Skip to main content
Log in

Application of molecularly imprinted polymers in wastewater treatment: a review

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Molecularly imprinted polymers are synthetic polymers possessing specific cavities designed for target molecules. They are prepared by copolymerization of a cross-linking agent with the complex formed from a template and monomers that have functional groups specifically interacting with the template through covalent or noncovalent bonds. Subsequent removal of the imprint template leaves specific cavities whose shape, size, and functional groups are complementary to the template molecule. Because of their predetermined selectivity, molecularly imprinted polymers (MIPs) can be used as ideal materials in wastewater treatment. Especially, MIP-based composites offer a wide range of potentialities in wastewater treatment. This paper reviews the latest applications of MIPs in wastewater treatment, highlights the development of MIP-based composites in wastewater, and offers suggestions for future success in the field of MIPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Advincula RC (2011) Engineering molecularly imprinted polymer (MIP) materials: developments and challenges for sensing and separation technologies. Korean J Chem Eng 28(6):1313–1321

    CAS  Google Scholar 

  • Ahmad A, Rafatullah M, Sulaiman O et al (2009) Removal of Cu (II) and Pb (II) ions from aqueous solutions by adsorption on sawdust of Meranti wood. Desalination 247(1):636–646

    CAS  Google Scholar 

  • Aksu Z (2005) Application of biosorption for the removal of organic pollutants: a review. Process Biochem 40(3):997–1026

    CAS  Google Scholar 

  • Andersson LI, Paprica A, Arvidsson T (1997) A highly selective solid phase extraction sorbent for pre-concentration of sameridine made by molecular imprinting. Chromatographia 46(1–2):57–62

    CAS  Google Scholar 

  • Ansell RJ, Mosbach K (1998) Magnetic molecularly imprinted polymer beads for drug radioligand binding assay. Analyst 123(7):1611–1616

    CAS  Google Scholar 

  • Arshady R, Mosbach K (1981) Synthesis of substrate-selective polymers by host-guest polymerization. Makromol Chem 182:687–692

    CAS  Google Scholar 

  • Auriol M, Filali-Meknassi Y, Tyagi RD et al (2006) Endocrine disrupting compounds removal from wastewater, a new challenge. Process Biochem 41(3):525–539

    CAS  Google Scholar 

  • Beltran A, Caro E, Marcé RM et al (2007) Synthesis and application of a carbamazepine-imprinted polymer for solid-phase extraction from urine and wastewater. Anal Chim Acta 597(1):6–11

    CAS  Google Scholar 

  • Bergmann NM, Peppas NA (2008) Molecularly imprinted polymers with specific recognition for macromolecules and proteins. Prog Polym Sci 33(3):271–288

    CAS  Google Scholar 

  • Bossi A, Bonini F, Turner APF et al (2007) Molecularly imprinted polymers for the recognition of proteins: the state of the art. Biosens Bioelectron 22(6):1131–1137

    CAS  Google Scholar 

  • Brüggemann O (2001) Catalytically active polymers obtained by molecular imprinting and their application in chemical reaction engineering. Biomol Eng 18(1):1–7

    Google Scholar 

  • Bui BTS, Haupt K (2010) Molecularly imprinted polymers: synthetic receptors in bioanalysis. Anal Bioanal Chem 398(6):2481–2492

    CAS  Google Scholar 

  • Byun HS, Youn YN, Yun YH et al (2010) Selective separation of aspirin using molecularly imprinted polymers. Sep Purif Technol 74(1):144–153

    CAS  Google Scholar 

  • Cacho C, Turiel E, Pérez-Conde C (2009) Molecularly imprinted polymers: an analytical tool for the determination of benzimidazole compounds in water samples. Talanta 78(3):1029–1035

    CAS  Google Scholar 

  • Chen W, Han DK, Ahn KD et al (2002) Molecularly imprinted polymers having amidine and imidazole functional groups as an enzyme-mimetic catalyst for ester hydrolysis. Macromol Res 10(2):122–126

    CAS  Google Scholar 

  • Chen YP, Wang DN, Yin YM et al (2012) Quantum dots capped with dummy molecularly imprinted film as luminescent sensor for the determination of tetrabromobisphenol A in water and soils. J Agr Food Chem 60(42):10472–10479

    CAS  Google Scholar 

  • Chen HY, Zhang YQ, Gao B et al (2013) Fast determination of sulfonamides and their acetylated metabolites from environmental water based on magnetic molecularly imprinted polymers. Environ Sci Pollut R 20(12):8567–8578

