Skip to main content
Log in

Uptake and toxicity of nano-ZnO in the plant-feeding nematode, Xiphinema vuittenezi: the role of dissolved zinc and nanoparticle-specific effects

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Nanoparticulate ZnO is one of the most commonly applied nanomaterials. As ZnO is more soluble than many other oxide nanoparticles, its toxicity beyond the nanoparticle-specific effects can be attributed to the dissolved ionic zinc. The investigation of uptake and toxicity of nano-ZnO in the plant-feeding nematode, Xiphinema vuittenezi, which was used in previous studies as a biological model organism, was aimed. The establishment of the role of dissolved zinc and nanoparticle-specific effects in the toxicity was also the objective of our study. Zn uptake was found to be significantly higher for bulk and nano-ZnO than for ZnSO4 solution; however, treatments caused loss of potassium in the worms in a dissolved-zinc-dependent manner. The toxicity was the lowest for bulk ZnO, and it was very similar for nano-ZnO and ZnSO4 solution. Accordingly, the toxicity of ZnO nanoparticles is a combination of dissolved-zinc-caused toxicity and nanoparticle-specific effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Brunner TJ, Wick P, Manser P, Spohn P, Grass RN, Limbach LK, Bruinink A, Stark WJ (2006) In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environ Sci Technol 40:4374–4381. doi:10.1021/es052069i

    Article  CAS  Google Scholar 

  • Dubey A, Goswami M, Yadav K, Chaudhary D, Oxidative stress and nano-toxicity induced by TiO2 and ZnO on WAG cell line (2015)

  • Feris K, Otto C, Tinker J, Wingett D, Punnoose A, Thurber A, Kongara M, Sabetian M, Quinn B, Hanna C (2010) Electrostatic interactions affect nanoparticle-mediated toxicity to Gram-negative bacterium Pseudomonas aeruginosa PAO 1. Langmuir 26:4429–4436. doi:10.1021/la903491z

    Article  CAS  Google Scholar 

  • Franklin NM, Rogers NJ, Apte SC, Batley GE, Gadd GE, Casey PS (2007) Comparative toxicity of nanoparticulate ZnO, bulk ZnO and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ Sci Technol 41:8484–8490. doi:10.1021/es071445r

    Article  CAS  Google Scholar 

  • Gettelfinger DM, Siegel GJ (1978) Irreversible zinc ion inhibition of (Na+-K+)-adenosinetriphosphatase, Na+-phosphorylation, and K+-p-nitrophenylphosphatase of Electrophorus electricus electroplax. J Neurochem 31:1231–1237. doi:10.1111/j.1471-4159.1978.tb06247.x

    Article  CAS  Google Scholar 

  • Gilbert B, Fakra SC, Xia T, Pokhrel S, Madler L, Nel AE (2012) The fate of ZnO nanoparticles administered to human bronchial epithelial cells. ACS Nano 6:4921–4930. doi:10.1021/nn300425a

    Article  CAS  Google Scholar 

  • Hao L, Chen L (2012) Oxidative stress response in different organs of carp (Cyprinus carpio) with exposure to ZnO nanoparticles. Ecotox Environ Safe 80:103–110. doi:10.1016/j.ecoenv.2012.02.017

    Article  CAS  Google Scholar 

  • Huang C-C, Aronstam RS, Chen D-R, Huang Y-W (2010) Oxidative stress, calcium homeostasis, and altered gene expression in human lung epithelial cells exposed to ZnO nanoparticles. Toxicol in vitro 24:45–55. doi:10.1016/j.tiv.2009.09.007

    Article  CAS  Google Scholar 

  • James SA, Feltis BN, de Jonge MD, Sridhar M, Kimpton JA, Altissimo M, Mayo S, Zheng C, Hastings A, Howard DL, Paterson DJ, Wright PFA, Moorhead GF, Turney TW, Fu J (2013) Quantification of ZnO nanoparticle uptake, distribution and dissolution within individual human macrophages. ACS Nano 12:10621–10635. doi:10.1021/nn403118u

    Article  Google Scholar 

  • Jingxia Z, Lanju X, Tao Z, Guogang R, Zhuo Y (2009) Influences of nanoparticle zinc oxide on acutely isolated rat hippocampal CA3 pyramidal neurons. NeuroToxicology 30:220–230. doi:10.1016/j.neuro.2008.12.005

