lett 1(1):38–44. doi:10.1007/s10311-002-0017-0

    CAS  Google Scholar 

  • Haaken D, Dittmar T, Schmalz V, Worch E (2012) Influence of operating conditions and wastewater-specific parameters on the electrochemical bulk disinfection of biologically treated sewage at boron-doped diamond (BDD) electrodes. Desalin Water Treat 46(1–3):160–167. doi:10.1080/19443994.2012.677523

    CAS  Google Scholar 

  • Haber F, Weiss J (1932) Über die Katalyse des Hydroperoxides. Naturwissenschaften 20:948–950

    CAS  Google Scholar 

  • Haber F, Weiss J (1934) The catalytic decomposition of hydrogen peroxide by iron salts. Proc Roy Soc London A 147:332–351

    CAS  Google Scholar 

  • Hai FI, Yamamoto K, Fukushi K (2007) Hybrid treatment systems for dye wastewater. Crit Rev Environ Sci Technol 37(4):315–377. doi:10.1080/10643380601174723

    CAS  Google Scholar 

  • Halling-Sorensen B, Nielsen SN, Lanzky PF, Ingerslev F, Lutzhoft HCH, Jorgensen SE (1998) Occurrence, fate and effects of pharmaceutical substances in the environment—a review. Chemosphere 36(2):357–394. doi:10.1016/s0045-6535(97)00354-8

    CAS  Google Scholar 

  • Hammami S, Oturan N, Bellakhal N, Dachraoui M, Oturan MA (2007) Oxidative degradation of direct orange 61 by electro-Fenton process using a carbon felt electrode: application of the experimental design methodology. J Electroanal Chem 610(1):75–84. doi:10.1016/j.jelechem.2007.07.004

    CAS  Google Scholar 

  • Hammami S, Bellakhal N, Oturan N, Oturan MA, Dachraoui M (2008) Degradation of Acid Orange 7 by electrochemically generated (*)OH radicals in acidic aqueous medium using a boron-doped diamond or platinum anode: a mechanistic study. Chemosphere 73(5):678–684. doi:10.1016/j.chemosphere.2008.07.010

    CAS  Google Scholar 

  • Hanafi F, Belaoufi A, Mountadar M, Assobhei O (2011) Augmentation of biodegradability of olive mill wastewater by electrochemical pre-treatment: effect on phytotoxicity and operating cost. J Hazard Mater 190(1–3):94–99. doi:10.1016/j.jhazmat.2011.02.087

    CAS  Google Scholar 

  • Hawkshead JJ (2008) Hospital wastewater containing pharmaceutically active compounds and drug-resistant organisms: a source of environmental toxicity and increased antibiotic resistance. J Residuals Sci Technol 5(2):51–60

    CAS  Google Scholar 

  • Heberer T (2002) Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicol Lett 131(1–2):5–17. doi:10.1016/s0378-4274(02)00041-3

    CAS  Google Scholar 

  • Hirsch R, Ternes T, Haberer K, Kratz KL (1999) Occurrence of antibiotics in the aquatic environment. Sci Total Environ 225(1–2):109–118. doi:10.1016/s0048-9697(98)00337-4

    CAS  Google Scholar 

  • Hofl C, Sigl G, Specht O, Wurdack I, Wabner D (1997) Oxidative degradation of AOX and COD by different advanced oxidation processes: a comparative study with two samples of a pharmaceutical wastewater. Water Sci Technol 35(4):257–264. doi:10.1016/s0273-1223(97)00033-4

    Google Scholar 

  • Isarain-Chavez E, Rodriguez RM, Cabot PL, Centellas F, Arias C, Garrido JA, Brillas E (2011) Degradation of pharmaceutical beta-blockers by electrochemical advanced oxidation processes using a flow plant with a solar compound parabolic collector. Water Res 45(14):4119–4130. doi:10.1016/j.watres.2011.05.026

    CAS  Google Scholar 

  • Isik M, Sponza DT (2005) Effects of alkalinity and co-substrate on the performance of an upflow anaerobic sludge blanket (UASB) reactor through decolorization of Congo Red azo dye. Bioresour Technol 96(5):633–643. doi:10.1016/j.biortech.2004.06.004

    CAS  Google Scholar 

  • Jiménez C, Sáez C, Martínez F, Cañizares P, Rodrigo MA (2012) Electrochemical dosing of iron and aluminum in continuous processes: a key step to explain electro-coagulation processes. Sep Purif Technol 98:102–108. doi:10.1016/j.seppur.2012.07.005

    Google Scholar 

  • Khalfaoui N, Boutoumi H, Khalaf H, Oturan N, Oturan MA (2012) Electrochemical oxidation of the xanthene dye Rhodamine 6G by electrochemical advanced oxidation using Pt and BDD anodes. Curr Org Chem 16(18):2083–2090

    CAS  Google Scholar 

  • Khoufi S, Aloui F, Sayadi S (2006) Treatment of olive oil mill wastewater by combined process electro-Fenton reaction and anaerobic digestion. Water Res 40(10):2007–2016. doi:10.1016/j.watres.2006.03.023

