Skip to main content

Advertisement

Log in

Determination of trace metal baseline values in Posidonia oceanica, Cystoseira sp., and other marine environmental biomonitors: a quality control method for a study in South Tyrrhenian coastal areas

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In this study, we investigated Cd, Cr, Cu, Pb, and Zn in the seagrass Posidonia oceanica (L.) Delile leaves and in the brown algae Cystoseira sp. sampled along a 280-km transect in the Tyrrhenian Sea, from the Ustica to Linosa Islands (Sicily, Italy) with the aim to determine their control charts (baseline levels). By applying the Johnson’s (Biometrika 36:149–175, 1949) probabilistic method, we determined the metal concentration overlap ranges in a group of five biomonitors. Here, we propose the use of the indexes of bioaccumulation with respect to the lowest (Li) and the highest (L i) extreme values of the overlap metal concentration ranges. These indexes allow the identification of the most opportune organism (or a suite of them) to better managing particular environmental conditions. Posidonia leaves have generally high L i indexes for Cd, Cu, Pb, and Zn, and this suggests its use as biomonitor for baseline marine areas. Our results confirm the high aptitude of Patella as a good biomonitor for Cd levels in seawater. From this study, Ustica resulted with higher levels of Cd, Cu, Pb, and Zn than the other Sicilian Islands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

S L :

Log-normal distribution

S U :

Unbounded distribution

S B :

Bounded distribution

S N :

Normal distribution

s.s.:

Sampling stations

References

  • Amiard JC, Amiard-Triquet C, Barka S, Pellerin J, Rainbow PS (2006) Metallothioneins in aquatic invertebrates: their role in metal detoxification and their use as biomarkers. Aquat Toxicol 76:160–202

    Article  CAS  Google Scholar 

  • Campanella L, Conti ME, Cubadda F, Sucapane C (2001) Trace metals in seagrass, algae and molluscs from uncontaminated area in the Mediterranean. Environ Pollut 111:117–126

    Article  CAS  Google Scholar 

  • Chou YM, Polansky AMMRL (1998) Transforming non normal data to normality in statistical process control. J Qual Technol 30:2–10

    Google Scholar 

  • Conti ME (Ed.) (2008) Biological monitoring: theory and applications. Bioindicators and biomarkers for environmental quality and human exposure assessment. The sustainable world 17. WIT Press, Southampton

  • Conti ME, Finoia MG (2010) Metals in molluscs and algae: a north–south Tyrrhenian Sea baseline. J Hazard Mater 181:388–392

    Article  CAS  Google Scholar 

  • Conti ME, Tudino MB, Muse JO, Cecchetti GF (2002) Biomonitoring of heavy metals and their species in the marine environment: the contribution of atomic absorption spectroscopy and inductively coupled plasma spectroscopy. Res Trends Appl Spectrosc 4:295–324

    CAS  Google Scholar 

  • Conti ME, Iacobucci M, Cecchetti G (2007a) A biomonitoring study: trace metals in seagrass, algae and molluscs in a marine reference ecosystem (southern Tyrrhenian Sea). Int J Environ Pollut 29:308–332

    Article  CAS  Google Scholar 

  • Conti ME, Iacobucci M, Cucina D, Mecozzi M (2007b) Multivariate statistical methods applied to biomonitoring studies. Int J Environ Pollut 29:333–343

    Article  CAS  Google Scholar 

  • Conti ME, Bocca B, Iacobucci M, Finoia MG, Mecozzi M, Pino A, Alimonti A (2010) Baseline trace metals in seagrass, algae, and mollusks in a southern Tyrrhenian ecosystem (Linosa Island, Sicily). Arch Environ Contam Toxicol 58:79–95

    Article  CAS  Google Scholar 

  • Czechowski F, Golonka I, Jezierski A (2004) Organic matter transformation in the environment investigated by quantitative electron paramagnetic resonance (EPR) spectroscopy: studies on lignins. Spectrochim Acta A 60:1387–1394

    Article  Google Scholar 

  • Davies MS, Cliffe EJ (2000) Adsorption of metals in seawater to Limpet (Patella vulgata) pedal mucus. Bull Environ Contam Toxicol 64:228–234

    Article  CAS  Google Scholar 

  • Davis TA, Volesky B, Mucci A (2003) A review of the biochemistry of heavy metal biosorption by brown algae. Water Res 37:4311–4330

    Article  CAS  Google Scholar 

  • Deng L, Su Y, Su H, Wang X, Zhu X (2007) Sorption and desorption of lead (II) from wastewater by green algae Cladophora fascicularis. J Hazard Mater 143:220–225

    Article  CAS  Google Scholar 

  • Ferrat L, Pergent-Martini C, Roméo M (2003) Assessment of the use of biomarkers in aquatic plants for the evaluation of environmental quality: application to seagrasses. Aquat Toxicol 65:187–204

    Article  CAS  Google Scholar 

  • Giovanardi F, Finoia MG, Russo S, Amori M, Di Lorenzo B (2006) Coastal waters monitoring data: frequency distributions of the principal water quality variables. J Limnol 65:65–82

    Article  Google Scholar 

  • Gonzales-Davila M, Millero FJ (1989) The adsorption of copper to chitin in seawater. Geochim Cosmochim Ac 54:761–768

    Article  Google Scholar 

  • Gosselin M, Bouquegneau JM, Lefèbvre F, Lepoint G, Pergent G, Pergent-Martini C, Gobert S (2006) Trace metal concentrations in Posidonia oceanica of North Corsica (northwestern Mediterranean Sea): use as a biological monitor? BMC Ecol 6:12

