Skip to main content
Log in

Volcano-related materials in concretes: a comprehensive review

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Massive volcano-related materials (VRMs) erupted from volcanoes bring the impacts to natural environment and humanity health worldwide, which include generally volcanic ash (VA), volcanic pumice (VP), volcanic tuff (VT), etc. Considering the pozzolanic activities and mechanical characters of these materials, civil engineers propose to use them in low carbon/cement and environment-friendly concrete industries as supplementary cementitious materials (SCMs) or artificial/natural aggregates. The utilization of VRMs in concretes has attracted increasing and pressing attentions from research community. Through a literature review, this paper presents comprehensively the properties of VRMs and VRM concretes (VRMCs), including the physical and chemical properties of raw VRMs and VRMCs, and the fresh, microstructural and mechanical properties of VRMCs. Besides, considering environmental impacts and the development of long-term properties, the durability and stability properties of VRMCs also are summarized in this paper. The former focuses on the resistance properties of VRMCs when subjected to aggressive environmental impacts such as chloride, sulfate, seawater, and freezing–thawing. The latter mainly includes the fatigue, creep, heat-insulating, and expansion properties of VRMCs. This study will be helpful to promote the sustainability in concrete industries, protect natural environment, and reduce the impacts of volcano disaster. Based on this review, some main conclusions are discussed and important recommendations regarding future research on the application of VRMs in concrete industries are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • ACI Committee 225 (1985) Guide to the selection and use of hydraulic cements. In: ACI Journal Proceedings 82(6). ACI

  • ACI Committee 301 (2010) Specifications for structural concrete. ACI, Farmington Hills

    Google Scholar 

  • American Society for Testing and Materials (ASTM) (2000) Standard test methods for sampling and testing fly ash or natural pozzolans for use as a mineral admixture in portland-cement concrete, ASTM International, ASTM C311-00, West Conshohocken

  • American Society for Testing and Materials (ASTM) (2001) Standard specification for coal fly ash and raw or calcined natural pozzolan for use as a mineral admixture in concrete, ASTM C618–00 Philadelphia

  • American Society for Testing and Materials (ASTM) (2003) Standard test method for scaling resistance of concrete surfaces exposed to deicing chemicals (withdrawn 2012), ASTM International, ASTM C672 / C672M-03, West Conshohocken

  • American Society for Testing and Materials (ASTM) (2009a) Standard specification for lightweight aggregates for insulating concrete. ASTM C332, Philadelphia

    Google Scholar 

  • American Society for Testing and Materials (ASTM) (2009b) Standard test method for autoclave expansion of hydraulic cement, ASTM C151/C151M. Philadelphia

  • American Society for Testing and Materials (ASTM) (2012) Standard test method for electrical indication of concrete’s ability to resist chloride ion penetration. ASTM C1201-12 PA

  • American Society for Testing and Materials (ASTM) (2014) Specification for lightweight aggregates for structural concrete. Annual Book of ASTM Standards, ASTM C330, Philadelphia

  • Asi I, Shalabi F (2007) Use of basalt in asphalt concrete mixes in Jordan. Proc., workshop on use of basalt in AC Mixes, Great Amman Municipality, Amman

  • ASTM D4123 (1995) Standard test method for indirect tension test for resilient modulus of bituminous mixtures. ASTM International, PA

  • Baghabra OS, Al-Amoudi MM, Saadi MM (1995) Effect of magnesium sulfate and sodium sulfate on the durability performance of plain and blended cements. ACI Mater J 92(1):15–24

    Google Scholar 

  • Bakharev T, Sanjayan JG, Cheng YB (2001) Resistance of alkali-activated slag concrete to carbonation. Cem Concr Res 31(9):1277–1283

    Article  CAS  Google Scholar 

  • Bărbuţă M, Toma IO (2014) Experimental evaluation of strength and elastic properties of polymer concrete with different volumes of volcanic tuff acting as filler. J Mater Civ Eng 27(6):04014191

    Google Scholar 

  • Barnes P, Bensted J (2002) Structure and performance of cements. CRC Press, Boca Raton

    Google Scholar 

  • Battaglino G, Schippa G (1968) Su un nuovo methodo di valutazione dei materiali pozzolanicici-. L’industria Italiana del cemento 38(3):175–178

    CAS  Google Scholar 

  • Baxter PJ, Bonadonna C, Dupree R et al (1999) Cristobalite in volcanic ash of the Soufriere hills volcano, Montserrat, British west indies. Science 283(5405):1142–1145

