Skip to main content
Log in

Investigating the degradation process of kraft lignin by β-proteobacterium, Pandoraea sp. ISTKB

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The present study investigates the kraft lignin (KL) degrading potential of novel alkalotolerant Pandoraea sp. ISTKB utilizing KL as sole carbon source. The results displayed 50.2 % reduction in chemical oxygen demand (COD) and 41.1 % decolorization after bacterial treatment. The maximum lignin peroxidase (LiP) and manganese peroxidase (MnP) activity detected was 2.73 and 4.33 U ml−1, respectively, on day 3. The maximum extracellular and intracellular laccase activities observed were 1.32 U ml−1 on day 5 and 4.53 U ml−1 on day 4, respectively. The decolorization and degradation was maximum on day 2. Further, it registered an increase with the production of extracellular laccase. This unusual trend of decolorization and degradation was studied using various aromatic compounds and dyes. SEM and FTIR results indicated significant change in surface morphology and functional group composition during the course of degradation. Gas chromatography and mass spectroscopy (GC-MS) analysis confirmed KL degradation by emergence of new peaks and the identification of low molecular weight aromatic intermediates in treated sample. The degradation of KL progressed through the generation of phenolic intermediates. The identified intermediates implied the degradation of hydroxyphenyl, ferulic acid, guaiacyl, syringyl, phenylcoumarane, and pinoresinol components commonly found in lignin. The degradation, decolorization, and GC-MS analysis indicated potential application of the isolate Pandoraea sp. ISTKB in treatment of lignin-containing pollutants and KL valorization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmad M, Taylor CR, Pink D, Burton K, Eastwood D, Bending GR, Bugg TDH (2010) Development of novel assays for lignin degradation: comparative analysis of bacterial and fungal lignin degraders. Mol Biosyst 6:815–821

    Article  CAS  Google Scholar 

  • APHA (American Public Health Administration)/AWWA (American Water Works Association)/ WEF (Water Environment Federation) (2005) Standard Methods for the Examination of Water and Wastewater, 21st ed. Washington, DC, USA

  • Archibald FS (1992) A new assay for lignin-type peroxidases employing the dye Azure B. Appl Environ Microbiol 58:3110–3116

    CAS  Google Scholar 

  • Bandounas L, Wierckx NJP, de Winde JH, Ruijssenaars HJ (2011) Isolation and characterization of novel bacterial strains exhibiting ligninolytic potential. BMC Biotechnol 11:94–105

    Article  CAS  Google Scholar 

  • Brown ME, Chang MC (2014) Exploring bacterial lignin degradation. Curr Opin Chem Biol 19C:1–7

    Article  Google Scholar 

  • Bugg TDH, Ahmad M, Hardiman EM, Singh R (2011a) The emerging role for bacteria in lignin degradation and bio-product formation. Curr Opin Biotechnol 22(3):394–400

    Article  CAS  Google Scholar 

  • Bugg TDH, Ahmad M, Hardiman EM, Rahmanpour R (2011b) Pathways for degradation of lignin in bacteria and fungi. Nat Prod Rep 28(12):1883–1896

    Article  CAS  Google Scholar 

  • Chandra R, Singh R (2012) Decolourization and detoxification of rayon grade pulp paper mill effluent by mixed bacterial culture isolated from pulp paper mill effluent polluted site. Biochem Eng J 61:49–58

    Article  CAS  Google Scholar 

  • Chandra R, Raj A, Purohit HJ, Kapley A (2007) Characterization and optimization of three potential aerobic bacterial strains for kraft lignin degradation from pulp paper waste. Chemosphere 67:839–846

    Article  CAS  Google Scholar 

  • Chen Y, Chai L, Tang C, Yang Z, Zheng Y, Shi Y, Zhang H (2012a) Kraft lignin biodegradation by Novosphingobium sp. B-7 and analysis of the degradation process. Bioresour Technol 123:682–685

    Article  CAS  Google Scholar 

  • Chen Q, Marshall MN, Geib SM, Tien M, Richard TL (2012b) Effects of laccase on lignin depolymerization and enzymatic hydrolysis of ensiled corn stover. Bioresour Technol 117:186–192

    Article  CAS  Google Scholar 

  • Chundawat SPS, Beckham GT, Himmel ME, Dale BE (2011) Deconstruction of lignocellulosic biomass to fuels and chemicals. Annu Rev Chem Biomol Eng 2:121–145