    Article  Google Scholar 

  • Kahru A, Dubourguier H-C (2010) From ecotoxicology to nanoecotoxicology. Toxicology 269:105–119. doi:10.1016/j.tox.2009.08.016

    Article  CAS  Google Scholar 

  • Khare P, Sonane M, Pandey R, Ali S, Gupta KC, Satish A (2011) Adverse effects of TiO2 and ZnO nanoparticles in soil nematode, Caenorhabditis elegans. J Biomed Nanotechnol 7:116–117, pmid: 21485831

    Article  CAS  Google Scholar 

  • Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR (2008) Nanomaterials in the environment: behavior, fate, bioavailiblity, and effects. Environ Toxicol Chem 27:1825–1851. doi:10.1897/08-090.1

    Article  CAS  Google Scholar 

  • Navale GR, Thripuranthaka M, Late DJ, Shinde SS (2015) Antimicrobial activity of ZnO nanoparticles against pathogenic bacteria and fungi. JSM Nanotechnol Nanomed 3:1033. doi

  • Li M, Pokhrel S, Jin X, Madler L, Damoiseaux R, Hoek EMV (2011) Stability, bioavailability, and bacterial toxicity of ZnO and iron-doped ZnO nanoparticles in aquatic media. Environ Sci Technol 45:755–761. doi:10.1021/es102266g

    Article  CAS  Google Scholar 

  • Ma H, Kabengi NJ, Bertsch PM, Unrine JM, Glenn TC, Williams PL (2011) Comparative phototoxicity of nanoparticulate and bulk ZnO to a free-living nematode Caenorhabditis elegans: the importance of illumination mode and primary particle size. Environ Pollut 159:1473–1480. doi:10.1016/j.envpol.2011.03.013

    Article  CAS  Google Scholar 

  • Ma H, Williams PL, Diamond SA (2013) Ecotoxicity of manufactured ZnO nanoparticles—a review. Environ Pollut 172:76–85. doi:10.1016/j.envpol.2012.08.011

    Article  CAS  Google Scholar 

  • Manke A, Wang L, Rojanasakul Y (2013) Mechanism of nanoparticle-induced oxidative stress and toxicity. Biomed Res Int Article ID:942916. doi: 10.1155/2013/942916

  • Manzo S, Rocco A, Carotenuto R, Picione LF, Miglietta ML, Rametta G, Di Francia G (2011) Investigation of ZnO nanoparticles’ ecotoxicological effects towards different soil organisms. Environ Sci Pollut Res Int 18:756–763. doi:10.1007/s11356-010-0421-0

    Article  CAS  Google Scholar 

  • Miao AJ, Zhang XY, Luo Z, Chen CS, Chin WC, Santschi PH, Quigg A (2010) Zinc oxide-engineered nanoparticles: dissolution and toxicity to marine phytoplankton. Environ Toxicol Chem 29:2814–2822. doi:10.1002/etc.340

    Article  CAS  Google Scholar 

  • Mueller NC, Nowack B (2010) Nanoparticles for remediation: solving big problems with little particles. Elements 6:395–400. doi:10.2113/gselements.6.6.395

    Article  CAS  Google Scholar 

  • Sagheb-Talebi K, Abazari BD, Namiranian M (2005) Regeneration process in natural uneven-aged Caspian beech forests of Iran. Schweiz Z Forstwes 156:477–480. doi:10.3188/szf.2005.0477

    Article  Google Scholar 

  • Sávoly Z, Nagy P, Havancsák K, Záray G (2012) Microanalytical investigation of nematodes. Microchem J 105:83–87. doi:10.1016/j.microc.2012.03.021

    Article  Google Scholar 

  • Sávoly Z, Nagy P, Varga G, Havancsák K, Hrács K, Záray G (2013) A novel method for investigation of uptake and distribution of polluting microelements and nanoparticles in soil-inhabiting nematodes. Microchem J 110:558–567. doi:10.1016/j.microc.2013.07.007

    Article  Google Scholar 

  • Sávoly Z, Záray G (2014) Study of bioaccumulation and biotransformation by microanalytical X-ray techniques: investigation of distribution and speciation of Cu and Cr in the body of the plant-feeding nematode, Xiphinema vuittenezi. Spectrochim Acta B 101:342–350. doi:10.1016/j.sab.2014.09.010