    CAS  Google Scholar 

  • Chen HC, Kong J, Yuan DY et al (2014) Synthesis of surface molecularly imprinted nanoparticles for recognition of lysozyme using a metal coordination monomer. Biosens Bioelectron 53:5–11

    CAS  Google Scholar 

  • Chong MN, Jin B, Chow CWK et al (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44(10):2997–3027

    CAS  Google Scholar 

  • Cundy AB, Hopkinson L, Whitby RLD (2008) Use of iron-based technologies in contaminated land and groundwater remediation: a review. Sci Total Environ 400(1):42–51

    CAS  Google Scholar 

  • Dai CM, Geissen SU, Zhang YL et al (2011) Selective removal of diclofenac from contaminated water using molecularly imprinted polymer microspheres. Environ Pollut 159:1660–1666

  • Dai CM, Zhang J, Zhang YL et al (2012) Selective removal of acidic pharmaceuticals from contaminated lake water using multi-templates molecularly imprinted polymer. Chem Eng J 211:302–309

    Google Scholar 

  • Dai CM, Zhang J, Zhang YL et al (2013a) Application of molecularly imprinted polymers to selective removal of clofibric acid from water. PloS one 8(10):1–8

    Google Scholar 

  • Dai CM, Zhang J, Zhang YL et al (2013b) Removal of carbamazepine and clofibric acid from water using double templates–molecularly imprinted polymers. Environ Sci Pollut R 20(8):5492–5501

    CAS  Google Scholar 

  • Ferrer I, Lanza F, Tolokan A et al (2000) Selective trace enrichment of chlorotriazine pesticides from natural waters and sediment samples using terbuthylazine molecularly imprinted polymers. Anal Chem 72(16):3934–3941

    CAS  Google Scholar 

  • Foo KY, Hameed BH (2009) Utilization of biodiesel waste as a renewable resource for activated carbon: application to environmental problems. Renew Sust Energ Rev 13(9):2495–2504

    CAS  Google Scholar 

  • Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156(1):2–10

    CAS  Google Scholar 

  • Foo KY, Hameed BH (2011) The environmental applications of activated carbon/zeolite composite materials. Adv Colloid Interfac 162(1):22–28

    CAS  Google Scholar 

  • Fuchs Y, Soppera O, Haupt K (2012) Photopolymerization and photostructuring of molecularly imprinted polymers for sensor applications—A review. Anal Chim Acta 717:7–20

    CAS  Google Scholar 

  • Gao D, Zhang Z, Wu M et al (2007) A surface functional monomer-directing strategy for highly dense imprinting of TNT at surface of silica nanoparticles. J Am Chem Soc 129(25):7859–7866

    CAS  Google Scholar 

  • Gao B, Wang J, An F et al (2008) Molecular imprinted material prepared by novel surface imprinting technique for selective adsorption of pirimicarb. Polymer 49(5):1230–1238

    CAS  Google Scholar 

  • Gao RX, Kong X, Su FH et al (2010) Synthesis and evaluation of molecularly imprinted core–shell carbon nanotubes for the determination of triclosan in environmental water samples. J Chromatogr A 1217(52):8095–8102

    CAS  Google Scholar 

  • Gao RX, Su XQ, He XW et al (2011) Preparation and characterisation of core–shell CNTs@ MIPs nanocomposites and selective removal of estrone from water samples. Talanta 83(3):757–764

    CAS  Google Scholar 

  • Ge Y, Turner APF (2008) Too large to fit? Recent developments in macromolecular imprinting. Trends Biotechnol 26(4):218–224

    CAS  Google Scholar 

  • Ge SG, Lu JJ, Ge L et al (2011) Development of a novel deltamethrin sensor based on molecularly imprinted silica nanospheres embedded CdTe quantum dots. Spectrochim Acta A 79(5):1704–1709

    CAS  Google Scholar 

  • Gottschalk C, Libra JA, Saupe A (2009) Ozonation of water and waste water: A practical guide to understanding ozone and its applications. John Wiley & Sons, New York

    Google Scholar 

  • Guo HJ, Luo SL, Chen L et al (2010) Bioremediation of heavy metals by growing hyperaccumulaor endophytic bacterium Bacillus sp. L14. Bioresource Technol 101(22):8599–8605

    CAS  Google Scholar 

  • Guo WL, Hu W, Pan J et al (2011) Selective adsorption and separation of BPA from aqueous solution using novel molecularly imprinted polymers based on kaolinite/Fe3O4 composites. Chem Eng J 171(2):603–611

