Skip to main content
Log in

The need to implement an efficient biomass fractionation and full utilization based on the concept of “biorefinery” for a viable economic utilization of microalgae

  • Technoeconomic Perspectives on Sustainable CO2 Capture and Utilization
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In the present work, microalgae strains, such as Scenedesmus obliquus and Phaeodactylum tricornutum grown in indoor/outdoor photobioreactors (PBRs) and in open ponds (this is the first study on such strains cultivated in the local Southern Italy climatic conditions), were fully analyzed for their protein content, carbohydrates, lipids, and fatty acid profile in order to assess their potential use for the production of biofuels, chemicals, and omega-3, and as animal feed and human food. They are compared with Nannochloropsis sp. (commercial sample) which was fully analyzed in our laboratory and Chlorella (literature data). An economic evaluation was carried out, demonstrating that the cultivation of microalgae for the production of only biofuels will not match the economic standards. Conversely, if chemicals are also produced applying the biorefinery concept and using wastewater as a source of nutrients, it will be possible to have a good positive return from microalgae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abomohra AE-F, El-Sheekh M, Hanelt D (2014) Pilot cultivation of the chlorophyte microalga Scenedesmus obliquus as a promising feedstock for biofuel. Biomass Bioenerg 64:237–244. doi:10.1016/j.biombioe.2014.03.049

    Article  CAS  Google Scholar 

  • AOAC (1995) Official methods of analysis of the association of official analytical chemistry, 16th edn. AOAC International, Washington, p 1141

    Google Scholar 

  • AOCS Official Method Ce 2–66 (1997) American Oil Chemists’ Society: Champaign. USA, IL, Preparations of Methyl Esters of Fatty Acids

    Google Scholar 

  • Arbib Z, Ruiza J, Álvarez-Díaza P, Garrido-Péreza C, Barragana J, Perales JA (2013) Long term outdoor operation of a tubular airlift pilot photobioreactor and a high rate algal pond as tertiary treatment of urban wastewater. Ecol Eng 52:143–153. doi:10.1016/j.ecoleng.2012.12.089

    Article  Google Scholar 

  • Aresta M, Dibenedetto A (2010) Indirect utilization of carbon dioxide: utilization of terrestrial and aquatic biomass. In: Aresta M (ed) Carbon dioxide as chemical feedstock. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 335–351

    Chapter  Google Scholar 

  • Aresta M, Dibenedetto A, He LN (2013) Analysis of demand for captured CO2 and products from CO2 conversion. TCGR report.

  • Benavides AMS, Torzillo G, Kopecký J, Masojídek J (2013) Productivity and biochemical composition of Phaeodactylum tricornutum (Bacillariophyceae) cultures grown outdoors in tubular photobioreactors and open ponds. Biomass Bioenerg 54:115–122. doi:10.1016/j.biombioe.2013.03.016

    Article  Google Scholar 

  • Biondi N, Bassi N, Chini Zittelli G, De Faveri D, Giovannini A, Rodolfi L, Allevi C, Macrì C, Tredici MR (2013) Nannochloropsis sp. F&M-M24: Oil production, effect of mixing on productivity and growth in an industrial wastewater. Environ Prog Sustain Energy 32:846–853. doi:10.1002/ep.11681

    Article  CAS  Google Scholar 

  • Buono S, Dibenedetto A, Colucci A, Angelini A, Fogliano V, Langelotti AL, Massa M, Martello A. Productivity and biochemical composition of Scenedesmus obliquus and Phaeodactylum tricornutum: effects of different cultivation approaches. Forthcoming paper

  • CEN/TS 14775:2004 (2004) Solid biofuels. Method for the determination of ash content.

