Skip to main content

Advertisement

Log in

Phytoremediation of salt-affected soils: a review of processes, applicability, and the impact of climate change

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Soil salinization affects 1–10 billion ha worldwide, threatening the agricultural production needed to feed the ever increasing world population. Phytoremediation may be a cost-effective option for the remediation of these soils. This review analyzes the viability of using phytoremediation for salt-affected soils and explores the remedial mechanisms involved. In addition, it specifically addresses the debate over plant indirect (via soil cation exchange enhancement) or direct (via uptake) role in salt remediation. Analysis of experimental data for electrical conductivity (ECe) + sodium adsorption ratio (SAR) reduction and plant salt uptake showed a similar removal efficiency between salt phytoremediation and other treatment options, with the added potential for phytoextraction under non-leaching conditions. A focus is also given on recent studies that indicate potential pathways for increased salt phytoextraction, co-treatment with other contaminants, and phytoremediation applicability for salt flow control. Finally, this work also details the predicted effects of climate change on soil salinization and on treatment options. The synergetic effects of extreme climate events and salinization are a challenging obstacle for future phytoremediation applications, which will require additional and multi-disciplinary research efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abd Elrahman SH, Mostafa MAM, Taha TA, Elsharawy MAO, Eid MA (2012) Effect of different amendments on soil chemical characteristics, grain yield and elemental content of wheat plants grown on salt-affected soil irrigated with low quality water. Ann Agric Sci 57:175–182. doi:10.1016/j.aoas.2012.09.001

    Google Scholar 

  • Abdel Latef AAH, Chaoxing H (2011) Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress. Sci Hortic-Amsterdam 127:228–233. doi:10.1016/j.scienta.2010.09.020

    CAS  Google Scholar 

  • Abideen Z, Ansari R, Khan MA (2011) Halophytes: potential source of ligno-cellulosic biomass for ethanol production. Biomass Bioenergy 35:1818–1822. doi:10.1016/j.biombioe.2011.01.023

    CAS  Google Scholar 

  • Ahmad S, Ghafoor A, Akhtar ME, Khan MZ (2011) Ionic displacement and reclamation of saline-sodic soils using chemical amendments and crop rotation. Land Degrad Dev 24:170–178. doi:10.1002/ldr.1117

    Google Scholar 

  • Akhter J, Murray R, Mahmood K, Malik KA, Ahmed S (2004) Improvement of degraded physical properties of a saline-sodic soil by reclamation with kallar grass (Leptochloa fusca). Plant Soil 258:207–216. doi:10.1023/B:PLSO.0000016551.08880.6b

    CAS  Google Scholar 

  • Al Khamisi SA, Prathapar SA, Ahmed M (2013) Conjunctive use of reclaimed water and groundwater in crop rotations. Agric Water Manage 116:228–234. doi:10.1016/j.agwat.2012.07.013

    Google Scholar 

  • Al-Tabbaa A, Smith S, Munck CD, Dixon T, Doak J, Garvin S, Raco M (2008) Climate change, pollutant linkage and brownfield regeneration. In: Sustainable Brownfield regeneration. Blackwell Publishing Ltd, pp 263–314. doi:10.1002/9780470692110.ch11

  • Ammari T, Tahboub AB, Saoub HM, Hattar BI, Al-Zubi YA (2008) Salt removal efficiency as influenced by phyto-amelioration of salt-affected soils. J Food Agric Environ 6:456–460

    CAS  Google Scholar 

  • Ammari TG, Al-Hiary Si, Al-Dabbas M (2011) Reclamation of saline calcareous soils using vegetative bioremediation as a potential approach. Arch Agron Soil Sci:1–9 doi:10.1080/03650340.2011.629813

  • Anawar HM (2013) Impact of climate change on acid mine drainage generation and contaminant transport in water ecosystems of semi-arid and arid mining areas. Phys Chem Earth 58–60:13–21. doi:10.1016/j.pce.2013.04.002

    Google Scholar 

  • Apse MP, Blumwald E (2007) Na+ transport in plants. FEBS Lett 581:2247–2254. doi:10.1016/j.febslet.2007.04.014

    CAS  Google Scholar 

  • Aslam R, Bostan N, Nabgha-e A, Maria M, Safdar W (2011) A critical review on halophytes: salt tolerant plants. J Med Plants Res 5:7108–7118. doi:10.5897/JMPRx11.009

    CAS  Google Scholar 

  • Aydemir S, Sünger H (2011) Bioreclamation effect and growth of a leguminous forage plant (Lotus corniculatus) in calcareous saline sodic soil. Afr J Biotechnol 10:115571–115577

