Skip to main content

Advertisement

Log in

Environmental impact and potential utilization of historical Cu-Fe-Co slags

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Historical slags from the past Fe and Cu-Co production were investigated in order to evaluate either their potential for utilization or their long-term environmental risk for unsupervised old smelting areas. Here, we studied ferrous slags produced during the recovery of Fe from siderite-Cu ores in Slovakia and two different types of non-ferrous slags produced during the recovery of Cu and Co from Kupferschiefer ores in Germany. The glassy character, rare occurrence of primary silicate phases, and the lack of secondary phases in Cu slags indicate their stability for a prolonged period of time. Electron microprobe analytical work showed that the metals and metalloids (Cu, Co, Fe, Zn, Pb, As) are largely encased in droplets of matte and metal alloys and remain protected by the glassy matrix with its low weathering rate. Fe and Co slags are composed of high-temperature silicates such as wollastonite, cristobalite, as well as olivine, feldspar, quartz, leucite, pyroxene, and pyroxenoids. The presence of secondary phases attests to a certain degree metal release owing to weathering. Assuming minimal contents of metals in slags after a treatment with dilute H2SO4, slags could be used as pozzolanas for addition to cement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aderibigbe DA, Ojobo AE (1982) Properties of cupola slag as a pozzolana and its effects on partial replacement of cement in a mortal. Conserv Recycl 5:203–208

    Article  CAS  Google Scholar 

  • Alter H (2005) The composition and environmental hazard of copper slags in the context of the Basel Convention. Resour Conserv Recycl 43:353–360

    Article  Google Scholar 

  • Altundogan HS, Boyrazli M, Tumen F (2004) A study on the sulphuric acid leaching of copper converter slag in the presence of dichromate. Miner Eng 17:465–467

    Article  CAS  Google Scholar 

  • Álvarez-Valero AM, Pérez-López R, Nieto JM (2009) Prediction of the environmental impact of modern slags: a petrological and chemical comparative study with Roman age slags. Am Mineral 94:1417–1427

    Article  Google Scholar 

  • Arslan C, Arslan F (2002) Recovery of copper, cobalt, and zinc from copper smelter and converter slags. Hydrometallurgy 67:1–7

    Article  CAS  Google Scholar 

  • Bachmann HG (1980) Early copper smelting techniques in Sinai and Negev as deduced from slag investigations. In: Craddock P (ed) Scientific studies in early mining and extractive metallurgy. British Museum, London, pp 103–134

    Google Scholar 

  • Bachmann HG (1982) The identification of slags from archaeological sites. Institute of Archaeology, London

    Google Scholar 

  • Baláž P, Kúšik D (2011) Slovak minerals yearbook 2011. State Geological Institute of Dionyz Stur, Bratislava

    Google Scholar 

  • Belaidi ASE, Azzouz L, Kadri E, Kenai S (2012) Effect of natural pozzolana and marble powder on the properties of self-compacting concrete. Constr Build Mater 31:251–257

    Article  Google Scholar 

  • Blowes DW, Ptacek CJ (2003) Mill tailings hydrogeology and geochemistry. In: Jambor JL, Blowes DW, Ritchie AIM (eds) Environmental aspects of mine wastes, vol 31, MAC: short course series., pp 95–116

    Google Scholar 

  • Borg G, Piestrzyński A, Bachmann GH, Püttmann W, Walther S, Fiedler M (2012) An overview of the European Kupferschiefer deposits. SEG 16:455–486

    Google Scholar 

  • Chaudhuri JNB, Newesely H (1993) Mineralogical characterization of old Harz Mountain slags. Can Metall Q 32:1–12

    Article  CAS  Google Scholar 

  • Cornell RM, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurrences and uses, 2nd edn. Wiley-VCH Verlag GmbH & Co, KGaA, Weinheim

    Book  Google Scholar 

  • Demeter P, Baricova D, Pribulova A (2009) Experiences with cupola slag using by concrete production. SGEM 2:683–688

    Google Scholar 

  • Durinck D, Engström F, Arnout S, Heulens J, Jones PT, Björkman B, Blanpain B, Wollants P (2008) Hot stage processing of metallurgical slags. Resour Conserv Recycl 52:1121–1131

    Article  Google Scholar 

  • EN 12457-2 (2002) Characterisation of waste–leaching–compliance test for leaching of granular waste materials and sludges, parts 1–4. CEN, Brussels

  • Ettler V, Johan Z (2014) 12 years of leaching of contaminants from Pb smelter slags: geochemical/mineralogical controls and slag recycling potential. Appl Geochem 40:97–103