  • da Silva TL, Reis A, Medeiros R, Oliveira AC, Gouveia L (2009) Oil production towards biofuel from autotrophic microalgae semicontinuous cultivations monitorized by flow cytometry. Appl Biochem Biotechnol 159(2):568–78. doi:10.1007/s12010-008-8443-5

    Article  Google Scholar 

  • de Jong E, Higson A, Walsh P, Wellish M (2012) Bio-based chemicals; value added products from biorefineries. Task 42 Biorefinery, IEA Bioenergy, Wageningen

    Google Scholar 

  • Dibenedetto A (2011) The potential of aquatic biomass for CO2-enhanced fixation and energy production. GHG 1(1):58–71. doi:10.1002/ghg3.6

    CAS  Google Scholar 

  • Dibenedetto A (2012) Production of aquatic biomass and extraction of oil. In: Aresta M, Dibenedetto A, Dumeignil F (eds) Biorefinery: From biomasss to chemicals and fuels. Walter de Gruyter GmbH & Co KG, Berlin/Boston, pp 81–100

    Google Scholar 

  • Dibenedetto A, Colucci A (2015) Production and uses of aquatic biomass. In: Aresta M, Dibenedetto A, Dumeignil F (eds) Biorefineries: An Introduction. Walter de Gruyter GmbH & Co KG, Berlin/Boston, pp 57–77

    Google Scholar 

  • Dibenedetto A, Angelini A, Colucci A, di Bitonto L, Pastore C, Aresta M, Giannini C, Comparelli R (2014) Tunable Mixed Oxides: Efficient Agents for the Simultaneous Trans-Esterification of Lipids and Esterification of Free Fatty Acids from Bio-Oils for the Effective Production of FAMEs. Int J Renewable Energy and Biofuels, Article ID 204112

  • FAO (2010) Designing viable algal bioenergy co-production concepts. In: Algae-based biofuels Applications and Co-products. n° 44, Roma, FAO.

  • Feng P, Yang K, Xu Z, Wang Z, Fan L, Qin L, Zhu S, Shang C, Chai P, Yuan Z, Hu L (2014) Growth and lipid accumulation characteristics of Scenedesmus obliquus in semi-continuous cultivation outdoors for biodiesel feedstock production. Bioresource Technol 173:406–414. doi:10.1016/j.biortech.2014.09.123

    Article  CAS  Google Scholar 

  • Gouveia L, Oliveira AC (2009) Microalgae as a raw material for biofuels production. J Ind Microbiol Biotechnol 36(2):269–74. doi:10.1007/s10295-008-0495-6

    Article  CAS  Google Scholar 

  • Guccione A, Biondi N, Sampietro G, Rodolfi L, Bassi N, Tredici MR (2014) Chlorella for protein and biofuels: from strain selection to outdoor cultivation in a Green Wall Panel photobioreactor. Biotechnol Biofuels 7:84. doi:10.1186/1754-6834-7-84

    Article  Google Scholar 

  • Hariskos I, Posten C (2014) Biorefinery of microalgae—opportunities and constraints for different production scenarios. J Biotechnol 9:739–752. doi:10.1002/biot.201300142

    Article  Google Scholar 

  • Hulatt CJ, Thomas DN (2011) Energy efficiency of an outdoor microalgal photobioreactor sited at mid-temperate latitude. Bioresource Technol 102(12):6687–6695. doi:10.1016/j.biortech.2011.03.098

    Article  CAS  Google Scholar 

  • Janz A, Köckritz A, Habil MA (2011) Producing mono- and dicarboxylic acids, useful in pharmaceutical and plastic industries, comprises oxidatively splitting oxidized derivatives of vegetable oil or fat with molecular oxygen or air using gold-containing catalyst and solvent. Patent DE 102010002603:A1

    Google Scholar 

  • Köckritz A, Martin A (2011) Synthesis of azelaic acid from vegetable oil-based feedstocks. Eur J Lipid Sci Technol 113:83–89. doi:10.1002/ejlt.201000117

    Article  Google Scholar 

  • Koller M, Muhr A, Braunegg G (2014) Microalgae as versatile cellular factories for valued products. Algal Research 6:52–63. doi:10.1016/j.algal.2014.09.002

    Article  Google Scholar 

  • Lai H-M, Padua GW, Wei LS (1997) Properties and microstructure of zein sheets plasticized with palmitic and stearic acids. Cereal Chem 74(1):83–90. doi:10.1094/CCHEM.1997.74.1.83