    Google Scholar 

  • Barrett-Lennard EG, Shabala SN (2013) The waterlogging/salinity interaction in higher plants revisited—focusing on the hypoxia-induced disturbance to K+ homeostasis. Funct Plant Biol 40:872–882. doi:10.1071/FP12235

    CAS  Google Scholar 

  • Bhavanath J, Avinash M, Anupama J, Mukul J (2013) Developing transgenic Jatropha using the SbNHX1 gene from an extreme halophyte for cultivation in saline wasteland. PLoS ONE 8 doi:10.1371/journal.pone.0071136

  • Boonsaner M, Hawker DW (2012) Remediation of saline soil from shrimp farms by three different plants including soybean (Glycine max (L.) Merr.). J Environ Sci Health Part A Environ Sci Eng 47:558–564. doi:10.1080/10934529.2012.650559

    CAS  Google Scholar 

  • Bradford MA, Watts BW, Davies CA (2010) Thermal adaptation of heterotrophic soil respiration in laboratory microcosms. Glob Chang Biol 16:1576–1588. doi:10.1111/j.1365-2486.2009.02040.x

    Google Scholar 

  • Calheiros CSC, Quitério PVB, Silva G, Crispim LFC, Brix H, Moura SC, Castro PML (2012) Use of constructed wetland systems with Arundo and Sarcocornia for polishing high salinity tannery wastewater. J Environ Manag 95:66–71. doi:10.1016/j.jenvman.2011.10.003

    CAS  Google Scholar 

  • Caravaca F, Alguacil MM, Torres P, Roldán A (2005) Plant type mediates rhizospheric microbial activities and soil aggregation in a semiarid Mediterranean salt marsh. Geoderma 124:375–382. doi:10.1016/j.geoderma.2004.05.010

    CAS  Google Scholar 

  • Carter JL, Colmer TD, Veneklaas EJ (2006) Variable tolerance of wetland tree species to combined salinity and waterlogging is related to regulation of ion uptake and production of organic solutes. New Phytol 169:123–134. doi:10.1111/j.1469-8137.2005.01552.x

    CAS  Google Scholar 

  • Cartmill AD, Valdez-Aguilar LA, Cartmill DL, Volder A, Alarcón A (2012) Arbuscular mycorrhizal colonization does not alleviate sodium chloride-salinity stress in vinca [Catharanthus Roseus (l.) g. don]. J Plant Nutr 36:164–178. doi:10.1080/01904167.2012.738275

    Google Scholar 

  • Chang P, Gerhardt KE, Huang X-D, Yu X-M, Glick BR, Gerwing PD, Greenberg BM (2013) Plant growth-promoting bacteria facilitate the growth of barley and oats in salt-impacted soil: implications for phytoremediation of saline soils. Int J Phytorem 16:1133–1147. doi:10.1080/15226514.2013.821447

    Google Scholar 

  • Chondraki S, Tzerakis C, Tzortzakis N (2012) Influence of sodium chloride and calcium foliar spray on hydroponically grown parsley in nutrient film technique system. J Plant Nutr 35:1457–1467. doi:10.1080/01904167.2012.689906

    CAS  Google Scholar 

  • Crosbie RS, Wilson B, Hughes JD, McCulloch C, King WM (2008) A comparison of the water use of tree belts and pasture in recharge and discharge zones in a saline catchment in the Central West of NSW, Australia. Agric Water Manag 95:211–223. doi:10.1016/j.agwat.2007.10.015

    Google Scholar 

  • Daily M (2005) Investigation and remediation of salt (chloride)-impacted soil and ground water. Bur Environ Remediat Remedial Sect:8

  • de-Bashan LE, Hernandez J-P, Bashan Y (2012) The potential contribution of plant growth-promoting bacteria to reduce environmental degradation—a comprehensive evaluation. Appl Soil Ecol 61:171–189. doi:10.1016/j.apsoil.2011.09.003

    Google Scholar 

  • Diamantis VI, Voudrias EA (2008) Laboratory and pilot studies on reclamation of a salt-affected alluvial soil. Environ Geol 54:643–651. doi:10.1007/s00254-007-0835-2

    CAS  Google Scholar 

  • Dodd IC, Pérez-Alfocea F (2012) Microbial amelioration of crop salinity stress. J Exp Bot 63:3415–3428. doi:10.1093/jxb/ers033

    CAS  Google Scholar 

  • Dragovich D, Dominis M (2008) Dryland salinity and rainfall patterns: a preliminary investigation in central west New South Wales (Australia). Land Degrad Dev 19:564–573. doi:10.1002/ldr.866

    Google Scholar 

  • Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104:1263–1280. doi:10.1093/aob/mcp251