    Article  CAS  Google Scholar 

  • Ettler V, Legendre O, Bodénan F, Touray J-C (2001) Primary phases and natural weathering of old lead-zinc pyrometallurgical slag from Příbram, Czech Republic. Can Mineral 39:873–888

    Article  CAS  Google Scholar 

  • Ettler V, Johan Z, Kříbek B, Nolte H (2009a) Mineralogy of primary phases in slags and mattes from the Tsumeb smelter (Namibia). Communs Geol Surv Namibia 14:3–14

    Google Scholar 

  • Ettler V, Johan Z, Kříbek B, Šebek O, Mihaljevič M (2009b) Mineralogy and environmental stability of slags from the Tsumeb smelter, Namibia. Appl Geochem 24:1–15

    Article  CAS  Google Scholar 

  • Ettler V, Červinka R, Johan Z (2009c) Mineralogy of medieval slags from lead and silver smelting (Bohutín, Příbram District, Czech Republic): towards estimation of historical smelting conditions. Archaeometry 51:987–1007

    Article  CAS  Google Scholar 

  • Ettler V, Mihaljevič M, Kříbek B, Majer V, Šebek O (2011) Tracing the spatial distribution and mobility of metal/metalloid contaminants in oxisols in the vicinity of the Nkana copper smelter, Copperbelt province, Zambia. Geoderma 164:73–84

    Article  CAS  Google Scholar 

  • Ettler V, Kvapil J, Šebek O, Johan Z, Mihaljevič M, Ratié G, Garnier J, Quantin C (2015) Leaching behaviour of slag and fly ash from laterite nickel ore smelting (Niquelândia, Brazil). Appl Geochem. doi:10.1016/j.apgeochem.2015.09.019

    Google Scholar 

  • Frias M, Sánchez MI, Santamaría J, Rodríguez C (2006) Recycling of silicomanganese slag as pozzolanic material in Portland cements: basic and engineering properties. Cem Concr Res 36:487–491

    Article  CAS  Google Scholar 

  • Fulda B, Voegelin A, Ehlert K, Kretzschmar R (2013) Redox transformation, solid phase speciation and solution dynamics of copper during soil reduction and reoxidation as affected by sulfate availability. Geochim Cosmochim Acta 123:385–402

    Article  CAS  Google Scholar 

  • Gorai B, Jana RK, Premchand (2003) Characteristics and utilisation of copper slag—a review. Resour Conserv Recycl 39:299–313

    Article  Google Scholar 

  • Grawunder A, Merten D, Büchel G (2014) Origin of middle rare earth element enrichment in acid mine drainage-impacted areas. Environ Sci Pollut Res 21:6812–6823

    Article  CAS  Google Scholar 

  • Grecula P, Abonyi A, Abonyiová M et al (1995) Mineral deposits of the Slovak Ore Mountains. Geocomplex, Bratislava

    Google Scholar 

  • Grybos M, Davranche M, Gruau G, Petitjean P (2007) Is trace metal release in wetland soils controlled by organic matter mobility or Fe-oxyhydroxides reduction? J Colloid Interface Sci 314:490–501

    Article  CAS  Google Scholar 

  • Hauptmann A (2007) The archaeometallurgy of copper. Evidence from Faynan, Jordan. Springer Science and Business Media, Berlin

    Book  Google Scholar 

  • Hocking MB (2005) Handbook of chemical technology and pollution control, 3rd edn. Elsevier, USA

    Google Scholar 

  • Ilton ES, Veblen DR (1988) Copper inclusions in sheet silicates from porphyry Cu deposits. Nature 334:516–518

    Article  CAS  Google Scholar 

  • Kierczak J, Pietranik A (2011) Mineralogy and composition of historical Cu slags from the Rudawy Janowickie Mountains, Southwestern Poland. Can Mineral 49:1281–1296

    Article  CAS  Google Scholar 

  • Kierczak J, Néel C, Puziewicz J, Bril H (2009) The mineralogy and weathering of slag produced by the smelting of lateritic Ni ores, Szklary, Southwestern Poland. Can Mineral 47:557–572

    Article  CAS  Google Scholar 

  • Kierczak J, Potysz A, Pietranik A et al (2013) Environmental impact of the historical Cu smelting in the Rudawy Janowickie Mountains (south-western Poland). J Geochem Explor 124:183–194

    Article  CAS  Google Scholar 

  • Kucha H, Martens A, Ottenburgs R, De Vos W, Viaene W (1996) Primary minerals of Zn-Pb mining and metallurgical dumps and their environmental behavior at Plombiéres, Belgium. Environ Geol 27:1–15

