Skip to main content
Log in

Analysis of genetic and epigenetic effects of maize seeds in response to heavy metal (Zn) stress

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Conditions of environmental stress are known to lead genetic and epigenetic variability in plants. DNA methylation is one of the important epigenetic mechanisms and plays a critical role in epigenetic control of gene expression. Thus, the aim of the study was to investigate the alteration of genome methylation induced by zinc stress by using coupled restriction enzyme digestion-random amplification (CRED-RA) technique in maize (Zea mays L.) seedlings. In addition, to determine the effect of zinc on mitotic activity and phytohormone level, high-pressure liquid chromatography (HPLC) and mitotic index analysis were utilized. According to the results, mitotic index decreased in all concentrations of zinc except for 5 mM dose and chromosome aberrations such as c-mitosis, stickiness, and anaphase bridges were determined. It was also observed that increasing concentrations of zinc caused an increase in methylation patterns and decrease in gibberellic acid (GA), zeatin (ZA), and indole acetic acid (IAA) levels in contrast to abscisic acid (ABA) level. Especially increasing of ABA levels under zinc stress may be a part of the defense system against heavy metal accumulation in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Atıcı O, Agar G, Battal P (2005) Changes in phytohormone contents in chickpea seeds germinating under lead or zinc stress. Biol Plant 49(2):215–222

    Article  Google Scholar 

  • Aydin SS, Gokce E, Buyuk I, Aras S (2012) Characterization of stress induced by copper and zinc on cucumber (Cucumis sativus L.) seedlings by means of molecular and population parameters. Mutat Res 746:49–55

    Article  Google Scholar 

  • Bai Z, Harvey LM, McNeil B (2003) Oxidative stress in submerged cultures of fungi. Crit Rev Biotechnol 23:267–302

    Article  CAS  Google Scholar 

  • Cai Q, Guy CL, Moore GA (1996) Detection of cytosine methylation and mapping of a gene influencing cytosine methylation in the genome of Citrus. Genome 39:235–242

    Article  CAS  Google Scholar 

  • Cakmak I, Marschner H, Bangert F (1989) Effect of zinc nutritional status on growth, protein metabolism and levels of indole-3-acetic acid and other phytohormones in bean (Phaseolus vulgaris L.). J Exp Bot 40:404–412

    Article  Google Scholar 

  • Cheng TF, Choudhuri S, Muldoon-Jacobs K (2012) Epigenetic targets of some toxicologically relevant metals. J Appl Toxicol 32:643–653

    Article  CAS  Google Scholar 

  • Demchenko NP, Kalimova IB, Demchenko KN (2005) Effect of nickel on growth, proliferation, and differentiation of root cells in Triticum aestivum seedlings. Russ J Plant Physiol 52(2):220–228

    Article  CAS  Google Scholar 

  • El-Ghamery AA, El-Kholy MA, El-Yousser A (2003) Evaluation of cytological effects of Zn2+ in relation to germination and root growth of Nigella sativa L. and Triticum aestivum L. Mutat Res 537:29–41

    Article  CAS  Google Scholar 

  • Erturk FA, Nardemir G, Ay H, Arslan E, Agar G (2013) Determination of genotoxic effects of boron and zinc on Zea mays L. by using protein and RAPD analyses. Toxicol Ind Health. doi:10.1177/0748233713485888

    Google Scholar 

  • Erturk FA, Agar G, Arslan E, Nardemir G, Sahin Z (2014) Determination of genomic instability and DNA methylation effects of Cr on maize (Zea mays L.) using RAPD and CRED-RA analysis. Acta Physiol Plant 36:1529–1537

    Article  CAS  Google Scholar 

  • Fujioka S, Sakurai A, Yamaguchi I, Murofushi N, Takahashi N, Kaihara S, Takimoto A, Cleland CF (1986) Flowering and endogenous levels of plant hormones in Lemna species. Plant Cell Physiol 271:927–1304

  • Ge CL, Yang XY, Liu XN, Sun H, Luo SS, Wang ZG (2012) Effect of heavy metal on levels of methylation in DNA of rice and wheat. J Plant Physiol Mol Biol 28:363–368

    Google Scholar 

  • Hoekenga OA, Muszynski MG, Cone KC (2000) Developmental pattern of chromatin structure and DNA methylation responsible for epigenetic expression of maize regulatory gene. Genetics 155:1889–1902

