Skip to main content

Advertisement

Log in

Distribution and enrichment of mercury in Tibetan lake waters and their relations with the natural environment

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Mercury (Hg) in aquatic ecosystems is of great concern due to its toxicity, bioaccumulation, and magnification in the food web. The Tibetan Plateau (TP) is endowed with the highest and largest lakes on earth, whereas Hg distribution and behavior in lake waters are least known. In this study, surface water samples from 38 lakes over the TP were collected and determined for the total Hg (THg) concentrations. Results revealed a wide range of THg concentrations from <1 ng to 40.3 ng L−1. THg in lake waters exhibited an increasing trend along the southeast to northwest transect over the TP. Strong positive correlations were observed between THg concentrations and salinity and salinity-related environmental variables, especially for total dissolved solids (TDS) and some of the major ions such as Na+, K+, and Cl, suggesting the enrichment of Hg in saline lakes. The large-scale geographical pattern of climatic and environmental factors shows a decreasing precipitation and an increasing evaporation northwards and westwards and thereby induces gradient-enhanced enrichment of soluble substances in lake waters, which are likely to complex more Hg in northwestern TP. Our study provides the first comprehensive baseline data set of Hg in Tibetan lake waters and highlights the concurrent high Hg and salinity, representing valuable references and fundamental rules in further understanding the behavior and fate of Hg in lakes over the TP and perhaps high-altitude regions beyond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson NJ, Stedmon CA (2007) The effect of evapoconcentration on dissolved organic carbon concentration and quality in lakes of SW Greenland. Freshw Biol 52:280–289

    Article  CAS  Google Scholar 

  • Bargagli R (2008) Environmental contamination in Antarctic ecosystems. Sci Total Environ 400:212–226

    Article  CAS  Google Scholar 

  • Bloom NS, Effler SW (1990) Seasonal variability in the mercury speciation of Onondaga Lake (New York). Water Air Soil Pollut 53:251–265

    CAS  Google Scholar 

  • CAS (1984) Rivers and lakes of Xizang. Science Press, Beijing

    Google Scholar 

  • Dove A, Hill B, Klawunn P, Waltho J, Backus S, McCrea RC (2012) Spatial distribution and trends of total mercury in waters of the Great Lakes and connecting channels using an improved sampling technique. Environ Pollut 161:328–334

    Article  CAS  Google Scholar 

  • Driscoll CT, Han YJ, Chen CY, Evers DC, Lambert KF, Holsen TM, Kamman NC, Munson RK (2007) Mercury contamination in forest and freshwater ecosystems in the Northeastern United States. Bioscience 57:17–28

    Article  Google Scholar 

  • Fitzgerald WF (1999) Clean hands, dirty hands: Clair Patterson and the aquatic biogeochemistry of mercury. Clean Hands: Clair Patterson’s crusade against environmental lead contamination. Nova Science, Commack, pp 119–137

    Google Scholar 

  • Fitzgerald WF, Watras CJ (1989) Mercury in surficial waters of rural Wisconsin lakes. Sci Total Environ 87–8:223–232

    Article  Google Scholar 

  • Fitzgerald WF, Engstrom DR, Mason RP, Nater EA (1998) The case for atmospheric mercury contamination in remote areas. Environ Sci Technol 32:1–7

    Article  CAS  Google Scholar 

  • Fliedner A, Ruedel H, Knopf B, Weinfurtner K, Paulus M, Ricking M, Koschorreck J (2014) Spatial and temporal trends of metals and arsenic in German freshwater compartments. Environ Sci Pollut Res 21:5521–5536

    Article  CAS  Google Scholar 

  • Fu XW, Feng X, Liang P, Deliger ZH, Ji J, Liu P (2012) Temporal trend and sources of speciated atmospheric mercury at Waliguan GAW station, Northwestern China. Atmos Chem Phys 12:1951–1964

    Article  CAS  Google Scholar 

  • Gao N, Armatas NG, Shanley JB, Kamman NC, Miller EK, Keeler GJ, Scherbatskoy T, Holsen TM, Young T, McIlroy L, Drake S, Olsen B, Cady C (2006) Mass balance assessment for mercury in Lake Champlain. Environ Sci Technol 40:82–89

    Article  CAS  Google Scholar 

  • Guentzel JL, Powell RT, Landing WM, Mason RP (1996) Mercury associated with colloidal material in an estuarine and an open-ocean environment. Mar Chem 55:177–188

    Article  CAS  Google Scholar 

  • Hamasaki T, Nagase H, Yoshioka Y, Sato T (1995) Formation, distribution, and ecotoxicity of methylmetals of tin, mercury, and arsenic in the environment. Crit Rev Environ Sci Technol 25:45–91