    CAS  Google Scholar 

  • Khoufi S, Aloui F, Sayadi S (2009) Pilot scale hybrid process for olive mill wastewater treatment and reuse. Chem Eng Process 48(2):643–650. doi:10.1016/j.cep.2008.07.007

    CAS  Google Scholar 

  • Klavarioti M, Mantzavinos D, Kassinos D (2009) Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environ Int 35(2):402–417. doi:10.1016/j.envint.2008.07.009

    CAS  Google Scholar 

  • Korzeniewska E, Korzeniewska A, Harnisz M (2013) Antibiotic resistant Escherichia coli in hospital and municipal sewage and their emission to the environment. Ecotoxicol Environ Saf 91:96–102. doi:10.1016/j.ecoenv.2013.01.014

    CAS  Google Scholar 

  • Kovalova L, Siegrist H, Singer H, Wittmer A, McArdell CS (2012) Hospital wastewater treatment by membrane bioreactor: performance and efficiency for organic micropollutant elimination. Environ Sci Technol 46(3):1536–1545. doi:10.1021/es203495d

    CAS  Google Scholar 

  • Kummerer K (2001) Drugs in the environment: emission of drugs, diagnostic aids and disinfectants into wastewater by hospitals in relation to other sources—a review. Chemosphere 45(6–7):957–969. doi:10.1016/s0045-6535(01)00144-8

    CAS  Google Scholar 

  • Kyriacou A, Lasaridi KE, Kotsou M, Balis C, Pilidis G (2005) Combined bioremediation and advanced oxidation of green table olive processing wastewater. Process Biochem 40(3–4):1401–1408. doi:10.1016/j.procbio.2004.06.001

    CAS  Google Scholar 

  • Lacasa E, Cañizares P, Sáez C, Martínez F, Rodrigo MA (2013) Modelling and cost evaluation of electro-coagulation processes for the removal of anions from water. Sep Purif Technol 107:219–227. doi:10.1016/j.seppur.2013.01.035

    CAS  Google Scholar 

  • Lahkimi A, Oturan MA, Oturan N, Chaouch M (2007) Removal of textile dyes from water by the electro-Fenton process. Environ Chem Lett 5(1):35–39. doi:10.1007/s10311-006-0058-x

    CAS  Google Scholar 

  • Libra JA, Borchert M, Vigelahn L, Storm T (2004) Two stage biological treatment of a diazo reactive textile dye and the fate of the dye metabolites. Chemosphere 56(2):167–180. doi:10.1016/j.chemosphere.2004.02.012

    CAS  Google Scholar 

  • Lin SH, Chang CC (2000) Treatment of landfill leachate by combined electro-fenton oxidation and sequencing batch reactor method. Water Res 34(17):4243–4249. doi:10.1016/s0043-1354(00)00185-8

    CAS  Google Scholar 

  • Lin AY, Tsai YT (2009) Occurrence of pharmaceuticals in Taiwan's surface waters: impact of waste streams from hospitals and pharmaceutical production facilities. Sci Total Environ 407(12):3793–3802. doi:10.1016/j.scitotenv.2009.03.009

    CAS  Google Scholar 

  • Liu L, Zhao GH, Pang YN, Lei YZ, Gao JX, Liu MC (2010) Integrated biological and electrochemical oxidation treatment for high toxicity pesticide pollutant. Ind Eng Chem Res 49(12):5496–5503. doi:10.1021/ie100333v

    CAS  Google Scholar 

  • Liu W-w, Tu X-Y, Wang X-P, Wang F-Q, Li W (2012) Pretreatment of coking wastewater by acid out, micro-electrolysis process with in situ electrochemical peroxidation reaction. Chem Eng J 200–202:720–728. doi:10.1016/j.cej.2012.06.057

    Google Scholar 

  • Lopes A, Martins S, Morão A, Magrinho M, Gonçalves I (2004) Degradation of a textile dye C.I. Direct Red 80 by electrochemical processes. Port Electrochim Acta 22:279–294

    CAS  Google Scholar 

  • López-Serna R, Jurado A, Vázquez-Suñé E, Carrera J, Petrović M, Barceló D (2013) Occurrence of 95 pharmaceuticals and transformation products in urban groundwaters underlying the metropolis of Barcelona, Spain. Environ Pollut 174:305–315. doi:10.1016/j.envpol.2012.11.022

    Google Scholar 

  • Mansour D, Fourcade F, Bellakhal N, Dachraoui M, Hauchard D, Amrane A (2012) Biodegradability improvement of sulfamethazine solutions by means of an electro-Fenton process. Water Air Soil Pollut 223(5):2023–2034. doi:10.1007/s11270-011-1002-7

    CAS  Google Scholar 

  • Martinez SS, Uribe EV (2012) Enhanced sonochemical degradation of azure B dye by the electroFenton process. Ultrason Sonochem 19(1):174–178. doi:10.1016/j.ultsonch.2011.05.013