    CAS  Google Scholar 

  • Haupt K, Mosbach K (2000) Molecularly imprinted polymers and their use in biomimetic sensors. Chem Rev 100(7):2495–2504

    CAS  Google Scholar 

  • He CY, Long YY, Pan JL et al (2007) Application of molecularly imprinted polymers to solid-phase extraction of analytes from real samples. J Biochem Bioph Meth 70(2):133–150

    CAS  Google Scholar 

  • He CY, Long YY, Pan JL et al (2008) A method for coating colloidal particles with molecularly imprinted silica films. J Mater Chem 18(24):2849–2854

    CAS  Google Scholar 

  • Hu X, Hu Y, Li G (2007) Development of novel molecularly imprinted solid-phase microextraction fiber and its application for the determination of triazines in complicated samples coupled with high-performance liquid chromatography. J Chromatogr A 1147:1–9

    CAS  Google Scholar 

  • Huang SH, Chen DH (2009) Rapid removal of heavy metal cations and anions from aqueous solutions by an amino-functionalized magnetic nano-adsorbent. J Hazard Mater 163(1):174–179

    CAS  Google Scholar 

  • Huang DL, Zeng GM, Jiang XY et al (2006) Bioremediation of Pb-contaminated soil by incubating with Phanerochaete chrysosporium and straw. J Hazard Mater 134(1):268–276

    CAS  Google Scholar 

  • Javanbakht M, Eynollshi Fard S, Mohammadi A et al (2008) Molecularly imprinted polymer based potentiometric sensor for the detection of hydroxyzine in tablets and biological fluids. Anal Chim Acta 612:65–74

    CAS  Google Scholar 

  • Ji YS, Yin JJ, Xu ZG et al (2009) Preparation of magnetic molecularly imprinted polymer for rapid determination of bisphenol A in environmental water and milk samples. Anal Bioanal Chem 395(4):1125–1133

    CAS  Google Scholar 

  • Jing T, Wang J, Liu M et al (2014) Highly effective removal of 2, 4-dinitrophenolic from surface water and wastewater samples using hydrophilic molecularly imprinted polymers. Environ Sci Pollut R 21(2):1153–1162

    CAS  Google Scholar 

  • Kim Y, Jeon JB, Chang JY (2012) CdSe quantum dot-encapsulated molecularly imprinted mesoporous silica particles for fluorescent sensing of bisphenol A. J Mater Chem 22(45):24075–24080

    CAS  Google Scholar 

  • Kobya M, Demirbas E, Senturk E et al (2005) Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone. Bioresource Technol 96(13):1518–1521

    CAS  Google Scholar 

  • Kong X, Gao RX, He XW et al (2012) Synthesis and characterization of the core–shell magnetic molecularly imprinted polymers (Fe3O4@MIPs) adsorbents for effective extraction and determination of sulfonamides in the poultry feed. J Chromatogr A 1245:8–16

    CAS  Google Scholar 

  • Krupadam RJ, Khan MS, Wate SR (2010) Removal of probable human carcinogenic polycyclic aromatic hydrocarbons from contaminated water using molecularly imprinted polymer. Water Res 44(3):681–688

    CAS  Google Scholar 

  • Lai EPC, Maleki ZD, Wu SY (2010) Characterization of molecularly imprinted and nonimprinted polymer submicron particles specifically tailored for removal of trace 17β‐estradiol in water treatment. J Appl Polym Sci 116(3):1499–1508

    CAS  Google Scholar 

  • Lavignac N, Allender CJ, Brain KR (2004) Current status of molecularly imprinted polymers as alternatives to antibodies in sorbent assays. Anal Chim Acta 510(2):139–145

    CAS  Google Scholar 

  • Lee Y, Escher BI, Von Gunten U (2008) Efficient removal of estrogenic activity during oxidative treatment of waters containing steroid estrogens. Environ Sci Technol 42(17):6333–6339

    CAS  Google Scholar 

  • Li Y, Li X, Li YQ et al (2009) Selective removal of 2, 4-dichlorophenol from contaminated water using non-covalent imprinted microspheres. Environ Pollut 157(6):1879–1885

    CAS  Google Scholar 

  • Li Y, Li X, Chu J et al (2010) Synthesis of core-shell magnetic molecular imprinted polymer by the surface RAFT polymerization for the fast and selective removal of endocrine disrupting chemicals from aqueous solutions. Environ Pollut 158(6):2317–2323