    Article  CAS  Google Scholar 

  • Colbert CL, Agar NYR, Kumar P, Chakko MN, Sinha SC et al (2013) Structural characterization of Pandoraea pnomenusa B-356 biphenyl dioxygenase reveals features of potent polychlorinated biphenyl-degrading enzymes. PLoS One 8(1), e52550. doi:10.1371/journal.pone.0052550

    Article  CAS  Google Scholar 

  • Fuchs G, Boll M, Heider J (2011) Microbial degradation of aromatic compounds from one strategy to four. Nat Rev Microbiol 9(11):803–816

    Article  CAS  Google Scholar 

  • Godoy L, Martinez C, Carrasco N, Ganga MA (2008) Purification and characterization of a p-cumarate decarboxylase and a vinylphenolreductase from Brettanomyces bruxellensis. Int J Food Microbiol 127:6–11

    Article  CAS  Google Scholar 

  • Gouveia S, Fernández-Costas C, Sanromán MA, Moldes D (2013) Polymerisation of kraft lignin from black liquors by laccase from Myceliophthora thermophila: effect of operational conditions and black liquor origin. Bioresour Technol 131:288–294

    Article  CAS  Google Scholar 

  • Grandy AS, Neff JC, Weintraub MN (2007) Carbon structure and enzyme activities in alpine and forest ecosystems. Soil Biol Biochem 39:2701–2711

  • Hage RE, Brosse N, Chrusciel L, Sanchez C, Sannigrahi P, Ragauskas A (2009) Characterization of milled wood lignin and ethanol organosolv lignin from Miscanthus. Polym Degrad Stab 94:1632–1638

    Article  Google Scholar 

  • Hofrichter M (2002) Review: lignin conversion by manganese peroxidase (MnP). Enzym Microb Technol 30(4):454–466

    Article  CAS  Google Scholar 

  • Huang XF, Santhanam N, Badri DV, Hunter WJ, Manter DK, Decker SR et al (2013) Isolation and characterization of lignin degrading bacteria from rainforest soils. Biotechnol Bioeng 110:1616–1626. doi:10.1002/bit.24833

    Article  CAS  Google Scholar 

  • Jahan MS, Chowdhury DAN, Islam MK, Moeiz SMI (2007) Characterization of lignin isolated from some non-wood available in Bangladesh. Bioresour Technol 98(2):465–469

    Article  CAS  Google Scholar 

  • Kamaya Y, Nakatsubo F, Higuchi T, Iwahara S (1981) Degradation of D, L-syringaresinol, a β-β′-linked lignin model compound, by Fusarium solani M-13-1. Arch Microbiol 129:305–309

    Article  CAS  Google Scholar 

  • Kapich AN, Prior BA, Botha A, Galkin S, Lundell T, Hatakka A (2004) Effect of lignocellulose-containing substrates on production of ligninolytic peroxidases in submerged cultures of Phanerochaete chrysosporium ME-446. Enzym Microb Technol 34:187–195

    Article  CAS  Google Scholar 

  • Liu Y, Hu T, Wu Z, Zeng G, Huang D, Shen Y, He X, Lai M, He Y (2014) Study on biodegradation process of lignin by FTIR and DSC. Environ Sci Pollut Res Int 21(24):14004–14013. doi:10.1007/s11356-014-3342-5

    Article  CAS  Google Scholar 

  • Martinez AT (2002) Molecular biology and structure–function of lignin-degrading heme peroxidases. Enzym Microb Technol 30:425–444

    Article  CAS  Google Scholar 

  • Masai E, Katayama Y, Fukuda M (2007) Genetic and biochemical investigations on bacterial catabolic pathways for lignin derived aromatic compounds. Biosci Biotechnol Biochem 71:1–15

    Article  CAS  Google Scholar 

  • Mazur M, Krywko-Cendrowska A, Krysińsk P, Rogalski J (2009) Encapsulation of laccase in a conducting polymer matrix: a simple route towards polypyrrole microcontainers. Synth Met 159:1731–1738

    Article  CAS  Google Scholar 

  • Mishra M, Thakur IS (2010) Isolation and characterization of alkalotolerant bacteria and optimization of process parameters for decolorization and detoxification of pulp and paper mill effluent by Taguchi approach. Biodegradation 21:967–978