    Article  CAS  Google Scholar 

  • Lanteigne S, Schindler M, McDonald AM et al (2012) Mineralogy and weathering of smelter-derived spherical particles in soils: implications for the mobility of Ni and Cu in the surficial environment. Water Air Soil Pollut 223:3619–3641

    Article  CAS  Google Scholar 

  • Lima de Andrade LRP, Bernardez LA (2011) Characterization of the lead smelter slag in Santo Amaro, Bahia, Brazil. J Hazard Mater 189:692–699

    Article  CAS  Google Scholar 

  • Lottermoser BG (2002) Mobilization of heavy metals from historical smelting slag dumps, north Queensland, Australia. Mineral Mag 66:475–490

    Article  CAS  Google Scholar 

  • Manasse A, Mellini M (2002) Chemical and textural characterisation of medieval slags from the Massa Marittima smelting sites (Tuscany, Italy). J Cult Herit 3:187–198

    Article  Google Scholar 

  • Muravyov MI, Fomchenko NV, Usoltsev AV, Vasilyev EA, Kondraťeva TF (2012) Leaching of copper and zinc from copper converter slag flotation tailings using H2SO4 and biologically generated Fe2(SO4)3. Hydrometallurgy 119–120:40–46

    Article  Google Scholar 

  • Pacheco-Torgal F, Labrincha J, Leonelli C, Palomo A, Chindaprasirt P (2015) Handbook of alkali-activated cements, mortars and concretes, 1st edn. Woodhead Publishing, UK

    Google Scholar 

  • Parsons MB, Bird DK, Einaudi MT, Alpers CN (2001) Geochemical and mineralogical controls on trace element release from the Penn Mine base-metal slag dump, California. Appl Geochem 16:1567–1593

    Article  CAS  Google Scholar 

  • Pavlarčík S (2000) Deposit abandoned forever. Tatry 39:16–17 (in Slovak)

    Google Scholar 

  • Petrík J, Mihok L, Pavlarčík S (2003) Analysis of slags from the iron smelter in Javorina. Archeol Tech 14:9–13 (in Slovak)

    Google Scholar 

  • Piatak NM, Seal RR II (2010) Mineralogy and the release of trace elements from slag from the Hegeler zinc smelter, Illinois (USA). Appl Geochem 25:302–320

    Article  CAS  Google Scholar 

  • Piatak NM, Seal RR II (2012) Mineralogy and environmental geochemistry of historical iron slag, Hopewell Furnace National Historic Site, Pennsylvania, USA. Appl Geochem 27:623–643

    Article  CAS  Google Scholar 

  • Piatak NM, Parsons MB, Seal RR II (2015) Characteristics and environmental aspects of slag: a review. Appl Geochem 57:236–266

    Article  CAS  Google Scholar 

  • Potysz A, van Hullebusch ED, Kierczak J, Grybos M, Lens PNL, Guibaud G (2015a) Copper metallurgical slags—current knowledge and fate: a review. Crit Rev Environ Sci Technol 45:2424–2488

    Article  CAS  Google Scholar 

  • Potysz A, Kierczak J, Fuchs Y, Grybos M, Guibaud G, Lens PNL, van Hullebusch ED (2015b) Characterization and pH-dependent leaching behaviour of historical and modern copper slags. J Geochem Explor. doi:10.1016/j.gexplo.2015.09.017

    Google Scholar 

  • Rakhimova NR, Rakhimov RZ (2015) Alkali-activated cements and mortars based on blast furnace slag and red clay brick waste. Mater Des 85:324–331

    CAS  Google Scholar 

  • Rodríguez-Mendoza YE, Fuentes AF, Escalante-García JI (2012) Cementitious blends of Portland cement with calcium sulphate, fly ash and cupola slag. MRS Proc. doi:10.1557/opl.2012.1541, 1488

    Google Scholar 

  • Sáez R, Nocete F, Nieto JM, Capitán MÁ, Rovira S (2003) The extractive metallurgy of copper from Cabezo Juré, Huelva, Spain: chemical and mineralogical study of slags dated to the third millennium B.C. Can Mineral 41:627–638

    Article  Google Scholar 

  • Sarrafi A, Rahmati B, Hassani HR, Shirazi HHA (2004) Recovery of copper from reverberatory furnace slag by flotation. Miner Eng 17:457–459

    Article  CAS  Google Scholar 

  • Schindler M (2014) A mineralogical and geochemical study of slag from the historical O’Donnell Roast Yards, Sudbury, Ontario, Canada. Can Mineral 52:433–452