    Article  CAS  Google Scholar 

  • Bilodeau A, Malhotra VM (2000) High-volume fly ash system: concrete solution for sustainable development. ACI Mater J 97(1):41–48

    CAS  Google Scholar 

  • BS EN 771–3 (2004) Specification for masonry units. Aggregate concrete masonry units (dense and lightweight aggregates), BSI 42

  • Chan SY, Ji X (1999) Comparative study of the initial surface absorption and chloride diffusion of high performance zeolite, silica fume and PFA concretes. Cem Concr Compos 21(4):293–300

    Article  CAS  Google Scholar 

  • Chen Z, Wang Z (2009) Research on pavement performance of volcanic ash mixture as road base and mechanism. J Highway Transp Res Dev 4(1):18–23

    Article  Google Scholar 

  • Costa U and Massazza F (1974) Factors affecting the reaction with lime of Italian pozzolanas. II Cemento, 131–139

  • CSA (2004) Design of concrete structures [electronic Resource]. Mississauga, Ont.: Canadian Standard Association

  • Davis RE (1954) Pozzolanic materials-with special reference to their use in concrete pipe. American Concrete Pipe Association, Technical Memo

  • Delmelle P, Villiéras F, Pelletier M (2005) Surface area, porosity and water adsorption properties of fine volcanic ash particles. Bull Volcanol 67(2):160–169

    Article  Google Scholar 

  • Demirdag S, Gunduz L (2008) Strength properties of volcanic slag aggregate lightweight concrete for high performance masonry units. Constr Build Mater 22(3):135–142

    Article  Google Scholar 

  • Demirdag S, Ugur I, Sarac S (2008) The effects of cement/fly ash ratios on the volcanic slag aggregate lightweight concrete masonry units. Constr Build Mater 22(8):1730–1735

    Article  Google Scholar 

  • Escalante-Garcıa JI, Sharp JH (2001) The microstructure and mechanical properties of blended cements hydrated at various temperatures. Cem Concr Res 31(5):695–702

    Article  Google Scholar 

  • Forest J, Demoulian E (1963) Appreciation de l’activité des cendres volantes et des pouzzolanes. Revue des Materiaux de Construction no 577:312–317

    Google Scholar 

  • Fujita M (1960) Cement-Japanese industry, Series 5, Yuhikaku 100-101. [In Japanese]

  • Fukushima T, Mastumoto S (1942) Investigation of rock weathering of as lime or cement setting material (2). Jpn Ceram Assoc Mag 50(598):524–532 [In Japanese]

    Article  CAS  Google Scholar 

  • Glasser FP, & Marr J (1984) Effect of mineral additives on the composition of cement pore fluids. In: British Ceramic Proceedings 419:35

  • Gopalan MK, Haque MN (1987) Effect of curing regime on the properties of fly-ash concrete. ACI Mater J 84(1):14–19

    CAS  Google Scholar 

  • Hassan IO (2006) Strength properties of concrete obtained using volcanic ash pozzolan as partial replacement of cement, Unpublished M.Sc. Thesis, Department of Building, University of Jos

  • Hiroyuki F, Koji O (1981) Sakurajima volcano geological maps, geological survey [In Japanese]

  • Horiuchi S, Taketsuka M, Odawara T, Kawasaki H (1992) Fly-ash slurry island: I. theoretical and experimental investigations. J Mater Civ Eng 4(2):117–133

    Article  CAS  Google Scholar 

  • Horwell CJ, Baxter PJ (2006) The respiratory health hazards of volcanic ash: a review for volcanic risk mitigation. Bull Volcanol 69(1):1–24

    Article  Google Scholar 

  • Horwell CJ, Fenoglio I, Vala Ragnarsdottir K et al (2003) Surface reactivity of volcanic ash from the eruption of Soufriere Hills volcano, Montserrat, West Indies with implications for health hazards. Environ Res 93(2):202–215

    Article  CAS  Google Scholar 

  • Hosokawa Y (2014) Some properties of the volcanic ash from Shinmoedake for concrete’s fine-aggregate, Agriculture and Rural Engineering Society Conference Meeting, No.9-34,788-9. [In Japanese]

  • Hossain KMA (2003) Blended cement using volcanic ash and pumice. Cem Concr Res 33(10):1601–1605

    Article  CAS  Google Scholar 

  • Hossain KMA (2004a) Properties of volcanic pumice based cement and lightweight concrete. Cem Concr Res 34(2):283–291

