Skip to main content
Log in

Spatiotemporal dynamics of bacterial and archaeal communities in household biogas digesters from tropical and subtropical regions of Yunnan Province, China

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

A combination of 16S rRNA gene PCR-based techniques and the determination of abiotic factors were used to study community composition, richness, and evenness and the correlation between biotic and abiotic factors in 19 household biogas digesters in tropical and subtropical regions of Yunnan Province, China. The results revealed that both bacterial and archaeal community composition differed between regions and archaeal community composition was more affected by season than bacterial; regardless of sampling location, the dominant bacterial phyla included Chloroflexi, Bacteroidetes, Firmicutes, and Proteobacteria, and the most dominant archaeal phylum was Euryarchaeota; in digesters from both regions, Chloroflexi as the first or second most dominant bacteria accounted for 21.50–26.10 % of bacterial library sequences, and the phylum Crenarchaeota as the second most dominant archaea accounted for 17.65–19.77 % of archaeal library sequences; the species Methanosaeta concilii as the most dominant archaeal species accounted for 67.80–72.80 % of the sequences. This study found that most of the abundant microbial communities in 19 biogas digesters are similar, and this result will provide enlightenment for finding the universal nature in rural biogas digesters at tropical and subtropical regions in China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ashelford KE, Chuzhanova NA, Fry JC, Jones AJ, Weightman AJ (2005) At least 1 in 20 16S rRNA sequence records currently held in public repositories is estimated to contain substantial anomalies. Appl Environ Microbiol 71:7724–7736. doi:10.1128/AEM.71.12.7724-7736.2005

    Article  CAS  Google Scholar 

  • Béguin P, Millet J, Aubert JP (1992) Cellulose degradation by Clostridium thermocellum: from manure to molecular biology. FEMS Microbiol Lett 100:523–528. doi:10.1111/j.1574-6968.1992.tb14087.x

    Article  Google Scholar 

  • Brosius J, Dull TJ, Sleeter DD, Noller HF (1981) Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. J Mol Biol 148:107–127. doi:10.1016/0022-2836(81)90508-8

    Article  CAS  Google Scholar 

  • Carballa M, Smits M, Etchebehere C, Boon N, Verstraete W (2011) Correlations between molecular and operational parameters in continuous lab-scale anaerobic reactors. Appl Microbiol Biotechnol 89:303–314. doi:10.1007/s00253-010-2858-y

  • Cheng XJ, Qiu TL, Wang M (2010) Screening of microbial community in biogas fermentation under low temperature and construction of its metagenome library. Chin Biotechnol 30:50–55

    CAS  Google Scholar 

  • Christy PM, Gopinath LR, Divya D (2014) A review on anaerobic decomposition and enhancement of biogas production through enzymes and microorganisms. Renew Sust Energ Rev 34:167–173

    Article  Google Scholar 

  • Clesceri LS, Greenberg AE, Eaton AD (1998) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association Publications, Washington

    Google Scholar 

  • Connaughton S, Collins G, O’Flaherty V (2006) Development of microbial community structure and activity in a high-rate anaerobic bioreactor at 18 C. Water Res 40:1009–1017. doi:10.1016/j.watres.2005.12.026

    Article  CAS  Google Scholar 

  • de Bok FA, Stams AJ, Dijkema C, Boone DR (2001) Pathway of propionate oxidation by a oyntrophic oulture of Smithella propionica and Methanospirillum hungatei. Appl Environ Microbiol 67:1800–1804. doi:10.1128/AEM.67.4.1800-1804.2001

    Article  Google Scholar 

  • Dearman B, Marschner P, Bentham RH (2006) Methane production and microbial community structure in single-stage batch and sequential batch systems anaerobically co-digesting food waste and biosolids. Appl Microbiol Biotechnol 69:589–596. doi:10.1007/s00253-005-0076-9

    Article  CAS  Google Scholar 

  • Dong M, Wu Y, Li Q, Tian G, Yang B, Li Y, Zhang L, Wang Y, Xiao W, Yin F, Zhao X, Zhang W, Cui X (2015) Investigation of methanogenic community structures in rural biogas digesters from different climatic regions in Yunnan, southwest China. Curr Microbiol 70(5):679–684. doi:10.1007/s00284-015-0775-0

    Article  CAS  Google Scholar 

  • Feki E, Khoufi S, Loukil S, Sayadi S (2015) Improvement of anaerobic digestion of waste-activated sludge by using H2O2 oxidation, electrolysis, electro-oxidation and thermo-alkaline pretreatments. Environ Sci Pollut Res 22:14717–14726