    Article  CAS  Google Scholar 

  • Mishra M, Thakur IS (2011) Purification, characterization and mass spectroscopic analysis of thermo-alkalotolerant β- 1, 4-endoxylanase from Bacillus sp. and its potential for dye decolorization. Int Biodeterior Biodegrad 65:301–308

    Article  CAS  Google Scholar 

  • Murugesan K, Nam IH, Kim YM, Chang YS (2007) Decolorization of reactive dyes by a thermostable laccase produced by Ganoderma lucidum in solid state culture. Enzym Microb Technol 40:1662–1672

    Article  CAS  Google Scholar 

  • Ragauskas AJ et al (2014) Lignin valorization: improving lignin processing in the biorefinery. Science 344(6185):1246843. doi:10.1126/science.1246843

    Article  Google Scholar 

  • Raj A, Reddy MMK, Chandra R, Purohit HJ, Kapley A (2007) Biodegradation of kraft-lignin by Bacillus sp. isolated from sludge of pulp and paper mill. Biodegradation 18:783–792

    Article  CAS  Google Scholar 

  • Ramachandra M, Crawford DL, Hertel G (1988) Characterization of an extracellular lignin peroxidase of the lignocellulolytic actinomycete Streptomyces viridosporus. Appl Environ Microbiol 54:3057–3063

    CAS  Google Scholar 

  • Riva S (2006) Laccasees: blue enzymes for green chemistry. Trends Biotechnol 24:219–226

    Article  CAS  Google Scholar 

  • Shi Y, Chai L, Tang C, Yang Z, Zheng Y, Chen Y, Jing Q (2013a) Biochemical investigation of kraft lignin degradation by Pandoraea sp. B-6 isolated from bamboo slips. Bioproc Biosyst Eng. doi:10.1007/s00449-013-0972-9

    Google Scholar 

  • Shi Y, Chai L, Tang C, Yang Z, Zhang H, Chen R, Yuehui C, Zheng Y (2013b) Characterization and genomic analysis of kraft lignin biodegradation by the beta-proteobacterium Cupriavidus basilensis B-8. Biotechnol Biofuels 6:1. doi:10.1186/1754-6834-6-1

    Article  CAS  Google Scholar 

  • Singhal A, Thakur IS (2009) Decolorization and detoxification of pulp paper effluent by Cryptococcus sp. Biochem Eng J 46:21–27

    Article  CAS  Google Scholar 

  • Singhal A, Choudhary G, Thakur IS (2009) Optimization of growth media for enhanced production of laccase by Cryptococcus albidus and its application for bioremediation of chemicals. Can J Civ Eng 36:1253–1264

    Article  CAS  Google Scholar 

  • Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W (2010) Lignin biosynthesis and structure. Plant Physiol 153:895–905

    Article  CAS  Google Scholar 

  • Wan C, Li Y (2012) Fungal pretreatment of lignocellulosic biomass. Biotechnol Adv 30(6):1447–1457

    Article  CAS  Google Scholar 

  • Yang J, Lin Q, Ng TB, Ye X, Lin J (2014) Purification and characterization of a novel laccase from Cerrena sp. HYB07 with Dye decolorizing ability. PLoS ONE 9(10), e110834. doi:10.1371/journal.pone.0110834

    Article  Google Scholar 

  • Zille A, Go’rnacka B, Rehorek A, Cavaco-Paulo A (2005) Degradation of azo dyes by Trametes villosa laccase over long periods of oxidative conditions. Appl Environ Microbiol 71:6711–6718

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Council of Scientific and Industrial Research (CSIR) and University Grants Commission (UGC), New Delhi, Government of India, for providing research grants. We also thank Dr. Ajai Kumar and Dr. Manoj Pratap Singh (Advanced Instrumentation Research Facility—AIRF, JNU, New Delhi) for the GC-MS and FTIR analysis. We are thankful to Niharika Agrawal (NIT, Raipur) for her support in the research work.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indu Shekhar Thakur.

Additional information

Responsible editor: Gerald Thouand

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 575 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, M., Singh, J., Singh, M.K. et al. Investigating the degradation process of kraft lignin by β-proteobacterium, Pandoraea sp. ISTKB. Environ Sci Pollut Res 22, 15690–15702 (2015). https://doi.org/10.1007/s11356-015-4771-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-4771-5

Keywords

Navigation