    CAS  Google Scholar 

  • Ishikawa S, Ae N, Yano M (2005) Chromosomal regions with quantitative trait loci controlling cadmium concentration in brown rice (Oryza sativa). New Phytol 168:345–350

  • Jain R, Srivastava S, Solomon S, Shrivastava AK, Chandra A (2010) Impact of excess zinc on growth parameters, cell division, nutrient accumulation, photosynthetic pigments and oxidative stress of sugarcane (Saccharum spp.). Acta Physiol Plant 32:979–986

    Article  CAS  Google Scholar 

  • Kozhevnikova AD, Seregin IV, Bystrova EI, Belyaeva AI, Kataeva MN, Ivanov VB (2009) The effects of lead, nickel, and strontium nitrates on cell division and elongation in maize roots. Russ J Plant Physiol 56(2):242–250

    Article  CAS  Google Scholar 

  • Ku HM, Tan CW, Su YS, Chiu CY, Chen CT, Jan FJ (2012) The effect of water deficit and excess copper on proline metabolism in Nicotiana benthamiana. Biol Plant 56(2):337–343

    Article  CAS  Google Scholar 

  • Kuraishi S, Tasaki K, Sakurai N, Sadatoku K (1991) Changes in levels of cytokinins in etiolated squash seedlings after illumination. Plant Cell Physiol 32(5):585–591

    CAS  Google Scholar 

  • Labra M, Vannini C, Sala F, Bracale M (2002) Methylation changes in specific sequences in response to water deficit. Plant Biosyst 136(3):269–276

    Article  Google Scholar 

  • Labra M, Grassi F, Imazio S, Di Fabio T, Citterio S, Sgorbati S, Agradi E (2004) Genetic and DNA-methylation changes induced by potassium dichromate in Brassica napus L. Chemosphere 54(8):1049–1058

    Article  CAS  Google Scholar 

  • Liu W, Li P, Qi X, Zhou Q, Sun T, Yang Y (2005) DNA changes in barley (Hordeum vulgare) seedlings induced by cadmium pollution using RAPD analysis. Chemosphere 61:158–167

    Article  CAS  Google Scholar 

  • Lu Y, Rong T, Cao M (2008) Analysis of DNA methylation in different maize tissues. J Gen Genomics 35:41–48

    Article  Google Scholar 

  • Ma TH, Xu Z, Xu C, McConnell H, Rabago EV, Arreola GA, Zhang H (1995) The improved Allium/Vicia root tip micronucleus assay for clastogenicity of environmental pollutants. Mutat Res 334(2):185–195

    Article  CAS  Google Scholar 

  • Messing SAJ, Gabelli SB, Echeverria I, Vogel JT, Guan JC, Tan BC, Klee HJ, McCarty DR, Amzel LM (2010) Structural insights into maize Viviparous14, a key enzyme in the biosynthesis of the phytohormone abscisic acid. Plant Cell 22:2970–2980

    Article  CAS  Google Scholar 

  • Migid HM, Azab YA, Ibrahim WM (2007) Use of plant genotoxicity bioassay for the evaluation of efficiency of algal biofilters in bioremediation of toxic industrial effluent. Ecotoxicol Environ Saf 66:57–64

    Article  Google Scholar 

  • Monni S, Uhling C, Hansen E, Magel E (2001) Ecophysiological responses of Empetrum nigrum to heavy metal pollution. Environ Pollut 112:121–129

    Article  CAS  Google Scholar 

  • Munzuroğlu Ö, Zengin FK, Yahyagil Z (2008) The abscisic acid levels of wheat (Triticum aestivum L. cv. Çakmak 79) seeds that were germinated under heavy metal (Hg++, Cd++, Cu ++) stress. G U J Sci 21(1):1–7

    Google Scholar 

  • Ozfidan C, Turkan I, Sekmen AH (2011) Abscisic acid-regulated responses of aba2-1 under osmotic stress: the abscisic acid-inducible antioxidant defence system and reactive oxygen species production. Plant Biol 1–10

  • Peleg Z, Blumwald E (2011) Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol 14:290–295