    CAS  Google Scholar 

  • Martinez-Garcia G, Johnson AC, Bachmann RT, Williams CJ, Burgoyne A, Edyvean RGJ (2007) Two-stage biological treatment of olive mill wastewater with whey as co-substrate. Int Biodeterior Biodegrad 59(4):273–282. doi:10.1016/j.ibiod.2007.03.008

    CAS  Google Scholar 

  • Martínez-Huitle CA, Brillas E (2009) Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review. Appl Catal B Environ 87(3–4):105–145. doi:10.1016/j.apcatb.2008.09.017

    Google Scholar 

  • Martinez-Huitle CA, Ferro S (2006) Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes. Chem Sci Rev 35(35):1324–1340. doi:10.1039/b517632h

    CAS  Google Scholar 

  • Martínez-Huitle CA, dos Santos EV, de Araújo DM, Panizza M (2012) Applicability of diamond electrode/anode to the electrochemical treatment of a real textile effluent. J Electroanal Chem 674:103–107. doi:10.1016/j.jelechem.2012.02.005

    Google Scholar 

  • Martins RC, Quinta-Ferreira RM (2011) Remediation of phenolic wastewaters by advanced oxidation processes (AOPs) at ambient conditions: comparative studies. Chem Eng J 66(14):3243–3250. doi:10.1016/j.ces.2011.02.023

    CAS  Google Scholar 

  • McAvoy K (2008) Occurrence of estrogen in wastewater treatment plant and waste disposal site water samples. Clear Waters 38

  • McNamara CJ, Anastasiou CC, O’Flaherty V, Mitchell R (2008) Bioremediation of olive mill wastewater. Int Biodeterior Biodegrad 61(2):127–134. doi:10.1016/j.ibiod.2007.11.003

    CAS  Google Scholar 

  • Metcalfe CD, Chu SG, Judt C, Li HX, Oakes KD, Servos MR, Andrews DM (2010) Antidepressants and their metabolites in municipal wastewater, and downstream exposure in an urban watershed. Environ Toxicol Chem 29(1):79–89. doi:10.1002/etc.27

    CAS  Google Scholar 

  • Michailides M, Panagopoulos P, Akratos CS, Tekerlekopoulou AG, Vayenas DV (2011) A full-scale system for aerobic biological treatment of olive mill wastewater. J Chem Technol Biotechnol 86(6):888–892. doi:10.1002/jctb.2601

    CAS  Google Scholar 

  • Mohajerani S, Mehrvar M, Ein-Mozaffari F (2009) An overview of the integration of advanced oxidation technologies and other processes for water and wastewater treatment. Int J Eng 3(2):120–146

    Google Scholar 

  • Moreno AD, Frontana-Uribe BA, Zamora RMR (2004) Electro-Fenton as a feasible advanced treatment process to produce reclaimed water. Water Sci Technol 50(2):83–90

    CAS  Google Scholar 

  • Morillo JA, Antizar-Ladislao B, Monteoliva-Sanchez M, Ramos-Cormenzana A, Russell NJ (2009) Bioremediation and biovalorisation of olive-mill wastes. Appl Microbiol Biotechnol 82(1):25–39. doi:10.1007/s00253-008-1801-y

    CAS  Google Scholar 

  • Mosteo R, Sarasa J, Ormad MP, Ovelleiro JL (2008) Sequential solar photo-Fenton-biological system for the treatment of winery wastewaters. J Agric Food Chem 56(16):7333–7338. doi:10.1021/jf8005678

    CAS  Google Scholar 

  • Neyens E, Baeyens J (2003) A review of classic Fenton’s peroxidation as an advanced oxidation technique. J Hazard Mater 98(1–3):33–50. doi:10.1016/s0304-3894(02)00282-0

    CAS  Google Scholar 

  • Nidheesh PV, Gandhimathi R (2012) Trends in electro-Fenton process for water and wastewater treatment: an overview. Desalination 299:1–15. doi:10.1016/j.desal.2012.05.011

    CAS  Google Scholar 

  • Oller I, Malato S, Sanchez-Perez JA (2011) Combination of advanced oxidation processes and biological treatments for wastewater decontamination—a review. Sci Total Environ 409(20):4141–4166. doi:10.1016/j.scitotenv.2010.08.061

    CAS  Google Scholar 

  • Olvera-Vargas H, Oturan N, Aravindakumar C, Sunil Paul M, Sharma V, Oturan M (2014a) Electro-oxidation of the dye Azure B: kinetics, mechanism and by-products. Environ Sci Pollut R (in press)

  • Olvera-Vargas H, Oturan N, Oturan MA (2014b) Degradation of dye Azure B by electrochemical advanced oxidation processes. Environ Sci Pollut R (in press)

  • Ong SA, Uchiyama K, Inadama D, Ishida Y, Yamagiwa K (2010) Treatment of azo dye Acid Orange 7 containing wastewater using up-flow constructed wetland with and without supplementary aeration. Bioresour Technol 101(23):9049–9057. doi:10.1016/j.biortech.2010.07.034