    Article  Google Scholar 

  • Hossain KMA (2004b) Potential use of volcanic pumice as a construction material. J Mater Civ Eng 16(6):573–577

    Article  CAS  Google Scholar 

  • Hossain KMA (2005a) Chloride induced corrosion of reinforcement in volcanic ash and pumice based blended concrete. Cem Concr Compos 27(3):381–390

    Article  Google Scholar 

  • Hossain KMA (2005b) Performance of volcanic ash based precast and in situ blended cement concretes in marine environment. J Mater Civ Eng 17(6):694–702

    Article  CAS  Google Scholar 

  • Hossain KMA (2005c) Volcanic ash and pumice as cement additives: pozzolanic, alkali-silica reaction and autoclave expansion characteristics. Cem Concr Res 35(6):1141–1144

    Article  CAS  Google Scholar 

  • Hossain KMA (2006) High strength blended cement concrete incorporating volcanic ash: performance at high temperatures. Cem Concr Compos 28(6):535–545

    Article  Google Scholar 

  • Hossain KMA (2014) Lightweight SCC with volcanic and other natural materials. Proc ICE-Constr Mater 168(1):35–44

    Article  Google Scholar 

  • Hossain KMA, Ahmed S (2010) Lightweight concrete incorporating volcanic ash-based blended cement and pumice aggregate. J Mater Civ Eng 23(4):493–498

    Article  Google Scholar 

  • Hossain KMA, Lachemi M (2004a) Corrosion resistance and chloride diffusivity of volcanic ash blended cement mortar. Cem Concr Res 34(4):695–702

    Article  CAS  Google Scholar 

  • Hossain KMA, Lachemi M (2004b) Residual strength and durability of volcanic ash concrete exposed to high temperature. ACI Mater J 101(6):493–500

    CAS  Google Scholar 

  • Hossain KMA, Lachemi M (2006a) Performance of volcanic ash and pumice based blended cement concrete in mixed sulfate environment. Cem Concr Res 36(6):1123–1133

    Article  CAS  Google Scholar 

  • Hossain KMA, Lachemi M (2006b) Development of volcanic ash concrete: strength, durability, and microstructural investigations. ACI Mater J 103(1):11

    CAS  Google Scholar 

  • Hossain KMA, Lachemi M (2007a) Mixture design, strength, durability, and fire resistance of lightweight pumice concrete. ACI Mater J 104(5):449

    CAS  Google Scholar 

  • Hossain KMA, Lachemi M (2007b) Strength, durability and micro-structural aspects of high performance volcanic ash concrete. Cem Concr Res 37(5):759–766

    Article  CAS  Google Scholar 

  • Hossain KMA, Lachemi M (2009) Fresh, mechanical, and durability characteristics of self-consolidating concrete incorporating volcanic ash. J Mater Civ Eng 22(7):651–657

    Article  Google Scholar 

  • Hossain KMA, Ahmed S, Lachemi M (2011) Lightweight concrete incorporating pumice based blended cement and aggregate: mechanical and durability characteristics. Constr Build Mater 25(3):1186–1195

    Article  Google Scholar 

  • Huntzinger DN, Eatmon TD (2009) A life-cycle assessment of Portland cement manufacturing: comparing the traditional process with alternative technologies. J Clean Prod 17(7):668–675

    Article  CAS  Google Scholar 

  • Igarashi S, Bentur A, Mindess S (1996) Microhardness testing of cementitious materials. Adv Cem Based Mater 4(2):48–57

    Article  CAS  Google Scholar 

  • Iyer RS, Scott JA (2001) Power station fly ash—a review of value-added utilization outside of the construction industry. Resour Conserv Recycl 31(3):217–228

    Article  Google Scholar 

  • Johnston DM (1997) Physical and social impacts of past and future volcanic eruptions in New Zealand: a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Earth Science, Massey University, Palmerston North (Doctoral dissertation)

  • Kaku T, Hori S (1989) Compressive strength characteristics of volcanic ash concrete. Proc Jpn Concr Inst 11(1):59–64 [in Japanese]

    Google Scholar 

  • Kaku T, Nakamura K et al. (1987) Coarse and fine aggregate for free shrinkage properties of concrete using volcanic gravel-ash (material and construction). Tokai Branch research report collection, (25), 29–32 [In Japanese]

  • Kaku T, Sano C et al. (1988) An proposal on compressive strength estimation of volcanic ash concrete, Summaries of technical papers of Annual Meeting Architectural Institute of Japan (26), 21–24 [In Japanese]