    CAS  Google Scholar 

  • Gamalero E, Berta G, Glick B (2009) The use of microorganisms to facilitate the growth of plants in saline soils. In: Khan MS, Zaidi A, Musarrat J (eds) Microbial strategies for crop improvement. Springer, Berlin Heidelberg, pp 1–22. doi:10.1007/978-3-642-01979-1_1

    Google Scholar 

  • Ghafoor A, Murtaza G, Rehman MZ, Saifullah SM (2012) Reclamation and salt leaching efficiency for tile drained saline-sodic soil using marginal quality water for irrigating rice and wheat crops. Land Degrad Dev 23:1–9. doi:10.1002/ldr.1033

    Google Scholar 

  • Gharaibeh MA, Eltaif NI, Albalasmeh AA (2011) Reclamation of highly calcareous saline sodic soil using Atriplex halimus and by-product gypsum. Int J Phytorem 13:873–883

    CAS  Google Scholar 

  • Glenn EP, Anday T, Chaturvedi R, Martinez-Garcia R et al (2013) Three halophytes for saline-water agriculture: an oilseed, a forage and a grain crop. Environ Exp Bot 92:110–121. doi:10.1016/j.envexpbot.2012.05.002

    Google Scholar 

  • Goswami D, Dhandhukia P, Patel P, Thakker JN (2014) Screening of PGPR from saline desert of Kutch: growth promotion in Arachis hypogea by Bacillus licheniformis A2. Microbiol Res 169:66–75. doi:10.1016/j.micres.2013.07.004

    CAS  Google Scholar 

  • Goulet RR, Lalonde JD, Munger C, Dupuis S, Dumont-Frenette G, Prémont S, Campbell PGC (2005) Phytoremediation of effluents from aluminum smelters: a study of Al retention in mesocosms containing aquatic plants. Water Res 39:2291–2300. doi:10.1016/j.watres.2005.04.029

    CAS  Google Scholar 

  • Greenberg B, Huang X, Gerhardt K, Glick BR (2007) Field and laboratory tests of a multi-process phytoremediation system for decontamination of petroleum and salt impacted soils. In: Proceedings of the Ninth International In Situ and On-Site Remediation Symposium. Batelle Press

  • Guittonny-Philippe A, Masotti V, Höhener P, Boudenne J-L, Viglione J, Laffont-Schwob I (2014) Constructed wetlands to reduce metal pollution from industrial catchments in aquatic Mediterranean ecosystems: a review to overcome obstacles and suggest potential solutions. Environ Int 64:1–16. doi:10.1016/j.envint.2013.11.016

    Google Scholar 

  • Hamzenejad Taghlidabad R, Khodaverdiloo H, Wenzel WW, Rezapour S (2014) Growth and Cd accumulation of two halophytes and a non-halophyte grown in a non-saline and a saline soil with different Cd levels. Chem Ecol 30:743–754. doi:10.1080/02757540.2014.894988

    Google Scholar 

  • Hansi M, Weidenhamer JD, Sinkkonen A (2014) Plant growth responses to inorganic environmental contaminants are density-dependent: experiments with copper sulfate, barley and lettuce. Environ Pollut 184:443–448. doi:10.1016/j.envpol.2013.09.027

    CAS  Google Scholar 

  • Harris JA, Hobbs RJ, Higgs E, Aronson J (2006) Ecological restoration and global climate change. Restor Ecol 14:170–176. doi:10.1111/j.1526-100X.2006.00136.x

    Google Scholar 

  • Hasegawa PM (2013) Sodium (Na+) homeostasis and salt tolerance of plants. Environ Exp Bot 92:19–31. doi:10.1016/j.envexpbot.2013.03.001

    CAS  Google Scholar 

  • Herouvim E, Akratos CS, Tekerlekopoulou A, Vayenas DV (2011) Treatment of olive mill wastewater in pilot-scale vertical flow constructed wetlands. Ecol Eng 37:931–939. doi:10.1016/j.ecoleng.2011.01.018

    Google Scholar 

  • Horneck D, Ellsworth J, Hopkins B, Sullivan D, Stevens R (2007) Managing salt-affected soils for crop production. Pac Northwest Ext:21

  • Hou D, Al-Tabbaa A (2014) Sustainability: a new imperative in contaminated land remediation. Environ Sci Pol 39:25–34. doi:10.1016/j.envsci.2014.02.003

    Google Scholar 

  • Hou D, Al-Tabbaa A, Chen H, Mamic I (2014) Factor analysis and structural equation modelling of sustainable behaviour in contaminated land remediation. J Clean Prod. doi:10.1016/j.jclepro.2014.01.054