    CAS  Google Scholar 

  • Orias F, Perrodin Y (2013) Characterisation of the ecotoxicity of hospital effluents: a review. Sci Total Environ 454–455:250–276. doi:10.1016/j.scitotenv.2013.02.064

    Google Scholar 

  • Ort C, Lawrence MG, Reungoat J, Eaglesham G, Carter S, Keller J (2010) Determining the fraction of pharmaceutical residues in wastewater originating from a hospital. Water Res 44(2):605–615. doi:10.1016/j.watres.2009.08.002

    CAS  Google Scholar 

  • Oturan MA (2000) An ecologically effective water treatment technique using electrochemically generated hydroxyl radicals for in situ destruction of organic pollutants: application to herbicide 2,4-D. J Appl Electrochem 30(4):475–482. doi:10.1023/a:1003994428571

    CAS  Google Scholar 

  • Oturan M, Aaron J (2014) Advanced oxidation processes in water/wastewater treatment: principles and applications, a review. Crit Rev Environ Sci Technol. doi:10.1080/10643389.2013.829765

    Google Scholar 

  • Oturan MA, Pinson J, Bizot J, Deprez D, Terlain B (1992a) Reaction of inflammation inhibitors with chemically and electrochemically generated hydroxyl radicals. J Electroanal Chem 334(1–2):103–109. doi:10.1016/0022-0728(92)80563-j

    CAS  Google Scholar 

  • Oturan MA, Pinson J, Deprez D, Terlain B (1992b) Polyhydroxylation of salicilic acid by electrochemically generated OH radicals. New J Chem 16(6):705–710

    CAS  Google Scholar 

  • Oturan MA, Peiroten J, Chartrin P, Acher AJ (2000) Complete destruction of p-nitrophenol in aqueous medium by electro-Fenton method. Environ Sci Technol 34(16):3474–3479. doi:10.1021/es990901b

    CAS  Google Scholar 

  • Oturan MA, Guivarch E, Oturan N, Sirés I (2008a) Oxidation pathways of malachite green by Fe3+-catalyzed electro-Fenton process. Appl Catal B Environ 82(3–4):244–254. doi:10.1016/j.apcatb.2008.01.016

    CAS  Google Scholar 

  • Oturan MA, Sires I, Oturan N, Perocheau S, Laborde JL, Trevin S (2008b) Sonoelectro-Fenton process: a novel hybrid technique for the destruction of organic pollutants in water. J Electroanal Chem 624(1–2):329–332. doi:10.1016/j.jelechem.2008.08.005

    CAS  Google Scholar 

  • Oturan N, Panizza M, Oturan MA (2009) Cold incineration of chlorophenols in aqueous solution by advanced electrochemical process electro-Fenton. Effect of number and position of chlorine atoms on the degradation kinetics. J Phys Chem A 113(41):10988–10993. doi:10.1021/jp9069674

    CAS  Google Scholar 

  • Oturan MA, Oturan N, Edelahi MC, Podvorica FI, Kacemi KE (2011) Oxidative degradation of herbicide diuron in aqueous medium by Fenton's reaction based advanced oxidation processes. Chem Eng J 171(1):127–135. doi:10.1016/j.cej.2011.03.072

    CAS  Google Scholar 

  • Oturan N, Brillas E, Oturan MA (2012) Unprecedented total mineralization of atrazine and cyanuric acid by anodic oxidation and electro-Fenton with a boron-doped diamond anode. Environ Chem Lett 10(2):165–170. doi:10.1007/s10311-011-0337-z

    CAS  Google Scholar 

  • Ozcan A, Sahin Y, Savas Koparal A, Oturan MA (2009) Electro-Fenton removal of the cationic dye Basic Blue 3 by using carbon felt cathode. Environ Eng Manag J 19(5):267–275

    CAS  Google Scholar 

  • Ozcan A, Sahin Y, Oturan MA (2013) Complete removal of the insecticide azinphos-methyl from water by the electro-Fenton method–a kinetic and mechanistic study. Water Res 47(3):1470–1479. doi:10.1016/j.watres.2012.12.016

    CAS  Google Scholar 

  • Panizza M, Cerisola G (2004) Electrochemical oxidation as a final treatment of synthetic tannery wastewater. Environ Sci Technol 38(20):5470–5475. doi:10.1021/es049730n

    CAS  Google Scholar 

  • Panizza M, Cerisola G (2006) Olive mill wastewater treatment by anodic oxidation with parallel plate electrodes. Water Res 40(6):1179–1184. doi:10.1016/j.watres.2006.01.020

    CAS  Google Scholar 

  • Panizza M, Cerisola G (2009a) Direct and mediated anodic oxidation of organic pollutants. Chem Rev 109(12):6541–6569. doi:10.1021/cr9001319

    CAS  Google Scholar 

  • Panizza M, Cerisola G (2009b) Electro-Fenton degradation of synthetic dyes. Water Res 43(2):339–344. doi:10.1016/j.watres.2008.10.028

    CAS  Google Scholar 

  • Panizza M, Oturan MA (2011) Degradation of Alizarin Red by electro-Fenton process using a graphite-felt cathode. Electrochim Acta 56(20):7084–7087. doi:10.1016/j.electacta.2011.05.105