  • Kasai Y (1999) Perspectives kind and nature, future of admixture. Concr J 37(1):52–56 [In Japanese]

    Article  CAS  Google Scholar 

  • Kawano M, Tomita K (2001) TEM-EDX study of weathered layers on the surface of volcanic glass, bytownite, and hypersthene in volcanic ash from Sakurajima volcano, Japan. Am Mineral 86(3):284–292

    Article  CAS  Google Scholar 

  • Kazuto F, Noriyuki S, Ozaki N (1990) Compression fatigue in seawater of blast furnace slag concrete using siliceous admixtures. Civil Society Annual Scientific Conference on Abstracts, 638–639. [In Japanese]

  • Khan MI, Siddique R (2011) Utilization of silica fume in concrete: review of durability properties. Resour Conserv Recycl 57:30–35

    Article  Google Scholar 

  • Kouamo TH, Mbey JA, Elimbi A et al (2013) Synthesis of volcanic ash-based geopolymer mortars by fusion method: effects of adding metakaolin to fused volcanic ash. Ceram Int 39(2):1613–1621

    Article  Google Scholar 

  • Kuroiwa T (1976) Use of the unused resources and a by-product of the concrete. Concr J 14(9):63–65 [In Japanese]

    Article  Google Scholar 

  • Larbi JA, Fraay ALA, Bijen JMJM (1990) The chemistry of the pore fluid of silica fume-blended cement systems. Cem Concr Res 20(4):506–516

    Article  CAS  Google Scholar 

  • Lothenbach B, Scrivener K, Hooton RD (2011) Supplementary cementitious materials. Cem Concr Res 41(12):1244–1256

    Article  CAS  Google Scholar 

  • Ludwig U, Schwiete HE (1962) Researches on the hydration of trass cements, in Proceedings of the 4th International Congress on the Chemistry of Cement, Washington 1960. Natl Bur Stand Monogr 43(2):1093–1100

    Google Scholar 

  • Manmohan D, Mehta PK (1981) Influence of pozzolanic, slag and chemical admixtures on pore size distribution and permeability of hardened cement pastes. Cem Concr Aggreg 3(1):63–67

    Article  CAS  Google Scholar 

  • Massazza F (1993) Pozzolanic cements. Cem Concr Compos 15(4):185–214

    Article  CAS  Google Scholar 

  • Massazza F & Costa U (1977) Factors determining the development of mechanical strength in lime–pozzolana pastes. In Proceedings of the XII Conference on Silicate Industry and Silicate Science 1:537

  • Massazza F, Costa U (1979) Aspetti dell’attivita possolanica e proprieta dei cementi pozzolanici. Il Cem 76(1):3–18

    CAS  Google Scholar 

  • Mehta PK (1997) Durability–critical issues for the future. Concr Int 19(7):27–33

    CAS  Google Scholar 

  • Meloso D, Copic J, Bossaerts P (2009) Promoting intellectual discovery: patents versus markets. Science 323(5919):1335–1339

    Article  CAS  Google Scholar 

  • Meyer C (2009) The greening of the concrete industry. Cem Concr Compos 31(8):601–605

    Article  CAS  Google Scholar 

  • Mielenz RC, Witte LP, Glantz OJ (1950) Effect of calcination on natural pozzolans, In Symposium on use of pozzolanic materials in mortars and concretes. ASTM International. San Francisco, California. doi:10.1520/STP39404S

  • Nagai S, Yoshida I (1934) Study of mixing Portland cement (10). Jpn Ceram Assoc Mag 42(497):273–284 [In Japanese]

    Article  Google Scholar 

  • Naik TR (2005) Sustainability of cement and concrete industries. In Proceedings of the International Conference on Achieving Sustainability in Construction 141–150

  • Naik TR, Moriconi G (2006) Environmental-friendly durable concrete made with recycled materials for sustainable concrete construction. University of Wisconsin-Milwaukee, Wisconsin

    Google Scholar 

  • Naik TR, Ramme BW, Kraus RN, Siddique R (2003) Long-term performance of high-volume fly ash concrete pavements. ACI Mater J 100(2):150–155

    CAS  Google Scholar 

  • Naji JA, Asi IM (2008) Performance evaluation of asphalt concrete mixes containing granular volcanic ash. J Mater Civ Eng 20(12):754–761

    Article  CAS  Google Scholar 

  • Nazari A, Riahi S, Riahi S, Shamekhi SF, Khademno A (2010) Influence of Al2O3 nanoparticles on the compressive strength and workability of blended concrete. J Am Sci 6(5):6–9