    Google Scholar 

  • Hue NV, Campbell S, Li QX, Lee CR, Fong J (2002) Reducing salinity and organic contaminants in the Pearl Harbor dredged material using soil amendments and plants. Remediat J 12:45–63. doi:10.1002/rem.10045

    Google Scholar 

  • Inal A, Gunes A (2008) Interspecific root interactions and rhizosphere effects on salt ions and nutrient uptake between mixed grown peanut/maize and peanut/barley in original saline–sodic–boron toxic soil. J Plant Physiol 165:490–503. doi:10.1016/j.jplph.2007.01.016

    CAS  Google Scholar 

  • IPCC (1996) Land Degradation and Desertification. In: Watson RT, Zinyowera MC, Moss RH, Dokken DJ (eds) Climate Change 1995: impacts, adaptations and mitigation of climate change: scientific-technical analyses. Contribution of Working Group II to the Second Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, pp 171–190

  • Jardine A, Speldewinde P, Carver S, Weinstein P (2007) Dryland salinity and ecosystem distress syndrome: human health implications. EcoHealth 4:10–17. doi:10.1007/s10393-006-0078-9

    Google Scholar 

  • Jesus JM, Calheiros CSC, Castro PML, Borges MT (2014) Feasibility of Typha latifolia for high salinity effluent treatment in constructed wetlands for integration in resource management systems. Int J Phytorem 16:334–346. doi:10.1080/15226514.2013.773284

    CAS  Google Scholar 

  • Jha A, Joshi M, Yadav N, Agarwal P, Jha B (2011) Cloning and characterization of the Salicornia brachiata Na+/H+ antiporter gene SbNHX1 and its expression by abiotic stress. Mol Biol Rep 38:1965–1973. doi:10.1007/s11033-010-0318-5

    CAS  Google Scholar 

  • Jordahl JL, Madison MF, Smesrud JK, Emond HM, Motte MQ (2004) Waste management using trees: wastewater, leachate, and groundwater irrigation. In: Phytoremediation. John Wiley & Sons, Inc., pp 717-751. doi:10.1002/047127304X.ch23

  • Kan E, Lamers JPA, Eshchanov R, Khamzina A (2008) Small-scale farmers’ perceptions and knowledge of tree intercropping systems in the khorezm region of Uzbekistan. For Trees Livelihoods 18:355–372. doi:10.1080/14728028.2008.9752643

    Google Scholar 

  • Kaur R, Malik R, Paul M (2007) Long-term effects of various crop rotations for managing salt-affected soils through a field scale decision support system—a case study. Soil Use Manag 23:52–62. doi:10.1111/j.1475-2743.2006.00055.x

    Google Scholar 

  • Kiliç CC, Kukul YS, Anaç D (2008) Performance of purslane (Portulaca oleracea L.) as a salt-removing crop. Agric Water Manag 95:854–858. doi:10.1016/j.agwat.2008.01.019

    Google Scholar 

  • Krishnamoorthy R, Kim K, Kim C, Sa T (2014) Changes of arbuscular mycorrhizal traits and community structure with respect to soil salinity in a coastal reclamation land. Soil Biol Biochem 72:1–10. doi:10.1016/j.soilbio.2014.01.017

    CAS  Google Scholar 

  • Kurdali F, Janat M, Khalifa K (2003) Growth and nitrogen fixation and uptake in Dhaincha/Sorghum intercropping system under saline and non‐saline conditions. Commun Soil Sci Plant Anal 34:2471–2494. doi:10.1081/CSS-120024780

    CAS  Google Scholar 

  • Laudicina V, Hurtado M, Badalucco L, Delgado A, Palazzolo E, Panno M (2009) Soil chemical and biochemical properties of a salt-marsh alluvial Spanish area after long-term reclamation. Biol Fertil Soils 45:691–700. doi:10.1007/s00374-009-0380-0

    CAS  Google Scholar 

  • Liang H-M, Lin T-H, Chiou J-M, Yeh K-C (2009) Model evaluation of the phytoextraction potential of heavy metal hyperaccumulators and non-hyperaccumulators. Environ Pollut 157:1945–1952. doi:10.1016/j.envpol.2008.11.052

    CAS  Google Scholar 

  • Lymbery AJ, Doupé RG, Bennett T, Starcevich MR (2006) Efficacy of a subsurface-flow wetland using the estuarine sedge Juncus kraussii to treat effluent from inland saline aquaculture. Aquac Eng 34:1–7

    Google Scholar 

  • Mandare AB, Ambast SK, Tyagi NK, Singh J (2008) On-farm water management in saline groundwater area under scarce canal water supply condition in the Northwest India. Agric Water Manag 95:516–526. doi:10.1016/j.agwat.2007.12.010