    CAS  Google Scholar 

  • Perez S, Barcelo D (2007) Fate and occurrence of X-ray contrast media in the environment. Anal Bioanal Chem 387(4):1235–1246. doi:10.1007/s00216-006-0953-9

    CAS  Google Scholar 

  • Pignatello JJ, Oliveros E, MacKay A (2006) Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Crit Rev Environ Sci Technol 36(1):1–84. doi:10.1080/10643380500326564

    CAS  Google Scholar 

  • Poyatos JM, Munio MM, Almecija MC, Torres JC, Hontoria E, Osorio F (2010) Advanced oxidation processes for wastewater treatment: state of the art. Water Air Soil Pollut 205(1–4):187–204. doi:10.1007/s11270-009-0065-1

    CAS  Google Scholar 

  • Radjenovic J, Petrovic M, Barcelo D (2009) Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment. Water Res 43(3):831–841. doi:10.1016/j.watres.2008.11.043

    CAS  Google Scholar 

  • Rai HS, Bhattacharyya MS, Singh J, Bansal TK, Vats P, Banerjee UC (2005) Removal of dyes from the effluent of textile and dyestuff manufacturing industry: a review of emerging techniques with reference to biological treatment. Crit Rev Environ Sci Technol 35(3):219–238. doi:10.1080/10643380590917932

    CAS  Google Scholar 

  • Ramirez C, Saldana A, Hernandez B, Acero R, Guerra R, Garcia-Segura S, Brillas E, Peralta-Hernandez JM (2013) Electrochemical oxidation of methyl orange azo dye at pilot flow plant using BDD technology. J Ind Eng Chem 19(2):571–579. doi:10.1016/j.jiec.2012.09.010

    CAS  Google Scholar 

  • Rodrigo MA, Cañizares P, Buitrón C, Sáez C (2010) Electrochemical technologies for the regeneration of urban wastewaters. Electrochim Acta 55(27):8160–8164. doi:10.1016/j.electacta.2010.01.053

    CAS  Google Scholar 

  • Rodriguez J, Rodrigo MA, Panizza M, Cerisola G (2009) Electrochemical oxidation of Acid Yellow 1 using diamond anode. J Appl Electrochem 39(11):2285–2289. doi:10.1007/s10800-009-9880-8

    CAS  Google Scholar 

  • Rosales E, Pazos M, Longo MA, Sanromán MA (2009) Electro-Fenton decoloration of dyes in a continuous reactor: a promising technology in colored wastewater treatment. Chem Eng J 155(1–2):62–67. doi:10.1016/j.cej.2009.06.028

    CAS  Google Scholar 

  • Rosales E, Pazos M, Sanroman MA (2012a) Advances in the electro-Fenton process for remediation of recalcitrant organic compounds. Chem Eng Technol 35(4):609–617. doi:10.1002/ceat.201100321

    CAS  Google Scholar 

  • Rosales E, Sanroman MA, Pazos M (2012b) Application of central composite face-centered design and response surface methodology for the optimization of electro-Fenton decolorization of Azure B dye. Environ Sci Pollut Res 19(5):1738–1746. doi:10.1007/s11356-011-0668-0

    CAS  Google Scholar 

  • Rozzi A, Malpei F (1996) Treatment and disposal of olive mill effluents. Int Biodeterior Biodegrad 38(3–4):135–144. doi:10.1016/s0964-8305(96)00042-x

    Google Scholar 

  • Ruiz EJ, Arias C, Brillas E, Hernández-Ramírez A, Peralta-Hernández JM (2011) Mineralization of Acid Yellow 36 azo dye by electro-Fenton processes with a boron-doped diamond anode. Chemosphere 82:495–501. doi:10.1016/j.chemosphere.2010.11.013

    CAS  Google Scholar 

  • Salazar R, Brillas E, Sirés I (2012) Finding the best Fe2+/Cu2+ combination for the solar photoelectro-Fenton treatment of simulated wastewater containing the industrial textile dye Disperse Blue 3. Appl Catal B Environ 115–116:107–116. doi:10.1016/j.apcatb.2011.12.026

    Google Scholar 

  • Saltmiras DA, Lemley AT (2000) Degradation of ethylene thiourea (ETU) with three Fenton treatment processes. J Agric Food Chem 48(12):6149–6157. doi:10.1021/jf000084v

    CAS  Google Scholar 

  • Santos LH, Araujo AN, Fachini A, Pena A, Delerue-Matos C, Montenegro MC (2010) Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment. J Hazard Mater 175(1–3):45–95. doi:10.1016/j.jhazmat.2009.10.100

    CAS  Google Scholar 

  • Saracco G, Solarino L, Specchia V, Maja M (2001) Electrolytic abatement of biorefractory organics by combining bulk and electrode oxidation processes. Chem Eng Sci 56(4):1571–1578. doi:10.1016/s0009-2509(00)00384-5