    CAS  Google Scholar 

  • Li H, Xu WZ, Wang NW et al (2012) Synthesis of magnetic molecularly imprinted polymer particles for selective adsorption and separation of dibenzothiophene. Microchim Acta 179(1–2):123–130

    CAS  Google Scholar 

  • Lin ZK, Cheng WJ, Li YY et al (2012) A novel superparamagnetic surface molecularly imprinted nanoparticle adopting dummy template: an efficient solid-phase extraction adsorbent for bisphenol A. Anal Chim Acta 720:71–76

    CAS  Google Scholar 

  • Lin ZK, He QY, Wang LT et al (2013) Preparation of magnetic multi-functional molecularly imprinted polymer beads for determining environmental estrogens in water samples. J Hazard Mater 252:57–63

    Google Scholar 

  • Liu J, Wulff G (2008) Functional mimicry of carboxypeptidase A by a combination of transition state stabilization and a defined orientation of catalytic moieties in molecularly imprinted polymers. J Am Chem Soc 130(25):8044–8054

    CAS  Google Scholar 

  • Liu ZH, Huan SY, Jiang JH et al (2006) Molecularly imprinted TiO2 thin film using stable ground-state complex as template as applied to selective electrochemical determination of mercury. Talanta 68(4):1120–1125

    CAS  Google Scholar 

  • Liu JX, Chen H, Lin Z et al (2010) Preparation of surface imprinting polymer capped Mn-doped ZnS quantum dots and their application for chemiluminescence detection of 4-nitrophenol in tap water. Anal Chem 82(17):7380–7386

    CAS  Google Scholar 

  • Liu HL, Liu DR, Fang GZ et al (2013) A novel dual-function molecularly imprinted polymer on CdTe/ZnS quantum dots for highly selective and sensitive determination of ractopamine. Anal Chim Acta 762:76–82

    CAS  Google Scholar 

  • Liu CB, Song ZL, Pan JM et al (2014) A simple and sensitive surface molecularly imprinted polymers based fluorescence sensor for detection of λ-Cyhalothrin. Talanta 125:14–23

    CAS  Google Scholar 

  • Lu SL, Cheng GX, Pang X (2006a) Protein-imprinted soft-wet gel composite microspheres with magnetic susceptibility. II. Characteristics. J Appl Polym Sci 99(5):2401–2407

    CAS  Google Scholar 

  • Lu SL, Cheng GX, Zhang HG et al (2006b) Preparation and characteristics of Tryptophan‐imprinted Fe3O4/P (TRIM) composite microspheres with magnetic susceptibility by inverse emulsion–suspension polymerization. J Appl Polym Sci 99(6):3241–3250

    CAS  Google Scholar 

  • Luo XB, Zhan YC, Tu XM et al (2011a) Novel molecularly imprinted polymer using 1-(α-methyl acrylate)-3-methylimidazolium bromide as functional monomer for simultaneous extraction and determination of water-soluble acid dyes in wastewater and soft drink by solid phase extraction and high performance liquid chromatography. J Chromatogr A 1218(8):1115–1121

    CAS  Google Scholar 

  • Luo XB, Zhan YC, Huang YN et al (2011b) Removal of water-soluble acid dyes from water environment using a novel magnetic molecularly imprinted polymer. J Hazard Mater 187(1):274–282

    CAS  Google Scholar 

  • Ma J, Yuan LH, Ding MJ et al (2011) The study of core–shell molecularly imprinted polymers of 17β-estradiol on the surface of silica nanoparticles. Biosens Bioelectron 26(5):2791–2795

    CAS  Google Scholar 

  • Malik PK (2003) Use of activated carbons prepared from sawdust and rice-husk for adsorption of acid dyes: a case study of Acid Yellow 36. Dyes Pigments 56(3):239–249

    CAS  Google Scholar 

  • Malitesta C, Mazzotta E, Picca RA et al (2012) MIP sensors–the electrochemical approach. Anal Bioanal Chem 402(5):1827–1846

    CAS  Google Scholar 

  • Martín-Esteban A (2013) Molecularly-imprinted polymers as a versatile, highly selective tool in sample preparation. Trac-Trends Anal Chem 45:169–181

    Google Scholar 

  • Mayes AG, Mosbach K (1996) Molecularly imprinted polymer beads: suspension polymerization using a liquid perfluorocarbon as the dispersing phase. Anal Chem 68(21):3769–3774