    Article  CAS  Google Scholar 

  • Li J, Liu Y, Cheng JJ, Mos M, Daroch M (2015) Biological potential of microalgae in China for biorefinery-based production of biofuels and high value compound. New Biotechnol 32(6):588–596. doi:10.1016/j.nbt.2015.02.001

    Article  Google Scholar 

  • Lu W, Wanga Z, Wangd X, Yuana Z (2015) Cultivation of Chlorella sp. using raw dairy wastewater for nutrient removal and biodiesel production: Characteristics comparison of indoor bench-scale and outdoor pilot-scale cultures. Bioresource Technol 192:382–388. doi:10.1016/j.biortech.2015.05.094

    Article  CAS  Google Scholar 

  • Mäki-Arvela P, Kuusisto J, Sevilla EM, Simakova I, Mikkola J-P, Myllyoja J, Salmi T, Murzin DY (2008) Catalytic hydrogenation of linoleic acid to stearic acid over different Pd- and Ru-supported catalysts. Appl Cat A 345(2):201–212. doi:10.1016/j.apcata.2008.04.042

    Article  Google Scholar 

  • Norsker N-H, Barbosa MJ, Vermuë MH, Wijffels RH (2011) Microalgal production — A close look at the economics. Biotechnol Adv 29(1):24–27. doi:10.1016/j.biotechadv.2010.08.005

    Article  CAS  Google Scholar 

  • Rawat I, Bhola V, Ranjith Kumar R, Bux F (2013) Improving the feasibility of producing biofuels from microalgae using wastewater. Environ Technol 34(13–14):1765–1775. doi:10.1080/09593330.2013.826287

    Article  CAS  Google Scholar 

  • Rebolloso-Fuentes MM, Navarro-Pérez A, Ramos-Miras JJ, Guil-Guerrero JL (2001) Biomass nutrient profiles of the microalga Phaeodactylum tricornutum. J Food Biochem 25:57–76. doi:10.1111/j.1745-4514.2001.tb00724.x

    Article  CAS  Google Scholar 

  • Singh J, Gu S (2010) Commercialization potential of microalgae for biofuels production. Renew Sust Energ Rev 14:2596–2610. doi:10.1016/j.rser.2010.06.014

    Article  CAS  Google Scholar 

  • Sukenik A, Zmora O, Carmeli Y (1993) Biochemical quality of marine unicellular algae with special emphasis on lipid composition. II Nannochloropsis sp Aquaculture 117:313–326. doi:10.1016/0044-8486(93)90328-V

    CAS  Google Scholar 

  • Van Wychen S, Laurens LML (2013) Determination of total carbohydrates in algal biomass—Laboratory analytical procedure (LAP).

  • Vonshak A (1986) Handbook of microalgal mass culture. CRC Press, Boca Raton

    Google Scholar 

  • Wijffels RH, Barbosa MJ, Eppink MHM (2010) Microalgae for the production of bulk chemicals and biofuels. Biofuels Bioprod Bioref 4:287–295. doi:10.1002/bbb.215

    Article  CAS  Google Scholar 

  • Yaakob Z, Ali E, Zainal A, Mohamad M, Takriff MS (2014) An overview: biomolecules from microalgae for animal feed and aquaculture. J Biol Res (Thessalon) 21(1):6. doi:10.1186/2241-5793-21-6

    Article  Google Scholar 

  • Yen H-W, Hu I-C, Chen C-Y, Ho S-H, Lee D-J, Chango J-S (2013) Microalgae-based biorefinery—From biofuels to natural products. Bioresource Technol 135:166–174. doi:10.1016/j.biortech.2012.10.099

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was funded by the MIUR Industrial Research Project PON01_01966 “ENERBIOCHEM” in the frame of the Operative National Programme-Research and Competitiveness 2007–2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Dibenedetto.

Additional information

Responsible editor: Santiago V. Luis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dibenedetto, A., Colucci, A. & Aresta, M. The need to implement an efficient biomass fractionation and full utilization based on the concept of “biorefinery” for a viable economic utilization of microalgae. Environ Sci Pollut Res 23, 22274–22283 (2016). https://doi.org/10.1007/s11356-016-6123-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6123-5

Keywords

Navigation