    Article  CAS  Google Scholar 

  • Portis E, Acquadro A, Comino C, Lanteri S (2004) Analysis of DNA methylation during germination pepper (Capsicum annuum L.) seeds using methylation-sensitive amplification polymorphism (MSAP). Plant Sci 166:169–178

    Article  CAS  Google Scholar 

  • Pospisilova J (2003) Interaction of cytokinins and abscisic acid during regulation of stomatal opening in bean leaves. Photosynthetica 41(1):49–56

    Article  CAS  Google Scholar 

  • Prasad MNV (2004) Heavy metal stress in plants: from biomolecules to ecosystems, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  • Santner A, Estelle M (2010) The ubiquitin–proteasome system regulates plant hormone signaling. Plant J 61:1029–1040

    Article  CAS  Google Scholar 

  • Seo M, Koshiba T (2002) Complex regulation of ABA biosynthesis in plants. Trends Plant Sci 7:141–148

    Article  Google Scholar 

  • Sharif R, Thomasa P, Zalewskib P, Michael F (2012) The role of zinc in genomic stability. Mutat Res 733:111–121

    Article  CAS  Google Scholar 

  • Sharma SS, Kumar V (2002) Responses of wild type and abscisic acid mutants of Arabidopsis thaliana to cadmium. J Plant Physiol 159:1323–1327

    Article  CAS  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 26. doi:10.1155/2012/217037

  • Steward N, Ito M, Yamaguchi Y, Koizumi N, Sano H (2002) Periodic DNA methylation in maize nucleosomes and demethylation by environmental stress. J Biol Chem 277:37741–37746

    Article  CAS  Google Scholar 

  • Tan M (2010) Analysis of DNA methylation of maize in response to osmotic and salt stress based on methylation-sensitive amplified polymorphism. Plant Physiol Biochem 48:21–26

    Article  CAS  Google Scholar 

  • Taspınar MS, Agar G, Yildirim N, Sunar S, Aksakal O, Bozari S (2009) Evaluation of selenium effect on cadmium genotoxicity in Vicia faba using RAPD. J Food Agric Environ 7:857–860

    Google Scholar 

  • Taylor IB, Burbidge A, Thompson AJ (2000) Control of abscisic acid synthesis. J Exp Bot 51(350):1563–1574

    Article  CAS  Google Scholar 

  • Turker M, Demirel K, Uzun Y (2005) Determination of phytohormones level in some dried and fresh macrofungi taxa. Phyton 45:145–157

    CAS  Google Scholar 

  • Turker M, Battal P, Agar G, Gulluce M, Sahin F, Erez ME, Yildirim N (2008) Allelopathic effects of plants extracts on physiological and cytological processes during maize seed germination. Allelopathy J 21(2):273–286

    Google Scholar 

  • Tuteja N, Ahmad P, Panda BB, Tuteja R (2009) Genotoxic stress in plants: shedding light on DNA damage, repair and DNA repair helicases. Mutat Res 681:134–149

    Article  CAS  Google Scholar 

  • Unyayar S, Topcuoglu SF, Unyayar A (1996) A modified method for extraction and identification of indole-3-acetic acid (IAA), gibberellic acid (GA3), abscisic acid (ABA) and zeatin produced by Phaneroochaete crysosporium ME446. Bulg J Plant Physiol 22:105–110

    CAS  Google Scholar 

  • Xue-Lin L, Zhong-Xu L, Yi-Chun N, Xiao-Ping G, Xian-Long Z (2009) Methylation-sensitive amplification polymorphism of epigenetic changes in cotton under salt stress. Acta Agron Sin 35(4):588–596

    Google Scholar 

  • Youngson NA, Whitelaw E (2008) Transgenerational epigenetic effects. Genomics Hum Genet 9:233–257

  • Zengin FK, Munzuroglu O (2004) The effects of heavy metals (Hg++, Cd++, Cu++ and Pb++) on cytokinin content in bean (Phaseolus vulgaris) seedlings. Res East Anatolia Reg 2(2):48–54

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guleray Agar.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erturk, F.A., Agar, G., Arslan, E. et al. Analysis of genetic and epigenetic effects of maize seeds in response to heavy metal (Zn) stress. Environ Sci Pollut Res 22, 10291–10297 (2015). https://doi.org/10.1007/s11356-014-3886-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3886-4

Keywords

Navigation