    Google Scholar 

  • Neville AM (2006) Properties of concrete, 4th Edition, copyright © 2000, Asia, Person Education Pte. Ltd. 844p

  • Ogunbode EB, Olawuyi BJ (2008) Strength characteristics of laterized concrete using lime-volcanic ash cement. Environ Technol Sci J 3(2):81–87

    Google Scholar 

  • Okuda T (1987) Studies on the highly durable concrete. Dam structures as electric power facilities. Proc Jpn Soc Civ Eng 384:33–41 [In Japanese]

    Google Scholar 

  • Olawuyi BJ, Olusola KO (2010) Compressive strength of volcanic ash/ordinary portland cement laterized concrete. Civ Eng Dimens 12(1):23–28

    Google Scholar 

  • Olawuyi BJ, Olusola KO, Babafemi AJ (2012) Influence of curing age and mix composition on compressive strength of volcanic ash blended cement laterized concrete. Civ Eng Dimens 14(2):84–91

    Google Scholar 

  • Osawa T (1950) Research on chloride resistance of cement substitute soil (Part 3). Bull Soc Salt Sci Jpn 4(3–4):20–29 [In Japanese]

    Google Scholar 

  • Page CL, Vennesland Ø (1983) Pore solution composition and chloride binding capacity of silica-fume cement pastes. Matér Constr 16(1):19–25

    Article  CAS  Google Scholar 

  • Parande AK, Ramesh Babu B, Aswin Karthik M et al (2008) Study on strength and corrosion performance for steel embedded in metakaolin blended concrete/mortar. Constr Build Mater 22(3):127–134

    Article  Google Scholar 

  • Parfitt EA, Wilson L (2008) Fundamentals of physical volcanology. Blackwell Publishing, Massachusetts, p 256

    Google Scholar 

  • Peris Mora E (2007) Life cycle, sustainability and the transcendent quality of building materials. Build Environ 42(3):1329–1334

    Article  Google Scholar 

  • Ping G, Ping X, Yan F, Beaudoin JJ (1995) Micro structural characterization of cementitious materials: conductivity and impedance method. Materials science of concrete IV. American Ceramic Society, Westerville, pp 201–262

    Google Scholar 

  • Rafiza AR, Bakri AM, Kamarudin H, Nizar IK, & Hardjito D (2013) Evaluation of pelletized artificial geopolymer aggregate manufactured from volcano ash (Doctoral dissertation, Petra Christian University)

  • Ramezanianpour AA, Jafari Nadooshan M, Peydayesh M (2012) Effect of new composite cement containing volcanic ash and limestone on mechanical properties and salt scaling resistance of concrete. J Mater Civ Eng 25(11):1587–1593

    Article  Google Scholar 

  • Rifa’i A, Yasufuku N, Omine K (2013) Characterization and effective utilization of volcanic ash for soil improvement. Appl Mech Mater 248:292–297

    Article  Google Scholar 

  • Sersale R & Orsini PG (1969) Hydrated phases after reaction of lime with ‘pozzolanic’materials or with blastfurnace slags. In Proceedings, Fifth International Symposium on the Chemistry of Cement 4:114–121

  • Sestini Q, Santarelli L (1936) Ricerche sulle pozzolane: IV analisi delle pozzolane e malte pozzolaniche. Annali di Cbimica Applicate 26:534–557

    Google Scholar 

  • Shi C (2001) Studies on several factors affecting hydration and properties of lime-pozzolan cements. J Mater Civ Eng 13(6):441–445

    Article  CAS  Google Scholar 

  • Shi C (2004) Effect of mixing proportions of concrete on its electrical conductivity and the rapid chloride permeability test results. Cem Concr Res 34(3):537–545

    Article  CAS  Google Scholar 

  • Shipley S, Sarna-Wojcicki AM (1982) Distribution, thickness, and mass of Late Pleistocene and Holocene tephra from major volcanoes in the northwestern United States: a preliminary assessment of hazards from volcanic ejecta to nuclear reactors in the Pacific Northwest: U.S. Geological Survey Miscellaneous Field Studies Map MF-1435

  • Siddique R (2012) Properties of concrete made with volcanic ash. Resour Conserv Recycl 66:40–44

    Article  Google Scholar 

  • Stewart C, Johnston DM, Leonard GS et al (2006) Contamination of water supplies by volcanic ash fall: a literature review and simple impact modelling. J Volcanol Geotherm Res 158(3):296–306