    Google Scholar 

  • Manousaki E, Kalogerakis N (2009) Phytoextraction of Pb and Cd by the Mediterranean saltbush (Atriplex halimus L.): metal uptake in relation to salinity. Environ Sci Pollut Res 16:844–854. doi:10.1007/s11356-009-0224-3

    CAS  Google Scholar 

  • Manousaki E, Kalogerakis N (2011a) Halophytes—an emerging trend in phytoremediation. Int J Phytorem 13:959–969. doi:10.1080/15226514.2010.532241

    CAS  Google Scholar 

  • Manousaki E, Kalogerakis N (2011b) Halophytes present new opportunities in phytoremediation of heavy metals and saline soils. Int Eng Chem Res 50:656–660. doi:10.1021/ie100270x

    CAS  Google Scholar 

  • Manousaki E, Kadukova J, Papadantonakis N, Kalogerakis N (2008) Phytoextraction and phytoexcretion of Cd by the leaves of Tamarix smyrnensis growing on contaminated non-saline and saline soils. Environ Res 106:326–332. doi:10.1016/j.envres.2007.04.004

    CAS  Google Scholar 

  • Minhas PS, Dubey SK, Sharma DR (2007) Effects on soil and paddy–wheat crops irrigated with waters containing residual alkalinity. Soil Use Manag 23:254–261. doi:10.1111/j.1475-2743.2007.00090.x

    Google Scholar 

  • Neves MA, Miguel MG, Marques C, Panagopoulos T, Beltrão JC (2007) Tetragonia tetragonioides—a potential salt removing species. Response to the combined effects of salts and calcium. Proc of the 3rd IASME/WSEAS Int Conf on Energy, Environment, Ecosystems and Sustainable Development:60–64

  • Patra DD, Prasad A, Anwar M, Singh D et al (2002) Performance of lemongrass cultivars intercropped with chamomile under sodic soils with different levels of gypsum application. Commun Soil Sci Plant Anal 33:1707–1721. doi:10.1081/CSS-120004817

    CAS  Google Scholar 

  • Pitman M, Läuchli A (2004) Global impact of salinity and agricultural ecosystems. In: Läuchli A, Lüttge U (eds) Salinity: environment–plants–molecules. Springer, Netherlands, pp 3–20. doi:10.1007/0-306-48155-3_1

    Google Scholar 

  • Porcel R, Aroca R, Ruiz-Lozano J (2012) Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agron Sustain Dev 32:181–200. doi:10.1007/s13593-011-0029-x

    CAS  Google Scholar 

  • Qadir M, Oster J (2002) Vegetative bioremediation of calcareous sodic soils: history, mechanisms, and evaluation. Irrig Sci 21:91–101. doi:10.1007/s00271-001-0055-6

    Google Scholar 

  • Qadir M, Schubert S (2002) Degradation processes and nutrient constraints in sodic soils. Land Degrad Dev 13:275–294. doi:10.1002/ldr.504

    Google Scholar 

  • Qadir M, Qureshi RH, Ahmad N (1997) Nutrient availability in a calcareous saline-sodic soil during vegetative bioremediation. Arid Soil Res Rehabil 11:343–352

    CAS  Google Scholar 

  • Qadir M, Ghafoor A, Murtaza G (2000) Amelioration strategies for saline soils: a review. Land Degrad Dev 11:501–521. doi:10.1002/1099-145x(200011/12)11:6<501::aid-ldr405>3.0.co;2-s

    Google Scholar 

  • Qadir M, Schubert S, Ghafoor A, Murtaza G (2001) Amelioration strategies for sodic soils: a review. Land Degrad Dev 12:357–386. doi:10.1002/ldr.458

    Google Scholar 

  • Qadir M, Qureshi RH, Ahmad N (2002) Amelioration of calcareous saline sodic soils through phytoremediation and chemical strategies. Soil Use Manag 18:381–385. doi:10.1111/j.1475-2743.2002.tb00256.x

    Google Scholar 

  • Qadir M, Boers TM, Schubert S, Ghafoor A, Murtaza G (2003) Agricultural water management in water-starved countries: challenges and opportunities. Agric Water Manag 62:165–185. doi:10.1016/s0378-3774(03)00146-x

    Google Scholar 

  • Qadir M, Noble AD, Oster JD, Schubert S, Ghafoor A (2005) Driving forces for sodium removal during phytoremediation of calcareous sodic and saline–sodic soils: a review. Soil Use Manag 21:173–180. doi:10.1111/j.1475-2743.2005.tb00122.x