    CAS  Google Scholar 

  • Schmalz V, Dittmar T, Haaken D, Worch E (2009) Electrochemical disinfection of biologically treated wastewater from small treatment systems by using boron-doped diamond (BDD) electrodes–contribution for direct reuse of domestic wastewater. Water Res 43(20):5260–5266. doi:10.1016/j.watres.2009.08.036

    CAS  Google Scholar 

  • Scott JP, Ollis DF (1995) Integration of chemical and biological oxidation processes for water treatment: Review and recommendations. Environ Prog 14(2):88–103. doi:10.1002/ep.670140212

    CAS  Google Scholar 

  • Senthilkumar M, Gnanapragasam G, Arutchelvan V, Nagarajan S (2011) Treatment of textile dyeing wastewater using two-phase pilot plant UASB reactor with sago wastewater as co-substrate. Chem Eng J 166(1):10–14. doi:10.1016/j.cej.2010.07.057

    CAS  Google Scholar 

  • Senthilkumar S, Basha CA, Perumalsamy M, Prabhu HJ (2012) Electrochemical oxidation and aerobic biodegradation with isolated bacterial strains for dye wastewater: combined and integrated approach. Electrochim Acta 77:171–178. doi:10.1016/j.electacta.2012.05.084

    CAS  Google Scholar 

  • Sillanpaa ME, Kurniawan TA, Lo WH (2011) Degradation of chelating agents in aqueous solution using advanced oxidation process (AOP). Chemosphere 83(11):1443–1460. doi:10.1016/j.chemosphere.2011.01.007

    CAS  Google Scholar 

  • Sim WJ, Lee JW, Lee ES, Shin SK, Hwang SR, Oh JE (2011) Occurrence and distribution of pharmaceuticals in wastewater from households, livestock farms, hospitals and pharmaceutical manufactures. Chemosphere 82(2):179–186. doi:10.1016/j.chemosphere.2010.10.026

    CAS  Google Scholar 

  • Siminiceanu I, Alexandru CI, Brillas E (2010) Energy saving by the intensification of the electro-Fenton process for water treatment using boron doped diamond electrode. In: Klemes JJ, Lam HL, Varbanov PS (eds) Pres 2010: 13th International Conference on Process Integration, Modelling and Optimisation for Energy Saving and Pollution Reduction, vol 21. Chemical Engineering Transactions. pp 79–84. doi:10.3303/cet1021014

  • Simond O, Schaller V, Comninellis C (1997) Theoretical model for the anodic oxidation of organics on metal oxide electrodes. Electrochim Acta 42 (2009–2012)

  • Sires I, Brillas E (2012) Remediation of water pollution caused by pharmaceutical residues based on electrochemical separation and degradation technologies: a review. Environ Int 40:212–229. doi:10.1016/j.envint.2011.07.012

    CAS  Google Scholar 

  • Sires I, Garrido JA, Rodriguez RM, Cabot PI, Centellas F, Arias C, Brillas E (2006) Electrochemical degradation of paracetamol from water by catalytic action of Fe2+, Cu2+, and UVA light on electrogenerated hydrogen peroxide. J Electrochem Soc 153(1):D1–D9. doi:10.1149/1.2130568

    CAS  Google Scholar 

  • Sirés I, Garrido JA, Rodríguez RM, Brillas E, Oturan N, Oturan MA (2007a) Catalytic behavior of the Fe3+/Fe2+ system in the electro-Fenton degradation of the antimicrobial chlorophene. Appl Catal B Environ 72(3–4):382–394. doi:10.1016/j.apcatb.2006.11.016

    Google Scholar 

  • Sirés I, Oturan N, Oturan MA, Rodriguez RM, Garrido JA, Brillas E (2007b) Electro-Fenton degradation of antimicrobials triclosan and triclocarban. Electrochim Acta 52(17):5493–5503. doi:10.1016/j.electacta.2007.03.011

    Google Scholar 

  • Sirés I, Guivarch E, Oturan N, Oturan MA (2008) Efficient removal of triphenylmethane dyes from aqueous medium by in situ electrogenerated Fenton's reagent at carbon-felt cathode. Chemosphere 72(4):592–600. doi:10.1016/j.chemosphere.2008.03.010

    Google Scholar 

  • Sirés I, Oturan N, Oturan MA (2010) Electrochemical degradation of beta-blockers. Studies on single and multicomponent synthetic aqueous solutions. Water Res 44(10):3109–3120. doi:10.1016/j.watres.2010.03.005

    Google Scholar 

  • Sirianuntapiboon S, Chairattanawan K (2012) Effects of some operating parameters on the efficiency of a sequencing batch reactor system for treatment of textile wastewater containing acid dyes. Desalin Water Treat 50(1–3):206–219. doi:10.1080/19443994.2012.719470

    CAS  Google Scholar 

  • Skoumal M, Rodríguez RM, Cabot PL, Centellas F, Garrido JA, Arias C, Brillas E (2009) Electro-Fenton, UVA photoelectro-Fenton and solar photoelectro-Fenton degradation of the drug ibuprofen in acid aqueous medium using platinum and boron-doped diamond anodes. Electrochim Acta 54(7):2077–2085. doi:10.1016/j.electacta.2008.07.014