    Article  CAS  Google Scholar 

  • Takemoto K & Uchikawa H (1980) Hydratation des ciments pouzzolaniques. In Proceedings of the 7th International Conference on the Chemistry of Cement, Paris, France 1–29

  • Targan Ş, Olgun A, Erdogan Y, Sevinc V (2003) Influence of natural pozzolan, colemanite ore waste, bottom ash, and fly ash on the properties of Portland cement. Cem Concr Res 33(8):1175–1182

    Article  CAS  Google Scholar 

  • Tchakoute KH, Elimbi A, Mbey JA et al (2012) The effect of adding alumina-oxide to metakaolin and volcanic ash on geopolymer products: a comparative study. Constr Build Mater 35:960–969

    Article  Google Scholar 

  • Tchakoute KH, Elimbi A, Yanne E, Djangang CN (2013) Utilization of volcanic ashes for the production of geopolymers cured at ambient temperature. Cem Concr Compos 38:75–81

    Article  CAS  Google Scholar 

  • Thomas MDA (1997) Laboratory and field studies of salt scaling in fly ash concrete. Frost Resistance of Concrete, 21–30

  • Togo S (2003) Utillzation of waste in cement industry. Shigen-to-Sozai 119(2):41–45, In Japanese

    Article  CAS  Google Scholar 

  • Tomoshisa S (1990) A study on the prediction method of solidification processing and strength expression by lime-cement-based stabilization material of special soil and industrial waste. [In Japanese]

  • Tsivilis S, Chaniotakis E, Kakali G, Batis G (2002) An analysis of the properties of Portland limestone cements and concrete. Cem Concr Compos 24(3):371–378

    Article  CAS  Google Scholar 

  • Turanli L, Uzal B, Bektas F (2004) Effect of material characteristics on the properties of blended cements containing high volumes of natural pozzolans. Cem Concr Res 34(12):2277–2282

    Article  CAS  Google Scholar 

  • Turriziani R, Corradini G (1959) Materiali pozzolanici ad alto contenuto in silice. L’Industria Italiana del Cemento 92(6):146–150

    Google Scholar 

  • U.S. Geological Survey (2010) http://volcanoes.usgs.gov/ash/index.html

  • Ueda H, Nishio S, Mastuda Y (2005) Study of deterioration on tunnel lining concrete using cement substitute material. Tunn Eng Pap 15:99–105 [In Japanese]

    Google Scholar 

  • Wang S, Baxter L (2007) Comprehensive study of biomass fly ash in concrete: strength, microscopy, kinetics and durability. Fuel Process Technol 88(11):1165–1170

    Article  CAS  Google Scholar 

  • Wardman JB, Wilson TM, Bodger PS, Cole JW et al (2012) Investigating the electrical conductivity of volcanic ash and its effect on HV power systems. Phys Chem EarthParts A/B/C 45:128–145

    Article  Google Scholar 

  • Wilson TM, Stewart C (2012) Volcanic Ash. In: Bobrowsky P. Encyclopaedia of Natural Hazards. Springer, 1000

  • Wilson TM, Stewart C, Sword-Daniels V, Leonard et al (2012) Volcanic ash impacts on critical infrastructure. Phys Chem EarthParts A/B/C 45:5–23

    Article  Google Scholar 

  • Yshita I, Fukute T (1992) Historical development of reinforced concrete structures for port and harbour facilities. Proceeding of Japan Society of Civil Engineers 442:1–7

  • Zimanowski B (2000) Physics of phreatomagmatism. Part 1: explosion physics. Terra Nostra 6:515–523

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaochuang Cai.

Additional information

Responsible editor: Philippe Garrigues

Research highlights

1. Comparing with existing review papers regarding volcanic ash in concrete, this paper comprehensively reviews the basic, mechanical, durability, and stability properties of VRMs and VRMCs, not only volcanic ash concrete.

2. This paper presents a research summary of VRMs/VRMCs through collecting and reviewing massive literatures reported mainly by English and Japanese.

3. This study is very helpful to reduce the impacts of volcano and manage of the reestablishment post-disaster.

4. Some recommendations regarding VRMs in concrete industries are provided.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, G., Noguchi, T., Degée, H. et al. Volcano-related materials in concretes: a comprehensive review. Environ Sci Pollut Res 23, 7220–7243 (2016). https://doi.org/10.1007/s11356-016-6161-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6161-z

Keywords

Navigation