    Google Scholar 

  • Qadir M, Oster JD, Schubert S, Murtaza G (2006) Vegetative bioremediation of sodic and saline-sodic soils for productivity enhancement and environment conservation. In: Ozturk M, Waisel Y, Khan MA, Gork G (eds) Biosaline agriculture and salinity tolerance in plants. Birkhauser Verlag Ag, Basel, pp 137–146. doi:10.1007/3-7643-7610-4_15

    Google Scholar 

  • Qadir M, Qureshi AS, Cheraghi SAM (2008) Extent and characterisation of salt-affected soils in Iran and strategies for their amelioration and management. Land Degrad Dev 19:214–227. doi:10.1002/ldr.818

    Google Scholar 

  • Qin P, R-m H, M-x Z, H-s Z, L-s F, Seliskar DM, Gallagher JL (2015) Ecological engineering through the biosecure introduction of Kosteletzkya virginica (seashore mallow) to saline lands in China: A review of 20 years of activity. Ecol Eng 74:174–186. doi:10.1016/j.ecoleng.2014.10.021

    Google Scholar 

  • Qureshi RH, Aslam M, Akhtar J (2003) Productivity enhancement in the salt-affected lands of joint Satiana pilot project area of Pakistan. J Crop Prod 7:277–297. doi:10.1300/J144v07n01_10

    Google Scholar 

  • Rabhi M, Hafsi C, Lakhdar A, Haji S et al (2009) Evaluation of the capacity of three halophytes to desalinize their rhizosphere as grown on saline soils under nonleaching conditions. Afr J Ecol 47:463–468. doi:10.1111/j.1365-2028.2008.00989.x

    Google Scholar 

  • Rabhi M, Ferchichi S, Jouini J, Hamrouni M et al (2010) Phytodesalination of a salt-affected soil with the halophyte Sesuvium portulacastrum L. to arrange in advance the requirements for the successful growth of a glycophytic crop. Bioresour Technol 101:6822–6828. doi:10.1016/j.biortech.2010.03.097

    CAS  Google Scholar 

  • Rajagopal D, Agarwal P, Tyagi W, Singla-Pareek S, Reddy MK, Sopory SK (2007) Pennisetum glaucum Na+/H+ antiporter confers high level of salinity tolerance in transgenic Brassica juncea. Mol Breeding 19:137–151. doi:10.1007/s11032-006-9052-z

    CAS  Google Scholar 

  • Rajkumar M, Prasad MNV, Swaminathan S, Freitas H (2013) Climate change driven plant–metal–microbe interactions. Environ Int 53:74–86. doi:10.1016/j.envint.2012.12.009

    CAS  Google Scholar 

  • Rasouli F, Kiani Pouya A, Karimian N (2013) Wheat yield and physico-chemical properties of a sodic soil from semi-arid area of Iran as affected by applied gypsum. Geoderma 193–194:246–255. doi:10.1016/j.geoderma.2012.10.001

    Google Scholar 

  • Ravindran KC, Venkatesan K, Balakrishnan V, Chellappan KP, Balasubramanian T (2007) Restoration of saline land by halophytes for Indian soils. Soil Biol Biochem 39:2661–2664. doi:10.1016/j.soilbio.2007.02.005

    CAS  Google Scholar 

  • Ritzema HP, Satyanarayana TV, Raman S, Boonstra J (2008) Subsurface drainage to combat waterlogging and salinity in irrigated lands in India: lessons learned in farmers’ fields. Agric Water Manag 95:179–189. doi:10.1016/j.agwat.2007.09.012

    Google Scholar 

  • Rodríguez-Suárez JA, Soto B, Perez R, Diaz-Fierros F (2011) Influence of Eucalyptus globulus plantation growth on water table levels and low flows in a small catchment. J Hydrol 396:321–326. doi:10.1016/j.jhydrol.2010.11.027

    Google Scholar 

  • Rohr JR, Johnson P, Hickey CW, Helm RC, Fritz A, Brasfield S (2013) Implications of global climate change for natural resource damage assessment, restoration, and rehabilitation. Environ Toxicol Chem 32:93–101. doi:10.1002/etc.2036

    CAS  Google Scholar 

  • Ruan C-J, da Silva JAT, Mopper S, Qin P, Lutts S (2010) Halophyte improvement for a salinized world. Crir Rev Plant Sci 29:329–359. doi:10.1080/07352689.2010.524517

    CAS  Google Scholar 

  • Rueda-Puente E, García-Hernández J, Preciado-Rangel P et al (2007) Germination of Salicornia bigelovii ecotypes under stressing conditions of temperature and salinity and ameliorative effects of plant growth-promoting bacteria. J Agron Crop Sci 193:167–176. doi:10.1111/j.1439-037X.2007.00254.x