    Article  CAS  Google Scholar 

  • Hammer UT (1986) Saline lake ecosystems of the world, 59. Springer, Netherland

    Google Scholar 

  • Han SH, Gill GA (2005) Determination of mercury complexation in coastal and estuarine waters using competitive ligand exchange method. Environ Sci Technol 39:6607–6615

    Article  CAS  Google Scholar 

  • Harris RC et al (2007) Whole-ecosystem study shows rapid fish-mercury response to changes in mercury deposition. Proc Natl Acad Sci U S A 104:16586–16591

    Article  CAS  Google Scholar 

  • Huang J, Kang SC, Zhang QG, Yan HY, Guo JM, Jenkins MG, Zhang GS, Wang K (2012) Wet deposition of mercury at a remote site in the Tibetan Plateau: concentrations, speciation, and fluxes. Atmos Environ 62:540–550

    Article  CAS  Google Scholar 

  • Kang WJ, Trefry JH, Nelsen TA, Wanless HR (2000) Direct atmospheric inputs versus runoff fluxes of mercury to the lower Everglades and Florida Bay. Environ Sci Technol 34:4058–4063

    Article  CAS  Google Scholar 

  • Krabbenhoft DP, Olson ML, Dewild JF, Clow DW, Striegl RG, Dornblaser MM, VanMetre P (2002) Mercury loading and methylmercury production and cycling in high-altitude lakes from the western United States. Water Air Soil Pollut Focus 2:233–249

    Article  CAS  Google Scholar 

  • Lei YB, Yao TD, Sheng YW, Zhang EL, Wang WC, Li JL (2012) Characteristics of delta C-13(DIC) in lakes on the Tibetan Plateau and its implications for the carbon cycle. Hydrol Process 26:535–543

    Article  CAS  Google Scholar 

  • Liu XD, Chen BD (2000) Climatic warming in the Tibetan Plateau during recent decades. Int J Climatol 20:1729–1742

    Article  Google Scholar 

  • Liu WG, Liu ZH, Wang HY, He YX, Wang Z, Xu LM (2011) Salinity control on long-chain alkenone distributions in lake surface waters and sediments of the northern Qinghai-Tibetan Plateau, China. Geochim Cosmochim Acta 75:1693–1703

    Article  CAS  Google Scholar 

  • Liu Y, Yao T, Jiao N, Zhu L, Hu A, Liu X, Gao J, Chen Z-Q (2013) Salinity impact on bacterial community composition in five high-altitude lakes from the Tibetan Plateau, Western China. Geomicrobiol J 30:462–469

    Article  CAS  Google Scholar 

  • Ma R, Yang G, Duan H, Jiang J, Wang S, Feng X, Li A, Kong F, Xue B, Wu J, Li S (2011) China’s lakes at present: number, area and spatial distribution. Sci China Earth Sci 54:283–289

    Article  CAS  Google Scholar 

  • MacDonald RW et al (2000) Contaminants in the Canadian Arctic: 5 years of progress in understanding sources, occurrence and pathways. Sci Total Environ 254:93–234

    Article  CAS  Google Scholar 

  • Marusczak N, Larose C, Dommergue A, Paquet S, Beaulne J-S, Maury-Brachet R, Lucotte M, Nedjai R, Ferrari CP (2011) Mercury and methylmercury concentrations in high altitude lakes and fish (Arctic charr) from the French Alps related to watershed characteristics. Sci Total Environ 409:1909–1915

    Article  CAS  Google Scholar 

  • Mason RP, Fitzgerald WF, Morel FMM (1994) The biogeochemical cycling of elemental mercury: anthropogenic influences. Geochim Cosmochim Acta 58:3191–3198

    Article  CAS  Google Scholar 

  • Mergler D, Anderson HA, Chan LHM, Mahaffey KR, Murray M, Sakamoto M, Stern AH (2007) Methylmercury exposure and health effects in humans: a worldwide concern. Ambio 36:3–11

    Article  CAS  Google Scholar 

  • Mousavi A, Chavez RD, Ali AMS, Cabaniss SE (2011) Mercury in natural waters: a mini-review. Environ Forensic 12:14–18

    Article  CAS  Google Scholar 

  • Nguyen HL, Leermakers M, Kurunczi S, Bozo L, Baeyens W (2005) Mercury distribution and speciation in Lake Balaton, Hungary. Sci Total Environ 340:231–246

    Article  CAS  Google Scholar 

  • Nimick DA, Caldwell RR, Skaar DR, Selch TM (2013) Fate of geothermal mercury from Yellowstone National Park in the Madison and Missouri Rivers, USA. Sci Total Environ 443:40–54