    CAS  Google Scholar 

  • Mehdinia A, Baradaran Kayyal T, Jabbari A et al (2013) Magnetic molecularly imprinted nanoparticles based on grafting polymerization for selective detection of 4-nitrophenol in aqueous samples. J Chromatogr A 1283:82–88

    CAS  Google Scholar 

  • Meng Z, Chen W, Mulchandani A (2005) Removal of estrogenic pollutants from contaminated water using molecularly imprinted polymers. Environ Sci Technol 39(22):8958–8962

    CAS  Google Scholar 

  • Ng SM, Narayanaswamy R (2006) Fluorescence sensor using a molecularly imprinted polymer as a recognition receptor for the detection of aluminium ions in aqueous media. Analy Bioanal Chem 386(5):1235–1244

    CAS  Google Scholar 

  • Nicholls IA, Andersson HS, Golker K et al (2011) Rational design of biomimetic molecularly imprinted materials: theoretical and computational strategies for guiding nanoscale structured polymer development. Anal Bioanal Chem 400(6):1771–1786

    CAS  Google Scholar 

  • Oller I, Malato S, Sánchez-Pérez JA (2011) Combination of advanced oxidation processes and biological treatments for wastewater decontamination—a review. Sci Total Environ 409(20):4141–4166

    CAS  Google Scholar 

  • Onesios KM, Jim TY, Bouwer EJ (2009) Biodegradation and removal of pharmaceuticals and personal care products in treatment systems: a review. Biodegradation 20(4):441–466

    CAS  Google Scholar 

  • Ou JJ, Hu LH, Hu LG et al (2006) Determination of phenolic compounds in river water with on-line coupling bisphenol A imprinted monolithic precolumn with high performance liquid chromatography. Talanta 69(4):1001–1006

    CAS  Google Scholar 

  • Pan GQ, Zhang Y, Ma Y et al (2011a) Efficient one-pot synthesis of water-compatible molecularly imprinted polymer microspheres by facile RAFT precipitation polymerization. Angew Chem Int Edit 50(49):11731–11734

    CAS  Google Scholar 

  • Pan J, Xu LC, Dai JD et al (2011b) Magnetic molecularly imprinted polymers based on attapulgite/Fe3O4 particles for the selective recognition of 2, 4-dichlorophenol. Chem Eng J 174(1):68–75

    CAS  Google Scholar 

  • Pan J, Yao H, Xu LC et al (2011c) Selective recognition of 2, 4, 6-trichlorophenol by molecularly imprinted polymers based on magnetic halloysite nanotubes composites. J Phys Chem C 115(13):5440–5449

    CAS  Google Scholar 

  • Pauling L (1940) A Theory of the structure and process of formation of antibodies*. J Am Chem Soc 62(10):2643–2657

    CAS  Google Scholar 

  • Pérez-Moral N, Mayes AG (2004) Comparative study of imprinted polymer particles prepared by different polymerisation methods. Anal Chim Acta 504(1):15–21

    Google Scholar 

  • Piletska EV, Guerreiro AR, Romero-Guerra M et al (2008) Design of molecular imprinted polymers compatible with aqueous environment. Anal Chim Acta 607(1):54–60

    CAS  Google Scholar 

  • Polyakov MV (1931) Adsorption properties and structure of silica gel. Zhur Fiz Khim 2:799–805

    Google Scholar 

  • Poma A, Turner APF, Piletsky SA (2010) Advances in the manufacture of MIP nanoparticles. Trends Biotechnol 28(12):629–637

    CAS  Google Scholar 

  • Rafatullah M, Sulaiman O, Hashim R et al (2010) Adsorption of methylene blue on low-cost adsorbents: a review. J Hazard Mater 177(1):70–80

    CAS  Google Scholar 

  • Resmini M (2012) Molecularly imprinted polymers as biomimetic catalysts. Anal Bioanal Chem 402(10):3021–3026

    CAS  Google Scholar 

  • Reungoat J, Macova M, Escher BI et al (2010) Removal of micropollutants and reduction of biological activity in a full scale reclamation plant using ozonation and activated carbon filtration. Water Res 44(2):625–637

    CAS  Google Scholar 

  • Sambe H, Hoshina K, Haginaka J (2007) Molecularly imprinted polymers for triazine herbicides prepared by multi-step swelling and polymerization method: their application to the determination of methylthiotriazine herbicides in river water. J Chromatogr A 1152(1):130–137