    Article  Google Scholar 

  • Johnson NL (1949) System of frequency curves generated by methods of translation. Biometrika 36:149–175

    Article  CAS  Google Scholar 

  • Lafabrie C, Pergent G, Kantin R, Pergent-Martini C, Gonzalez JL (2007) Trace metals assessment in water, sediment, mussel and seagrass species—validation of the use of Posidonia oceanica as a metal biomonitor. Chemosphere 68:2033–2039

    Article  CAS  Google Scholar 

  • Lewis NG, Yamamoto E (1990) Lignin: occurrence, biogenesis and biodegradation. Annu Rev Plant Physiol Plant Mol Biol 41:455–496

    Article  CAS  Google Scholar 

  • Markert BA, Breure AM, Zechmeister HG (2003) Bioindicators & biomonitors—principles, concepts and applications. Trace metals and other contaminants in the environment. Elsevier, Oxford

    Google Scholar 

  • Mecozzi M, Pietroletti M, Conti ME (2008) The complex mechanisms of marine mucilage formation by spectroscopic investigation of the structural characteristics of natural and synthetic mucilage samples. Mar Chem 112:38–52

    Article  CAS  Google Scholar 

  • Mecozzi M, Pietroletti M, Gallo V, Conti ME (2009) Formation of incubated marine mucilages investigated by FTIR and UV–VIS spectroscopy and supported by two-dimensional correlation analysis. Mar Chem 116:18–35

    Article  CAS  Google Scholar 

  • Miller JN, Miller JC (2005) Statistics and chemometrics for analytical chemistry, 5th edn. Pearson Prentice Hall, Essex

    Google Scholar 

  • O’Leary C, Breen J (1997) Metal levels in seven species of mollusc and in seaweeds from the Shannon estuary. Biol Environ 97B:121–132

    Google Scholar 

  • Pan J, Lin R, Ma L (2000) A review of heavy metal adsorption by marine algae. Chin J Oceanol Limnol 18:260–264

    Article  CAS  Google Scholar 

  • Pergent-Martini C, Pergent G (2000) Marine phanerogams as a tool in the evaluation of marine trace-metal contamination: an example from the Mediterranean. Int J Environ Pollut 13:126–147

    Article  CAS  Google Scholar 

  • Pergent-Martini C, Leoni V, Pasqualini V, Ardizzone GD, Balestri E, Bedini R, Belluscio A, Belsher T, Borg J, Boudouresque CF, Boumaza S, Bouquegneau JM, Buia MC, Calvo S, Cebrian J, Charbonnel E, Cienlli F, Cossu A, Di Maida G, Dural B, Francour P, Gobert S, Lepoint G, Meinesz A, Molenaar H, Mansour HM, Panayotidis P, Peirano A, Pergent G, Piazzi L, Pirrotta M, Relini G, Romero J, Sanchez-Lizaso JL, Semroud R, Shembri P, Shili A, Tomasello A, Velimirov B (2005) Descriptors of Posidonia oceanica meadows: use and application. Ecol Indi 5:213–230

    Article  Google Scholar 

  • Richir J, Luy N, Lepoint G, Rozet E, Alvera Azcarate A, Gobert S (2013) Experimental in situ exposure of the seagrass Posidonia oceanica (L.) Delile to 15 trace elements. Aquat Toxicol 140–141:157–173

    Article  Google Scholar 

  • Riedl R (1991) Fauna e flora del Mediterraneo. Franco Muzzio edn, Padua, Italy

  • Romera E, González F, Ballester A, Blázquez ML, Muñoz JA (2007) Comparative study of biosorption of heavy metals using different types of algae. Bioresour Technol 98:3344–3353

    Article  CAS  Google Scholar 

  • Saravanan A, Brindha V, Krishnan S (2011) Characteristic study of the marine algae Sargassum sp. on metal adsorption. Am J Appl Sci 8–7:691–694

    Article  Google Scholar 

  • Siegel S, Castellan NJ (1988) Nonparametric statistics for the behavioral sciences, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  • Simkiss K, Mason AZ (1984) Cellular responses of molluscan tissues to environmental metals. Mar Environ Res 14:103–118

    Article  CAS  Google Scholar 

  • Slifker JF, Shapiro SS (1980) The Johnson system: selection and parameter estimation. Technometrics 22:239–246

    Article  Google Scholar 

  • Trujillo-Ortiz AR, Castro-Perez A (2007) AnDartest: Anderson-Darling test for assessing normality of a sample data. http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=14807. Accessed 5 September 2014

  • Volterra L, Conti ME (2000) Algae as biomarkers, bioaccumulators and toxin producers. Int J Environ Pollut 13:92–125

    Article  CAS  Google Scholar 

  • Wheeler B (2009) SuppDists: supplementary distributions. R package version 1:1–8. Available at http://CRAN.R-project.org/package=SuppDists

  • Wright DA (1995) Trace metal and major ion interactions in aquatic animals. Mar Pollut Bull 31:8–18

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by project C26A12L85N 2012, Sapienza, University of Rome, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Enrique Conti.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 913 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Conti, M.E., Mecozzi, M. & Finoia, M.G. Determination of trace metal baseline values in Posidonia oceanica, Cystoseira sp., and other marine environmental biomonitors: a quality control method for a study in South Tyrrhenian coastal areas. Environ Sci Pollut Res 22, 3640–3651 (2015). https://doi.org/10.1007/s11356-014-3603-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3603-3

Keywords

Navigation