    CAS  Google Scholar 

  • Smith B, O'Neal G, Boyter H, Pisczek J (2007) Decolorizing textile dye wastewater by anoxic/aerobic treatment. J Chem Technol Biotechnol 82(1):16–24. doi:10.1002/jctb.1629

    CAS  Google Scholar 

  • Solano AMS, de Araujo CKC, de Melo JV, Peralta-Hernandez JM, da Silva DR, Martinez-Huitle CA (2013) Decontamination of real textile industrial effluent by strong oxidant species electrogenerated on diamond electrode: viability and disadvantages of this electrochemical technology. Appl Catal B-Environ 130–130: 112–120. doi: org/10.1016/j.cej.2013.08.023

  • Su C-C, Chang A-T, Bellotindos LM, Lu M-C (2012) Degradation of acetaminophen by Fenton and electro-Fenton processes in aerator reactor. Sep Purif Technol 99:8–13. doi:10.1016/j.seppur.2012.07.004

    CAS  Google Scholar 

  • Tabrizi GB, Mehrvar M (2004) Integration of advanced oxidation technologies and biological processes: recent developments, trends, and advances. J Environ Sci Health A 39(11–12):3029–3081. doi:10.1081/lesa-200034939

    Google Scholar 

  • Thomas KV, Dye C, Schlabach M, Langford KH (2007) Source to sink tracking of selected human pharmaceuticals from two Oslo city hospitals and a wastewater treatment works. J Environ Monit 9(12):1410–1418. doi:10.1039/b709745j

    CAS  Google Scholar 

  • Tissot GB, Anglada A, Dimitriou-Christidis P, Rossi L, Arey JS, Comninellis C (2012) Kinetic experiments of electrochemical oxidation of iohexol on BDD electrodes for wastewater treatment. Electrochem Commun 23:48–51. doi:10.1016/j.elecom.2012.07.006

    CAS  Google Scholar 

  • Torres RA, Sarria V, Torres W, Peringer P, Pulgarin C (2003) Electrochemical treatment of industrial wastewater containing 5-amino-6-methyl-2-benzimidazolone: toward an electrochemical–biological coupling. Water Res 37(13):3118–3124. doi:10.1016/s0043-1354(03)00179-9

    CAS  Google Scholar 

  • Tziotzios G, Michailakis S, Vayenas DV (2007) Aerobic biological treatment of olive mill wastewater by olive pulp bacteria. Int Biodeterior Biodegrad 60(4):209–214. doi:10.1016/j.ibiod.2007.03.003

    CAS  Google Scholar 

  • Umar M, Aziz HA, Yusoff MS (2010) Trends in the use of Fenton, electro-Fenton and photo-Fenton for the treatment of landfill leachate. Waste Manag 30(11):2113–2121. doi:10.1016/j.wasman.2010.07.003

    CAS  Google Scholar 

  • Un UT, Altay U, Koparal AS, Ogutveren UB (2008) Complete treatment of olive mill wastewaters by electrooxidation. Chem Eng J 139(3):445–452. doi:10.1016/j.cej.2007.08.009

    CAS  Google Scholar 

  • Vasudevan S, Lakshmi J, Sozhan G (2011) Optimization of electrocoagulation process for the simultaneous removal of mercury, lead, and nickel from contaminated water. Environ Sci Pollut Res Int 19(7):2734–2744. doi:10.1007/s11356-012-0773-8

    Google Scholar 

  • Vasudevan S, Lakshmi J, Sozhan G (2012) Studies on the removal of arsenate from water through electrocoagulation using direct and alternating current. Desalin Water Treat 48(1–3):163–173. doi:10.1080/19443994.2012.698809

    CAS  Google Scholar 

  • Verlicchi P, Galletti A, Petrovic M, Barceló D (2010) Hospital effluents as a source of emerging pollutants: an overview of micropollutants and sustainable treatment options. J Hydrol 389(3–4):416–428. doi:10.1016/j.jhydrol.2010.06.005

    CAS  Google Scholar 

  • Verlicchi P, Al Aukidy M, Galletti A, Petrovic M, Barcelo D (2012) Hospital effluent: investigation of the concentrations and distribution of pharmaceuticals and environmental risk assessment. Sci Total Environ 430:109–118. doi:10.1016/j.scitotenv.2012.04.055

    CAS  Google Scholar 

  • Vilaseca M, Gutiérrez M-C, López-Grimau V, López-Mesas M, Crespi M (2010) Biological treatment of a textile effluent after electrochemical oxidation of reactive dyes. Water Environ Res 82(2):176–182. doi:10.2175/106143009x447902

    CAS  Google Scholar 

  • Vymazal J (2009) The use constructed wetlands with horizontal sub-surface flow for various types of wastewater. Ecol Eng 35(1):1–17. doi:10.1016/j.ecoleng.2008.08.016

    Google Scholar 

  • Vymazal J (2010) Constructed wetlands for wastewater treatment. Water 2(3):530–549. doi:10.3390/w2030530