    Article  CAS  Google Scholar 

  • Gao R, Cao Y, Yuan X, Zhu W, Wang X, Cui Z (2014) Microbial diversity in a full-scale anaerobic reactor treating high concentration organic cassava wastewater. Afr J Biotechnol 11:6494–6500. doi:10.5897/AJB11.3142

  • Hammer Ø, Harper DAT, Ryan PD (2001). PAST: paleontological statistics software package for education and data analysis. Paleontol Electron 4 (art. 4):9

  • Kröber M, Bekel T, Diaz NN, Goesmann A, Jaenicke S, Krause L, Millera D, Runteb K, Prisca V, Pühler A, Schlüter A (2009) Phylogenetic characterization of a biogas plant microbial community integrating clone library 16S-rDNA sequences and metagenome sequence data obtained by 454-pyrosequencing. J Biotechnol 142:38–49. doi:10.1016/j.jbiotec.2009.02.010

    Article  Google Scholar 

  • Lambert PJ, Aronson JR (1993) Inequality decomposition analysis and the Gini coefficient revisited. The Economic J 103:1221–1227

    Article  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948. doi:10.1093/bioinformatics/btm404

    Article  CAS  Google Scholar 

  • Li A, Chu YN, Wang X, Ren L, Yu J, Liu X, Yan J, Zhang L, Wu S, Li S (2013) A pyrosequencing-based metagenomic study of methane-producing microbial community in solid-state biogas reactor. Biotechnol Biofuels 6:3. doi:10.1186/1754-6834-6-3

    Article  CAS  Google Scholar 

  • Li JM (2013). Biogas production in China: current status and future development. www.epa.gov/agstar/documents/conf13/Biogas Production in China—current status. Accessed 5 Jan 2015

  • Li XJ (2014). The future of biogas in China. www.dbfz.de/web/fileadmin/user upload/Vortraege/Biogas World 2014/02_Jiming.pdf. Accessed 5 Jan 2015

  • Liu Y, Balkwill DL, Aldrich HC, Drake GR, Boone DR (1999) Characterization of the anaerobic propionate-degrading syntrophs Smithella propionica gen. nov., sp. nov. and Syntrophobacter wolinii. Int J Sys Bacteriol 49:545–556

    Article  CAS  Google Scholar 

  • Liu Y, Whitman WB (2008) Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann N Y Acad Sci 1125:171–189. doi:10.1196/annals.1419.019

    Article  CAS  Google Scholar 

  • Maroušek J (2013) Removal of hardly fermentable ballast from the maize silage to accelerate biogas production. Ind Crop Prod 44:253–257

    Article  Google Scholar 

  • Maroušek J (2014a) Biotechnological partition of the grass silage to streamline its complex energy utilization. Int J Green Energy 11(9):962–968

  • Maroušek J (2014b) Economically oriented process optimization in waste management. Environ Sci Pollut Res 21(12):7400–7402

    Article  Google Scholar 

  • Maroušek J, Hašková S, Zeman R, Váchal J, Vaníčková R (2014) Processing of residues from biogas plants for energy purposes. Clean Techn Environ Policy 17(3):797–801

    Article  Google Scholar 

  • Marzorati M, Wittebolle L, Boon N, Daffonchio D, Verstraete W (2008) How to get more out of molecular fingerprints: practical tools for microbial ecology. Environ Microbiol 10:1571–1581. doi:10.1111/j.1462-2920.2008.01572.x

  • Mountfort DO, Brulla WJ, Krumholz LR, Bryant MP (1984) Syntrophus buswellii gen. nov., sp. nov., a benzoate catabolizer from methanogenic ecosystems. Int J Sys Bacteriol 34:216–217. doi:10.1099/00207713-34-2-216

    Article  Google Scholar 

  • Muyzer G, De Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    CAS  Google Scholar 

  • Nettmann E, Bergmann I, Pramschüfer S, Mundt K, Plogsties V, Herrmann C, Klocke M (2010) Polyphasic analyses of methanogenic archaeal communities in agricultural biogas plants. Appl Environ Microbiol 76:2540–2548. doi:10.1128/AEM.01423-09

    Article  CAS  Google Scholar 

  • Schloss PD, Handelsman J (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71:1501–1506. doi:10.1128/AEM.71.3.1501-1506.2005

    Article  CAS  Google Scholar 

  • Stevenson BS, Eichorst SA, Wertz JT, Schmidt TM, Breznak JA (2004) New strategies for cultivation and detection of previously uncultured microbes. Appl Environ Microbiol 70:4748–4755. doi:10.1128/AEM.70.8.4748-4755.2004