    Article  CAS  Google Scholar 

  • Schlesinger ME, King MJ, Sole KC, Davenport WG (2011) Extractive metallurgy of copper, 5th edn. Elsevier, Oxford

    Google Scholar 

  • Schmukat A, Duester L, Ecker D, Schmid H, Heil C, Heininger P, Ternes TA (2012) Leaching of metal(loid)s from a construction material: influence of the particle size, specific surface area and ionic strength. J Hazard Mater 227:257–264

    Article  Google Scholar 

  • Schmukat A, Duester L, Goryunova E, Ecker D, Heininger P, Ternes TA (2015) Influence of environmental parameters and of their interactions on the release of metal(loid)s from a construction material in hydraulic engineering. J Hazard Mater. doi:10.1016/j.jhazmat.2015.10.026

    Google Scholar 

  • Shen H, Forssberg E (2003) An overview of recovery of metals from slags. Waste Manag 23:933–949

    Article  CAS  Google Scholar 

  • Traina SJ, Laperche V (1999) Contaminant bioavailability in soils, sediments, and aquatic environments. Proc Natl Acad Sci U S A 96:3365–3371

    Article  CAS  Google Scholar 

  • Ulubeyli GC, Artir R (2015) Sustainability for blast furnace slag: use of some construction wastes. Procedia Soc Behav Sci 195:2191–2198

    Article  Google Scholar 

  • Vaughan DJ, Sweeney MA, Friedrich G, Diedel R, Haranczyk C (1989) The Kupferschiefer: an overview with an appraisal of the different types of mineralization. Econ Geol 84:1003–1027

    Article  CAS  Google Scholar 

  • Verryn SMC, Pöllmann H, Kearsley E (2012) The use of South African Fe-Mn, Si-Mn, Pt-converter and matte-smelting furnace slags in composite Portland cement—first results. ASCE 2012:18–29

    Google Scholar 

  • Vítková M, Ettler V, Johan Z, Kříbek B, Šebek O, Mihaljevič M (2010) Primary and secondary phases in copper-cobalt smelting slags from the Copperbelt Province, Zambia. Mineral Mag 74:581–600

    Article  Google Scholar 

  • Wünscher S (1932) Die Geschichte des Kupferschieferbergbaues und seines Hüttenwesens im Fürstentum Eisenach. Philipp Kühner, Eisenach (in German)

    Google Scholar 

  • Yi H, Xu G, Cheng H, Wang J, Wan Y, Chen H (2012) An overview of utilization of steel slag. Procedia Environ Sci 16:791–801

    Article  CAS  Google Scholar 

  • Yin F, Xing P, Li Q, Wang C, Wang Z (2014) Magnetic separation-sulphuric acid leaching of Cu-Co-Fe matte obtained from copper converter slag for recovering Cu and Co. Hydrometallurgy 149:189–194

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to S. Kiefer and M. Abratis who helped with the electron microprobe analyses, M. Ude for the XRF analyses, D. Merten for the total decomposition and ICP-MS measurements, and M. Wierbicka-Wieczorek and R. Bolanz for the powder XRD analyses. B. Kreher-Hartmann and R. Geyer provided help to localize and acquire samples of slags from the state of Thuringia. V.V. is thankful to KAAD for the financial support of her study and stay at the University Jena. The contribution of J.M. was funded by DFG Research Training Group GRK 1257/1 within the Jena School of Microbial Communications (JSMC). This research was partially funded by the Czech Science Foundation Agency, Grant No. GAČR P210/15-17224Y. The thorough review of an anonymous reviewer helped to improve the original version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veronika Veselská.

Additional information

Responsible editor: Zhihong Xu

Highlights

• In the slags, most metals, with the exception of Pb, strongly fractionate into sulfide-metal droplets and are depleted in the silicates.

• Sulfide-metal droplets with the elements of environmental concern in the slags are encased in glass and protected from weathering.

• Slags could be, after a leaching with dilute H2SO4, potentially reused as pozzolanas.

Electronic supplementary material

The detection limits and calibration conditions for EMPA, the results for the bulk chemical composition of the studied slags, electron microprobe analyses of glasses, and water and sulfuric acid leaching are available in the electronic supplementary information.

Appendix A. Supplementary data 1

(DOCX 66 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veselská, V., Majzlan, J. Environmental impact and potential utilization of historical Cu-Fe-Co slags. Environ Sci Pollut Res 23, 7308–7323 (2016). https://doi.org/10.1007/s11356-015-5861-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-5861-0

Keywords

Navigation