    Google Scholar 

  • Ruiz-Lozano JM, Porcel R, Azcón C, Aroca R (2012) Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies. J Exp Bot 63:4033–4044. doi:10.1093/jxb/ers126

    CAS  Google Scholar 

  • Sahin U, Eroğlu S, Sahin F (2011) Microbial application with gypsum increases the saturated hydraulic conductivity of saline–sodic soils. Appl Soil Ecol 48:247–250. doi:10.1016/j.apsoil.2011.04.001

    Google Scholar 

  • Saqib M, Zörb C, Rengel Z, Schubert S (2005) The expression of the endogenous vacuolar Na+/H+ antiporters in roots and shoots correlates positively with the salt resistance of wheat (Triticum aestivum L.). Plant Sci 169:959–965. doi:10.1016/j.plantsci.2005.07.001

    CAS  Google Scholar 

  • Satpathy D, Reddy MV (2013) Phytoextraction of Cd, Pb, Zn, Cu and mn by Indian mustard (Brassica juncea L.) grown on loamy soil amended with heavy metal contaminated municipal solid waste compost. Appl Ecol Environ Res 11:661–679

    Google Scholar 

  • Schofield RV, Kirkby MJ (2003) Application of salinization indicators and initial development of potential global soil salinization scenario under climatic change. Glob Biogeochem Cycles 17:1078. doi:10.1029/2002GB001935

    Google Scholar 

  • Setia R, Gottschalk P, Smith P, Marschner P, Baldock J, Setia D, Smith J (2013) Soil salinity decreases global soil organic carbon stocks. Sci Total Environ 465:267–272. doi:10.1016/j.scitotenv.2012.08.028

    CAS  Google Scholar 

  • Shekhawat VPS, Kumar A, Neumann K-H (2006) Bio-reclamation of secondary salinized soils using halophytes. Biosaline agriculture and salinity tolerance in plants. In: Öztürk M, Waisel Y, Khan MA, Görk G (eds) Birkhäuser Basel, pp 147–154. doi:10.1007/3-7643-7610-4_16

  • Shelef O, Gross A, Rachmilevitch S (2012) The use of Bassia indica for salt phytoremediation in constructed wetlands. Water Res 46:3967–3976. doi:10.1016/j.watres.2012.05.020

    CAS  Google Scholar 

  • Siddikee MA, Glick BR, Chauhan PS, Wj Y, Sa T (2011) Enhancement of growth and salt tolerance of red pepper seedlings (Capsicum annuum L.) by regulating stress ethylene synthesis with halotolerant bacteria containing 1-aminocyclopropane-1-carboxylic acid deaminase activity. Plant Physiol Biochem 49:427–434. doi:10.1016/j.plaphy.2011.01.015

    CAS  Google Scholar 

  • Smesrud JK, Duvendack GD, Obereiner JM, Jordahl JL, Madison MF (2011) Practical salinity management for leachate irrigation to poplar trees. Int J Phytorem 14:26–46. doi:10.1080/15226514.2011.607868

    Google Scholar 

  • Stirzaker RJ, Cook FJ, Knight JH (1999) Where to plant trees on cropping land for control of dryland salinity: some approximate solutions. Agric Water Manag 39:115–133. doi:10.1016/S0378-3774(98)00074-2

    Google Scholar 

  • Suer P, Andersson-Sköld Y (2011) Biofuel or excavation?—life cycle assessment (LCA) of soil remediation options. Biomass Bioenergy 35:969–981

    CAS  Google Scholar 

  • Sultana N, Ikeda T, Kashem MA (2001) Effect of foliar spray of nutrient solutions on photosynthesis, dry matter accumulation and yield in seawater-stressed rice. Environ Exp Bot 46:129–140. doi:10.1016/S0098-8472(01)00090-9

    CAS  Google Scholar 

  • Szabolcs I (1974) Salt affected soils in Europe. Martinus Nijhoff, Research Institute for Soil Science and Agricultural Chemistry of the Hungarian Academy of Sciences

    Google Scholar 

  • Szabolcs I (1990) Chapter 6 Impact of Climatic Change on Soil Attributes: Influence on salinization and alkalinization. In: H.W. Scharpenseel MS, Ayoub A (eds) Developments in soil science, vol 20. Elsevier, pp 61–69. doi:10.1016/S0166-2481(08)70482-3

  • Tipirdamaz R, Gagneul D, Duhazé C, Aïnouche A, Monnier C, Özkum D, Larher F (2006) Clustering of halophytes from an inland salt marsh in Turkey according to their ability to accumulate sodium and nitrogenous osmolytes. Environ Exp Bot 57:139–153. doi:10.1016/j.envexpbot.2005.05.007