    Article  CAS  Google Scholar 

  • St-Pierre B, Wright ADG (2014) Comparative metagenomic analysis of bacterial populations in three full-scale mesophilic anaerobic manure digesters. Appl Microbiol Biotechnol 98:2709–2717. doi:10.1007/s00253-013-5220-3

    Article  CAS  Google Scholar 

  • Sundberg C, Al-Soud WA, Larsson M, Alm E, Yekta SS, Svensson BH, Sørensen SJ, Karlsson A (2013) 454 pyrosequencing analyses of bacterial and archaeal richness in 21 full-scale biogas digesters. FEMS Microbiol Ecol 85:612–626. doi:10.1111/1574-6941.12148

    Article  CAS  Google Scholar 

  • Tang Y, Shigematsu T, Morimura S, Kida K (2004) The effects of micro-aeration on the phylogenetic diversity of microorganisms in a thermophilic anaerobic municipal solid-waste digester. Water Res 38:2537–2550. doi:10.1016/j.watres.2004.03.012

    Article  CAS  Google Scholar 

  • Teske A, Hinrichs KU, Edgcomb V, de Vera Gomez A, Kysela D, Sylva SP, Sogin ML, Jannasch HW (2002) Microbial diversity of hydrothermal sediments in the Guaymas Basin: evidence for anaerobic methanotrophic communities. Appl Environ Microbiol 68:1994–2007. doi:10.1128/AEM.68.4.1994-2007.2002

    Article  CAS  Google Scholar 

  • Tomei MC, Carozza NA (2014) Sequential anaerobic/anaerobic digestion for enhanced sludge stabilization: comparison of the process performance for mixed and waste sludge. Environ Sci Pollut Res 22(10):7271–7279

    Article  Google Scholar 

  • Tonini D, Dorini G, Astrup TF (2014) Bioenergy, material, and nutrients recovery from household waste: advanced material, substance, energy, and cost flow analysis of a waste refinery process. Appl Energy 121:64–78

    Article  CAS  Google Scholar 

  • Xu J, Chiang HC, Bjursell MK, Gordon JI (2004) Message from a human gut symbiont: sensitivity is a prerequisite for sharing. Trends Microbiol 12:21–28. doi:10.1016/j.tim.2003.11.007

    Article  Google Scholar 

  • Yamada T, Imachi H, Ohashi A, Harada H, Hanada S, Kamagata Y, Sekiguchi Y (2007) Bellilinea caldifistulae gen. nov., sp. nov. and Longilinea arvoryzae gen. nov., sp. nov., strictly anaerobic, filamentous bacteria of the phylum Chloroflexi isolated from methanogenic propionate-degrading consortia. Int J Syst Evol Microbiol 57:2299–2306. doi:10.1099/ijs.0.65098-0

    Article  CAS  Google Scholar 

  • Yu Y, Lee C, Kim J, Hwang S (2005) Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnol Bioeng 89:670–679. doi:10.1002/bit.20347

    Article  CAS  Google Scholar 

  • Zhang T, Ni J, Xie D (2015) Severe situation of rural nonpoint source pollution and efficient utilization of agricultural wastes in the Three Gorges Reservoir Area. Environ Sci Pollut Res 22(21):16453–16462

    Article  Google Scholar 

  • Zumstein E, Moletta R, Godon JJ (2000) Examination of two years of community dynamics in an anaerobic bioreactor using fluorescence polymerase chain reaction (PCR) single-strand conformation polymorphism analysis. Environ Microbiol 2:69–78. doi:10.1046/j.1462-2920.2000.00072.x

Download references

Acknowledgments

We are thankful for grants from the National Natural Science Foundation of China (NSFC; 31160123/C0309), the Yunnan Provincial Sciences and Technology Platform Promotion Plan (2013DH041), the Specialized Research Fund for Doctoral Program of Universities (20135303110001), Yunnan Province Key Fund of Applied Basic Research (2014FA030) and Open Fund from Yunnan Key Laboratory of Rural Energy Engineering (2015KF07). We are also grateful to the staff of the forestry bureaus of XishuangBanna Autonomous Region and Jianshui County.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaolong Cui or Wudi Zhang.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Responsible editor: Robert Duran

Guangliang Tian and Qiumin Li contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 2452 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, G., Li, Q., Dong, M. et al. Spatiotemporal dynamics of bacterial and archaeal communities in household biogas digesters from tropical and subtropical regions of Yunnan Province, China. Environ Sci Pollut Res 23, 11137–11148 (2016). https://doi.org/10.1007/s11356-016-6265-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6265-5

Keywords

Navigation