    Article  CAS  Google Scholar 

  • Ouedraogo O, Amyot M (2013) Mercury, arsenic and selenium concentrations in water and fish from sub-Saharan semi-arid freshwater reservoirs (Burkina Faso). Sci Total Environ 444:243–254

    Article  CAS  Google Scholar 

  • Peterson C, Gustin M (2008) Mercury in the air, water and biota at the Great Salt Lake (Utah, USA). Sci Total Environ 405:255–268

    Article  CAS  Google Scholar 

  • Phillips VJA, St Louis VL, Cooke CA, Vinebrooke RD, Hobbs WO (2011) Increased mercury loadings to Western Canadian Alpine Lakes over the past 150 years. Environ Sci Technol 45:2042–2047

    Article  CAS  Google Scholar 

  • Poissant L, Zhang HH, Canario J, Constant P (2008) Critical review of mercury fates and contamination in the arctic tundra ecosystem. Sci Total Environ 400:173–211

    Article  CAS  Google Scholar 

  • Qiu J (2008) The third pole. Nature 454:393–396

    Article  CAS  Google Scholar 

  • Schindler DW (2009) Lakes as sentinels and integrators for the effects of climate change on watersheds, airsheds, and landscapes. Limnol Oceanogr 54:2349–2358

    Article  CAS  Google Scholar 

  • Sheng JJ, Wang XP, Gong P, Tian LD, Yao TD (2012) Heavy metals of the Tibetan top soils Level, source, spatial distribution, temporal variation and risk assessment. Environ Sci Pollut Res 19:3362–3370

    Article  CAS  Google Scholar 

  • Sun H, Liao K, Pan Y, Wang J (1990) Atlas of the Qinghai–Tibet Plateau (in Chinese). Science Press, Beijing

    Google Scholar 

  • Sun R, Wang D, Zhang Y, Mao W, Zhang T, Ma M, Zhang C (2013) Photo-degradation of monomethylmercury in the presence of chloride ion. Chemosphere 91:1471–1476

    Article  CAS  Google Scholar 

  • Swain EB, Engstrom DR, Brigham ME, Henning TA, Brezonik PL (1992) Increasing rates of atmospheric mercury deposition in Midcontinental North America. Science 257:784–787

    Article  CAS  Google Scholar 

  • USEPA (2002) Method 1631, revision E: mercury in water by oxidation, purge and trap, and cold vapor atomic fluorescence spectrometry. US Environmental Protection Agency Washington, DC, Washington

    Google Scholar 

  • Vaidya OC, Howell GD, Leger DA (2000) Evaluation of the distribution of mercury in lakes in Nova Scotia and Newfoundland (Canada). Water Air Soil Pollut 117:353–369

    Article  CAS  Google Scholar 

  • Vandal GM, Mason RP, McKnight D, Fitzgerald W (1998) Mercury speciation and distribution in a polar desert lake (Lake Hoare, Antarctica) and two glacial meltwater streams. Sci Total Environ 213:229–237

    Article  CAS  Google Scholar 

  • Vukosav P, Mlakar M, Cukrov N, Kwokal Z, Pizeta I, Pavlus N, Spoljaric I, Vurnek M, Brozincevic A, Omanovic D (2014) Heavy metal contents in water, sediment and fish in a karst aquatic ecosystem of the Plitvice Lakes National Park (Croatia). Environ Sci Pollut Res 21:3826–3839

    Article  CAS  Google Scholar 

  • Wang S, Dou H (1998) China lake records. Science Press, Beijing

    Google Scholar 

  • Wang QR, Kim D, Dionysiou DD, Sorial GA, Timberlake D (2004) Sources and remediation for mercury contamination in aquatic systems—a literature review. Environ Pollut 131:323–336

    Article  Google Scholar 

  • Wang X, Yang H, Gong P, Zhao X, Wu G, Turner S, Yao T (2010) One century sedimentary records of polycyclic aromatic hydrocarbons, mercury and trace elements in the Qinghai Lake, Tibetan Plateau. Environ Pollut 158:3065–3070

    Article  CAS  Google Scholar 

  • Wang SF, Xing DH, Jia YF, Li BA, Wang KL (2012a) The distribution of total mercury and methyl mercury in a shallow hypereutrophic lake (Lake Taihu) in two seasons. Appl Geochem 27:343–351

    Article  CAS  Google Scholar 

  • Wang S, Zhang M, Li B, Xing D, Wang X, Wei C, Jia Y (2012b) Comparison of mercury speciation and distribution in the water column and sediments between the algal type zone and the macrophytic type zone in a hypereutrophic lake (Dianchi Lake) in Southwestern China. Sci Total Environ 417:204–213