    Article  Google Scholar 

  • Sávoly Z, Buzanich G, Pepponi G, Streli C, Hrács K, Nagy P, Záray G (2015) The fate of nano-ZnO and its bulk counterpart in the body of microscopic nematodes: an X-ray spectrometric study. Microchem J 118:80–87. doi:10.1016/j.microc.2014.08.011

    Article  Google Scholar 

  • Shen C, James SA, de Jonge MD, Turney TW, Wright PFA, Feltis BN (2013) Relating cytotoxicity, zinc ions, and reactive oxygen in ZnO nanoparticle-exposed human immune cells. Toxicol Sci 136:120–130. doi:10.1093/toxsci/kft187

    Article  CAS  Google Scholar 

  • Smijs TG, Pavel S (2011) Titanium dioxide and zinc oxide nanoparticles in sunscreens: focus on their safety and effectiveness. Nanotoxicology, Science and Applications 4:95–112. doi:10.2147/NSA.S19419

    Article  CAS  Google Scholar 

  • Storey ML, Greger JL (1987) Iron, zinc and copper interactions: chronic versus acute responses of rats. J Nutr 117:1434–1442, pmid: 3625315

    CAS  Google Scholar 

  • Suman TY, Radhika Rajasree SR, Kirubagaran R (2015) Evaluation of zinc oxide nanoparticles toxicity on marine algae Chlorella vulgaris through flow cytometric, cytotoxicity and oxidative stress analysis. Ecotox Environ Safe 113:23. doi:10.1016/j.ecoenv.2014.11.015

    Article  CAS  Google Scholar 

  • Tarantola M, Pietuch A, Schneider D, Rother J, Sunnick E, Rosman C, Pierrat S, Sönnichsen C, Wegener J, Janshoff A (2011) Toxicity of gold nanoparticles: synergistic effect of shape and surface functionalization on micromotility of epithelial cells. Nanotoxicology 5:254–268. doi:10.3109/17435390.2010.528847

    Article  CAS  Google Scholar 

  • Vert M, Doi Y, Hellwich K-H, Hess M, Hodge P, Kubisa P, Rinaudo M, Schue F (2012) Terminology for biorelated polymers and applications (IUPAC Recommendations 2012). Pure Appl Chem 84:377–410. doi:10.1351/PAC-REC-10-12-04

    Article  CAS  Google Scholar 

  • Waalewijn-Kool PL, Ortiz MD, van Straalen NM, van Gestel CAM (2013) Sorption, dissolution and pH determine the long-term equilibriation and toxicity of coated and uncoated ZnO nanoparticles in soil. Env Pollut 178:59–64. doi:10.1016/j.envpol.2013.03.003

    Article  CAS  Google Scholar 

  • Wadsworth WG, Riddle DL (1985) Acidic intracellular pH shift during Caenorhabditis elegans larval development. Proc Natl Acad Sci U S A 85:8435–8438. doi:10.1073/pnas.85.22.8435

    Article  Google Scholar 

  • Xiao Y, Vijver MG, Chen G, Peijnenburg WJGM (2015) Toxicity and accumulation of Cu and ZnO nanoparticles in Daphnia magna. Environ Sci Technol 49:4657. doi:10.1021/acs.est.5b00538

    Article  CAS  Google Scholar 

  • Zhao L, Sun Y, Hernandez-Viezcas JA, Hong J, Majumdar S, Niu G, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL (2015) Monitoring the environmental effects of CeO2 and ZnO nanoparticles through the life cycle of corn (Zea mays) plants and in situ μ-XRF mapping of nutrients in kernels. Environ Sci Technol 49:2921. doi:10.1021/es5060226

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors are grateful for the financial support of the Social Renewal Operational Programme (grant no. 4.2.1/B-11/2/KMR-2011-0003) and the Hungarian Scientific Research Foundation (grant no. K81401). Special thanks are due to Imre Varga, Károly Havancsák, and Gábor Varga for their help in nanoparticle characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoltán Sávoly.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sávoly, Z., Hrács, K., Pemmer, B. et al. Uptake and toxicity of nano-ZnO in the plant-feeding nematode, Xiphinema vuittenezi: the role of dissolved zinc and nanoparticle-specific effects. Environ Sci Pollut Res 23, 9669–9678 (2016). https://doi.org/10.1007/s11356-015-5983-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-5983-4

Keywords

Navigation