    CAS  Google Scholar 

  • Sánchez-Barragán I, Karim K, Costa-Fernández JM et al (2007) A molecularly imprinted polymer for carbaryl determination in water. Sensor Actuat B-Chem 123(2):798–804

    Google Scholar 

  • Say R, Ersöz A, Türk H et al (2004) Selective separation and preconcentration of cyanide by a column packed with cyanide-imprinted polymeric microbeads. Sep Purif Technol 40(1):9–14

    CAS  Google Scholar 

  • Sellergren B (2000) Molecularly imprinted polymers: man-made mimics of antibodies and their application in analytical chemistry. Elsevier, Amsterdam

    Google Scholar 

  • Sharabi D, Paz Y (2010) Preferential photodegradation of contaminants by molecular imprinting on titanium dioxide. Appl Cata l B-Environ 95(1):169–178

    CAS  Google Scholar 

  • Shen XT, Zhu LH, Liu GX et al (2008) Enhanced photocatalytic degradation and selective removal of nitrophenols by using surface molecular imprinted titania. Environ Sci Technol 42(5):1687–1692

    CAS  Google Scholar 

  • Shen XT, Zhu LH, Wang N et al (2012) Molecular imprinting for removing highly toxic organic pollutants. Chem Commun 48(6):788–798

    CAS  Google Scholar 

  • Snyder SA, Wert EC, Rexing DJ et al (2006) Ozone oxidation of endocrine disruptors and pharmaceuticals in surface water and wastewater. Ozone-Sci Eng 28(6):445–460

    CAS  Google Scholar 

  • Snyder SA, Adham S, Redding AM et al (2007) Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals. Desalination 202(1):156–181

    CAS  Google Scholar 

  • Strikovsky A, Hradil J, Wulff G (2003) Catalytically active, molecularly imprinted polymers in bead form. React Funct Polym 54(1):49–61

    CAS  Google Scholar 

  • Sueyoshi Y, Fukushima C, Yoshikawa M (2010) Molecularly imprinted nanofiber membranes from cellulose acetate aimed for chiral separation. J Membrane Sci 357(1):90–97

    CAS  Google Scholar 

  • Sun H, Qiao F (2008) Recognition mechanism of water-compatible molecularly imprinted solid-phase extraction and determination of nine quinolones in urine by high performance liquid chromatography. J Chromatogr A 1212(1):1–9

    CAS  Google Scholar 

  • Sun WQ, Tan R, Zheng WG et al (2013) Molecularly imprinted polymer containing Fe (III) catalysts for specific substrate recognition. Chin J Catal 34(8):1589–1598

    CAS  Google Scholar 

  • Tamayo FG, Turiel E, Martín-Esteban A (2007) Molecularly imprinted polymers for solid-phase extraction and solid-phase microextraction: recent developments and future trends. J Chromatogr A 1152(1):32–40

    CAS  Google Scholar 

  • Tan F, Sun D, Gao JS et al (2013) Preparation of molecularly imprinted polymer nanoparticles for selective removal of fluoroquinolone antibiotics in aqueous solution. J Hazard Mater 244:750–757

    Google Scholar 

  • Tang HQ, Zhu LH, Yu C et al (2012) Selective photocatalysis mediated by magnetic molecularly imprinted polymers. Sep Purif Technol 95:165–171

    CAS  Google Scholar 

  • Tarley CRT, Kubota LT (2005) Molecularly-imprinted solid phase extraction of catechol from aqueous effluents for its selective determination by differential pulse voltammetry. Anal Chim Acta 548(1):11–19

    CAS  Google Scholar 

  • Ternes T, von Gunten U (2010) Editorial to special issue in water research: emerging contaminants in water. Water Res 44(2):351

    CAS  Google Scholar 

  • Tong AJ, Dong H, Li LD (2002) Molecular imprinting-based fluorescent chemosensor for histamine using zinc (II)–protoporphyrin as a functional monomer. Anal Chim Acta 466(1):31–37

    CAS  Google Scholar 

  • Turiel E, Martin-Esteban A (2004) Molecularly imprinted polymers: towards highly selective stationary phases in liquid chromatography and capillary electrophoresis. Anal Bioanal Chem 378(8):1876–1886

    CAS  Google Scholar 

  • Turiel E, Martín-Esteban A (2010) Molecularly imprinted polymers for sample preparation: a review. Anal Chim Acta 668(2):87–99

    CAS  Google Scholar 

  • Turkewitsch P, Wandelt B, Darling GD et al (1998) Fluorescent functional recognition sites through molecular imprinting. A polymer-based fluorescent chemosensor for aqueous cAMP. Anal Chem 70(10):2025–2030