    CAS  Google Scholar 

  • Tóth G, Luca M, Ezio R (2008) Threats to soil quality in Europe EUR 23438—Scientific and Technical Research series Luxembourg: Office for Official Publications of the European Communities:61–74

  • Van den Berge J, Naudts K, Janssens IA, Ceulemans R, Nijs I (2011) Does the stress tolerance of mixed grassland communities change in a future climate? A test with heavy metal stress (zinc pollution). Environ Pollut 159:3294–3301. doi:10.1016/j.envpol.2011.08.050

    Google Scholar 

  • Van-Camp L, Bujarrabal B, Gentile A-R, Jones RJA, Montanarella L, Olazabal C, Selvaradjou S-K (2004) Reports of the Technical Working Groups established under the thematic strategy for soil protection EUR 21319 EN/2, 872 pp Office for Official Publications of the European Communities, Luxembourg:192

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223. doi:10.1016/j.envexpbot.2007.05.011

    Google Scholar 

  • Walker DJ, Lutts S, Sánchez-García M, Correal E (2013) Atriplex halimus L.: its biology and uses. J Arid Environ. doi:10.1016/j.jaridenv.2013.09.004

    Google Scholar 

  • Wang Y-C, Ko C-H, Chang F-C, Chen P-Y et al (2011) Bioenergy production potential for aboveground biomass from a subtropical constructed wetland. Biomass Bioenergy 35:50–58

    CAS  Google Scholar 

  • Wicke B, Smeets E, Dornburg V, Vashev B, Gaiser T, Turkenburg W, Faaij A (2011) The global technical and economic potential of bioenergy from salt-affected soils. Energy Environ Sci 4:2669–2681. doi:10.1039/c1ee01029h

    Google Scholar 

  • Wong VNL, Dalal RC, Greene RSB (2009) Carbon dynamics of sodic and saline soils following gypsum and organic material additions: a laboratory incubation. Appl Soil Ecol 41:29–40. doi:10.1016/j.apsoil.2008.08.006

    Google Scholar 

  • Yensen NP, Biel KY (2006) Soil remediation via salt-conduction and the hypotheses of halosynthesis and photoprotection ecophysiology of high salinity tolerant plants. In: Khan MA, Weber DJ (eds), vol 40. Tasks for vegetation science 34. Springer Netherlands, pp 313–344. doi:10.1007/1-4020-4018-0_21

  • Zalesny RS, Bauer EO (2007) Evaluation of Populus and Salix continuously irrigated with landfill leachate II. Soils and early tree development. Int J Phytorem 9:307–323. doi:10.1080/15226510701476594

    CAS  Google Scholar 

  • Zhang YF, Wang P, Yang YF, Bi Q, Tian SY, Shi XW (2011) Arbuscular mycorrhizal fungi improve reestablishment of Leymus chinensis in bare saline-alkaline soil: implication on vegetation restoration of extremely degraded land. J Arid Environ 75:773–778. doi:10.1016/j.jaridenv.2011.04.008

    Google Scholar 

  • Zhang H-S, Zai X-M, Wu X-H, Qin P, Zhang W-M (2014) An ecological technology of coastal saline soil amelioration. Ecol Eng 67:80–88. doi:10.1016/j.ecoleng.2014.03.022

    Google Scholar 

  • Zhao K-F, Fan H, Song J, Sun M-X, Wang B-Z, Zhang S-Q, Ungar IA (2005) Two Na+ and Cl hyperaccumulators of the Chenopodiaceae. J Integr Plant Biol 47:311–318. doi:10.1111/j.1744-7909.2005.00057.x

    CAS  Google Scholar 

  • Zia MH, Sabir M, Ghafoor A, Murtaza G (2007) Effectiveness of sulphuric acid and gypsum for the reclamation of a calcareous saline-sodic soil under four crop rotations. J Agron Crop Sci 193:262–269. doi:10.1111/j.1439-037X.2007.00262.x

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Portuguese Science and Technology Foundation (FCT) for the PhD grant (FCT-DFRH-SFRH/BD/84750/2012) and the Ciência 2008 program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony S. Danko.

Additional information

Responsible editor: Elena Maestri

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jesus, J.M., Danko, A.S., Fiúza, A. et al. Phytoremediation of salt-affected soils: a review of processes, applicability, and the impact of climate change. Environ Sci Pollut Res 22, 6511–6525 (2015). https://doi.org/10.1007/s11356-015-4205-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-4205-4

Keywords

Navigation