    Article  Google Scholar 

  • Wang L, Wang S, Zhang L, Wang Y, Zhang Y, Nielsen C, McElroy MB, Hao J (2014) Source apportionment of atmospheric mercury pollution in China using the GEOS-Chem model. Environ Pollut 190:166–175

    Article  CAS  Google Scholar 

  • Xu H, Lan J, Liu B, Sheng E, Yeager KM (2013) Modern carbon burial in Lake Qinghai, China. Appl Geochem 39:150–155

    Article  CAS  Google Scholar 

  • Yang XD, Wang SM, Xia WL, Li WC (2001) Application of CCA for study on modern lake diatoms and environment in the Tibetan Plateau. Sci China Ser D Earth Sci 44:343–350

    Article  Google Scholar 

  • Yang HD, Rose NL, Battarbee RW (2002) Distribution of some trace metals in Lochnagar, a Scottish mountain lake ecosystem and its catchment. Sci Total Environ 285:197–208

    Article  CAS  Google Scholar 

  • Yang HD, Battarbee RW, Turner SD, Rose NL, Derwent RG, Wu GJ, Yang RQ (2010) Historical reconstruction of mercury pollution across the Tibetan Plateau using lake sediments. Environ Sci Technol 44:2918–2924

    Article  CAS  Google Scholar 

  • Yang RQ, Jing CY, Zhang QH, Wang ZH, Wang YW, Li YM, Jiang GB (2011) Polybrominated diphenyl ethers (PBDEs) and mercury in fish from lakes of the Tibetan Plateau. Chemosphere 83:862–867

    Article  CAS  Google Scholar 

  • Yao T, Thompson LG, Mosbrugger V, Zhang F, Ma Y, Luo T, Xu B, Yang X, Joswiak DR, Wang W (2012) Third pole environment (TPE). Environ Dev 3:52–64

    Article  Google Scholar 

  • Yuan FS, Sheng YW, Yao TD, Fan CJ, Li JL, Zhao H, Lei YB (2011) Evaporative enrichment of oxygen-18 and deuterium in lake waters on the Tibetan Plateau. J Paleolimnol 46:291–307

    Article  Google Scholar 

  • Zhang T, Hsu-Kim H (2010) Photolytic degradation of methylmercury enhanced by binding to natural organic ligands. Nat Geosci 3:473–476

    Article  Google Scholar 

  • Zhang XPP, Deng W, Yang XMM (2002) The background concentrations of 13 soil trace elements and their relationships to parent materials and vegetation in Xizang (Tibet), China. J Asian Earth Sci 21:167–174

    Article  CAS  Google Scholar 

  • Zhang QG, Kang SC, Wang FY, Li CL, Xu YW (2008) Major ion geochemistry of Nam Co Lake and its sources, Tibetan Plateau. Aquat Geochem 14:321–336

    Article  CAS  Google Scholar 

  • Zhang J, Feng X, Yan H, Guo Y, Yao H, Meng B, Liu K (2009) Seasonal distributions of mercury species and their relationship to some physicochemical factors in Puding Reservoir, Guizhou, China. Sci Total Environ 408:122–129

    Article  CAS  Google Scholar 

  • Zhang QG, Huang J, Wang FY, Mark LW, Xu JZ, Armstrong D, Li CL, Zhang YL, Kang SC (2012) Mercury distribution and deposition in glacier snow over Western China. Environ Sci Technol 46:5404–5413

    Article  CAS  Google Scholar 

  • Zhang Q, Pan K, Kang S, Zhu A, Wang W-X (2014) Mercury in wild fish from high-altitude aquatic ecosystems in the Tibetan Plateau. Environ Sci Technol 48:5220–5228

    Article  CAS  Google Scholar 

  • Zheng MP, Liu XF (2009) Hydrochemistry of salt lakes of the Qinghai-Tibet Plateau, China. Aquat Geochem 15:293–320

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (41101064, 41371088, and 41225002) and the “Strategic Priority Research Program (B)” of the Chinese Academy of Sciences (XDB03030504). The authors thank the 2010 and 2011 Expedition Team to Tibetan lakes.

Compliance with Ethical Standards

The authors declare no competing financial interest. This article does not contain any studies with human participants or animals performed by any of the authors. Informed consent was obtained from all individual participants included in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qianggong Zhang.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 31 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Zhang, Q., Kang, S. et al. Distribution and enrichment of mercury in Tibetan lake waters and their relations with the natural environment. Environ Sci Pollut Res 22, 12490–12500 (2015). https://doi.org/10.1007/s11356-015-4498-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-4498-3

Keywords

Navigation