    CAS  Google Scholar 

  • Van Tilborg GAF, Mulder WJM, Chin PTK et al (2006) Annexin A5-conjugated quantum dots with a paramagnetic lipidic coating for the multimodal detection of apoptotic cells. Bioconjugate Chem 17(4):865–868

    Google Scholar 

  • Vasapollo G, Sole RD, Mergola L et al (2011) Molecularly imprinted polymers: present and future prospective. Int J Mol Sci 12(9):5908–5945

    CAS  Google Scholar 

  • Vlatakis G, Andersson LI, Müller R et al (1993) Drug assay using antibody mimics made by molecular imprinting. Nature 361:645–647

    CAS  Google Scholar 

  • Wang HF, He Y, Ji TR et al (2009) Surface molecular imprinting on Mn-doped ZnS quantum dots for room-temperature phosphorescence optosensing of pentachlorophenol in water. Anal Chem 81(4):1615–1621

    CAS  Google Scholar 

  • Wang S, Li Y, Ding MJ et al (2011) Self-assembly molecularly imprinted polymers of 17β-estradiol on the surface of magnetic nanoparticles for selective separation and detection of estrogenic hormones in feeds. J Chromatogr B 879(25):2595–2600

    CAS  Google Scholar 

  • Wang H, Yuan XZ, Wu Y et al (2013) Graphene-based materials: fabrication, characterization and application for the decontamination of wastewater and wastegas and hydrogen storage/generation. Adv Colloid Interfac 195:19–40

    Google Scholar 

  • Watabe Y, Kubo T, Nishikawa T et al (2006) Fully automated liquid chromatography–mass spectrometry determination of 17β-estradiol in river water. J Chromatogr A 1120(1):252–259

    CAS  Google Scholar 

  • Wei FD, Liu XP, Zhai MJ et al (2013) Molecularly Imprinted Nanosilica Solid-Phase Extraction for Bisphenol A in Fish Samples. Food Anal Method 6(2):415–420

    Google Scholar 

  • Whitcombe MJ, Vulfson EN (2001) Imprinted polymers. Adv Mater 13(7):467–478

    Google Scholar 

  • Wulff G, Sarhan A (1972) Use of polymers with enzyme-analogous structures for resolution of racemates. Angew Chem Int Ed Engl 11:341

    CAS  Google Scholar 

  • Xia X, Lai EPC, Örmeci B (2013) Duo-molecularly imprinted polymer-coated magnetic particles for class-selective removal of endocrine-disrupting compounds from aqueous environment. Enviro Sci Pollut R 20(5):3331–3339

    CAS  Google Scholar 

  • Xu X, Zhu L, Chen L (2004) Separation and screening of compounds of biological origin using molecularly imprinted polymers. J Chromatogr B 804(1):61–69

    CAS  Google Scholar 

  • Xu ZX, Chen S, Huang W et al (2009) Study on an on-line molecularly imprinted solid-phase extraction coupled to high-performance liquid chromatography for separation and determination of trace estrone in environment. Anal Bioanal Chem 393(4):1273–1279

    CAS  Google Scholar 

  • Xu P, Zeng GM, Huang DL et al (2012) Use of iron oxide nanomaterials in wastewater treatment: a review. Sci Total Environ 424:1–10

    CAS  Google Scholar 

  • Xu GL, Yang LL, Zhong M et al (2013a) Selective recognition and electrochemical detection of p-nitrophenol based on a macroporous imprinted polymer containing gold nanoparticles. Microchim Acta 180:1461–1469

    CAS  Google Scholar 

  • Xu SF, Lu HZ, Li JH et al (2013b) Dummy molecularly imprinted polymers-capped CdTe quantum dots for the fluorescent sensing of 2, 4, 6-Trinitrotoluene. ACS Appl Mater Inter 5(16):8146–8154

    CAS  Google Scholar 

  • Xue JQ, Li DW, Qu LL et al (2013) Surface-imprinted core–shell Au nanoparticles for selective detection of bisphenol A based on surface-enhanced Raman scattering. Anal Chim Acta 777:57–62

    CAS  Google Scholar 

  • Yan SL, Gao ZX, Fang YJ et al (2007) Characterization and quality assessment of binding properties of malachite green molecularly imprinted polymers prepared by precipitation polymerization in acetonitrile. Dyes Pigments 74(3):572–577