    CAS  Google Scholar 

  • Wang X (2012) Advanced oxidation processes for wastewater treatment: formation of hydroxyl radical and application. Crit Rev Environ Sci Technol 42(3):251–325. doi:10.1080/10643389.2010.507698

    Google Scholar 

  • Wang H, Chou K (2008) Removal of color from real dyeing wastewater by electro-Fenton technology using a three-dimensional graphite cathode. J Hazard Mater 152(2):601–606. doi:10.1016/j.jhazmat.2007.07.023

    CAS  Google Scholar 

  • Wang P, Lau IWC, Fang HHP (2001) Electrochemical oxidation of leachate pretreated in an upflow anaerobic sludge blanket reactor. Environ Technol 22(4):373–381. doi:10.1080/09593332208618266

    CAS  Google Scholar 

  • Wang K, Liu S, Zhang Q, He Y (2009) Pharmaceutical wastewater treatment by internal micro-electrolysis-coagulation, biological treatment and activated carbon adsorption. Environ Technol 30(13):1469–1474. doi:10.1080/09593330903229164

    Google Scholar 

  • Weissbrodt D, Kovalova L, Ort C, Pazhepurackel V, Moser R, Hollender J, Siegrist H, McArdell CS (2009) Mass flows of X-ray contrast media and cytostatics in hospital wastewater. Environ Sci Technol 43(13):4810–4817. doi:10.1021/es8036725

    CAS  Google Scholar 

  • Weissenbacher N, Lenz K, Mahnik S, Fuerhacker M (2009) Removal of selected trace pollutants from hospital wastewaters: the challenge of on-site treatment optimization. Technologies and Management for Sustainable Biosystems

  • Wen X, Ding H, Huang X, Liu R (2004) Treatment of hospital wastewater using a submerged membrane bioreactor. Process Biochem 39(11):1427–1431. doi:10.1016/s0032-9592(03)00277-2

    CAS  Google Scholar 

  • Wick A, Fink G, Joss A, Siegrist H, Ternes TA (2009) Fate of beta blockers and psycho-active drugs in conventional wastewater treatment. Water Res 43(4):1060–1074. doi:10.1016/j.watres.2008.11.031

    CAS  Google Scholar 

  • Xujie L, Liu R (2010) Treatment of azo dye-containing wastewater using integrated processes. In: Erkurt HA (ed) Biodegradation of Azo dyes, vol 9, The handbook of environmental chemistry. Springer, Berlin, pp 133–155. doi:10.1007/698_2009_47,#Springer‐Verlag

    Google Scholar 

  • Yu TH, Lin AY, Lateef SK, Lin CF, Yang PY (2009) Removal of antibiotics and non-steroidal anti-inflammatory drugs by extended sludge age biological process. Chemosphere 77(2):175–181. doi:10.1016/j.chemosphere.2009.07.049

    CAS  Google Scholar 

  • Yu TH, Lin AY, Panchangam SC, Hong PK, Yang PY, Lin CF (2011) Biodegradation and bio-sorption of antibiotics and non-steroidal anti-inflammatory drugs using immobilized cell process. Chemosphere 84(9):1216–1222. doi:10.1016/j.chemosphere.2011.05.045

    CAS  Google Scholar 

  • Zhang H, Zhang D, Zhou J (2006) Removal of COD from landfill leachate by electro-Fenton method. J Hazard Mater 135(1–3):106–111. doi:10.1016/j.jhazmat.2005.11.025

    CAS  Google Scholar 

  • Zhang H, Ran X, Wu X (2012) Electro-Fenton treatment of mature landfill leachate in a continuous flow reactor. J Hazard Mater 241:259–266. doi:10.1016/j.jhazmat.2012.09.040

    Google Scholar 

  • Zhu X, Ni J, Wei J, Xing X, Li H (2011a) Destination of organic pollutants during electrochemical oxidation of biologically-pretreated dye wastewater using boron-doped diamond anode. J Hazard Mater 189(1–2):127–133. doi:10.1016/j.jhazmat.2011.02.008

    CAS  Google Scholar 

  • Zhu X, Tian J, Liu R, Chen L (2011b) Optimization of Fenton and electro-Fenton oxidation of biologically treated coking wastewater using response surface methodology. Sep Purif Technol 81(3):444–450. doi:10.1016/j.seppur.2011.08.023

    CAS  Google Scholar 

Download references

Acknowledgments

Oleksandra Ganzenko thanks to European Commission for providing financial support under the grant agreement EPA no. 2010-0009 through the Erasmus Mundus Joint Doctorate Programme ETeCoS3 (Environmental Technologies for Contaminated Solids, Soils and Sediments).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet A. Oturan.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ganzenko, O., Huguenot, D., van Hullebusch, E.D. et al. Electrochemical advanced oxidation and biological processes for wastewater treatment: a review of the combined approaches. Environ Sci Pollut Res 21, 8493–8524 (2014). https://doi.org/10.1007/s11356-014-2770-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-2770-6

Keywords

Navigation