    CAS  Google Scholar 

  • Yang WJ, Jiao FP, Zhou L et al (2013) Molecularly imprinted polymers coated on multi-walled carbon nanotubes through a simple indirect method for the determination of 2, 4-dichlorophenoxyacetic acid in environmental water. Appl Surf Sci 284:692–699

    CAS  Google Scholar 

  • Yin J, Meng Z, Du MJ et al (2010) Pseudo-template molecularly imprinted polymer for selective screening of trace β-lactam antibiotics in river and tap water. J Chromatogr A 1217(33):5420–5426

    CAS  Google Scholar 

  • Yin YM, Chen YP, Wang XF et al (2012) Dummy molecularly imprinted polymers on silica particles for selective solid-phase extraction of tetrabromobisphenol A from water samples. J Chromatogr A 1220:7–13

    CAS  Google Scholar 

  • Yoshimatsu K, Reimhult K, Krozer A et al (2007) Uniform molecularly imprinted microspheres and nanoparticles prepared by precipitation polymerization: the control of particle size suitable for different analytical applications. Anal Chim Acta 584(1):112–121

    CAS  Google Scholar 

  • Yu CM, Gou LL, Zhou XH et al (2011) Chitosan–Fe3O4 nanocomposite based electrochemical sensors for the determination of bisphenol A. Electrochim Acta 56(25):9056–9063

    CAS  Google Scholar 

  • Zeng GM, Huang DL, Huang GH et al (2007) Composting of lead-contaminated solid waste with inocula of white-rot fungus. Bioresource Technol 98(2):320–326

    CAS  Google Scholar 

  • Zhan J, Fang GZ, Yan Z et al (2013) Preparation of a semicovalent, molecularly surface imprinted polymer for the rapid determination of trace acid orange II in food and environmental samples. Anal Bioanal Chem 405(19):6353–6363

    CAS  Google Scholar 

  • Zhang W, He XW, Chen Y et al (2012) Molecularly imprinted polymer anchored on the surface of denatured bovine serum albumin modified CdTe quantum dots as fluorescent artificial receptor for recognition of target protein. Biosens Bioelectron 31(1):84–89

    Google Scholar 

  • Zhang WL, Li Y, Wang Q et al (2013) Performance evaluation and application of surface-molecular-imprinted polymer-modified TiO2 nanotubes for the removal of estrogenic chemicals from secondary effluents. Environ Sci Pollut R 20(3):1431–1440

    CAS  Google Scholar 

  • Zhao WH, Sheng N, Zhu R et al (2010) Preparation of dummy template imprinted polymers at surface of silica microparticles for the selective extraction of trace bisphenol A from water samples. J Hazard Mater 179(1–3):223–229

    CAS  Google Scholar 

  • Zhao YY, Ma YX, Li H et al (2011) Composite QDs@ MIP nanospheres for specific recognition and direct fluorescent quantification of pesticides in aqueous media. Anal Chem 84(1):386–395

    Google Scholar 

  • Zheng C, Huang YP, Liu ZS (2013) Synthesis and theoretical study of molecularly imprinted monoliths for HPLC. Anal Bioanal Chem 405(7):2147–2161

    CAS  Google Scholar 

  • Zhongbo Z, Hu J (2008) Selective removal of estrogenic compounds by molecular imprinted polymer (MIP). Water Res 42(15):4101–4108

    CAS  Google Scholar 

  • Zhou Y, Qu ZB, Zeng YB et al (2014) A novel composite of graphene quantum dots and molecularly imprinted polymer for fluorescent detection of paranitrophenol. Biosens Bioelectron 52:317–323

    CAS  Google Scholar 

  • Zhu LL, Cao YH, Cao GQ (2013) Preparation and application of core-shell magnetic imprinted nanoparticles for bisphenol A. Chin J Anal Chem 41(11):1724–1728

    CAS  Google Scholar 

Download references

Acknowledgments

The study was financially supported by the Program for the National Natural Science Foundation of China (51039001, 51278176, 51408206), the Research Fund for the Doctoral Program of Higher Education of China (20100161110012), the Fundamental Research Funds for the Central Universities, Hunan University Fund for Multidisciplinary Developing (531107040762), the Program for New Century Excellent Talents in University (NCET-13-0186).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan-Lian Huang.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, DL., Wang, RZ., Liu, YG. et al. Application of molecularly imprinted polymers in wastewater treatment: a review. Environ Sci Pollut Res 22, 963–977 (2015). https://doi.org/10.1007/s11356-014-3599-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3599-8

Keywords

Navigation