Skip to main content
Log in

Performance of electrochemical oxidation process for removal of di (2-ethylhexyl) phthalate

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Di (2-ethylhexyl) phthalate (DEHP) is the most detected and concentrated plasticizer in environment and wastewaters, worldwide. In this study, different operating parameters such as current intensity, treatment time, type of anodes, and supporting electrolytes were tested to optimized the electro-oxidation process (EOP) for the removal of DEHP in the presence of methanol as a dissolved organic matter. Among the anodes, the Nb/BDD showed the best degradation rate of DEHP, at low current intensity of 0.2 A after 90 min of treatment time with a percentage of degradation recorded of 81 %, compared to 70 % obtained with the Ti/IrO2-RuO2. Furthermore, due to the combination of direct and indirect oxidation, the removal of DEHP in the presence of 1 g/L Na2SO4 was higher than NaBr, even though the oxidant production of NaBr was 11.7 mmol/L against 3.5 mmol/L recorded in the presence of sulfate at 0.5 A and after 60 min of electrolysis time. Under optimal condition (current intensity = 0.5 A, time = 120 min, using Nb/BDD anode and Na2SO4 as supporting electrolyte), the removal of 87.2 % of DEHP was achieved. The total cost of 0.106 US$/m3 of treated water was achieved based on economical optimization of reactor with current intensity of 0.2 A and 1 g/L Na2SO4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AOPs:

Advanced oxidation process

BDD:

Boron-doped diamond

COD:

Chemical oxygen demand

DC:

Direct current

DCM:

Dichloromethane

DEHP:

Di 2-ethylhexyl phthalate

DOM:

Dissolved organic matter

EOP:

Electro-oxidation process

GC:

Gas chromatography

Log KOW :

Octanol-water partition coefficient

MeOH:

Methanol

MS:

Mass spectrometer

OH:

Hydroxyl radicals

PVC:

Polyvinyl chloride

TOC:

Total organic carbon

RNO:

P-nitrosodimethylaniline

WWTPs:

Wastewater treatment plants

References

  • Anandan S, Pugazhenthiran N, Lana-Villarreal T, Lee G-J, Wu JJ (2013) Catalytic degradation of a plasticizer, di-ethylhexyl phthalate, using Nx TiO2-x nanoparticles synthesized via co-precipitation. Chem Eng J 231:182–189

    Article  CAS  Google Scholar 

  • Awad HS, Galwa NA (2005) Electrochemical degradation of Acid Blue and Basic Brown dyes on Pb/PbO2 electrode in the presence of different conductive electrolyte and effect of various operating factors. Chemosphere 61:1327–1335

    Article  CAS  Google Scholar 

  • Bergmann MEH, Rollin J (2007) Product and by-product formation in laboratory studies on disinfection electrolysis of water using boron-doped diamond anodes. Catal Today 124:198–203

    Article  CAS  Google Scholar 

  • Brillas E, Sirés I, Oturan MA (2009) Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chem Rev 109:6570–6631

    Article  CAS  Google Scholar 

  • Canizares P, Martinez F, Diaz M, Garcia-Gomez J, Rodrigo MA (2002) Electrochemical oxidation of aqueous phenol wastes using active and nonactive electrodes. J Electrochem Soc 149:D118–D124

    Article  CAS  Google Scholar 

  • Cañizares P, Lobato J, Paz R, Rodrigo MA, Sáez C (2005) Electrochemical oxidation of phenolic wastes with boron-doped diamond anodes. Water Res 39:2687–2703

    Article  Google Scholar 

  • Cao Z-F, Wang M-m, Zhong H, Z-h Q, Qiu P, Y-j Y, G-y L, Wang S (2015) Electro-oxidation of sphalerite in weak alkaline sodium chloride solution. Hydrometallurgy 157:127–132

    Article  CAS  Google Scholar 

  • Chan H, Lau T, Ang P, Wu M, Wong P (2004) Biosorption of di (2-ethylhexyl) phthalate by seaweed biomass. J Appl Phycol 16:263–274

    Article  CAS  Google Scholar 

  • Chatzisymeon E, Fierro S, Karafyllis I, Mantzavinos D, Kalogerakis N, Katsaounis A (2010) Anodic oxidation of phenol on Ti/IrO2 electrode: experimental studies. Catal Today 151:185–189

    Article  CAS  Google Scholar 

  • Chen C-Y, Wu P-S, Chung Y-C (2009) Coupled biological and photo-Fenton pretreatment system for the removal of di-(2-ethylhexyl) phthalate (DEHP) from water. Bioresour Technol 100:4531–4534

    Article  CAS  Google Scholar 

  • Chen C-Y (2010) The oxidation of di-(2-ethylhexyl) phthalate (DEHP) in aqueous solution by UV/H2O2 photolysis. Water Air Soil Pollut 209:411–417

    Article  CAS  Google Scholar 

  • Comninellis C (1994) Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment. Electrochim Acta 39:1857–1862

    Article  CAS  Google Scholar 

  • Comninellis C, Kapalka A, Malato S, Parsons SA, Poulios I, Mantzavinos D (2008) Advanced oxidation processes for water treatment: advances and trends for R&D. J Chem Technol Biotechnol 83:769–776

    Article  CAS  Google Scholar 

  • Correa-Lozano B, Comninellis C, De Battisti A (1997) Service life of Ti/SnO2–Sb2O5 anodes. J Appl Electrochem 27:970–974

    Article  CAS  Google Scholar 

  • Correa-Lozano B, Comninellis C, De Battisti A (1996) Electrochemical properties of Ti/SnO2-Sb2O5 electrodes prepared by the spray pyrolysis technique. J Appl Electrochem 26:683–688

    Article  CAS  Google Scholar 

  • Daghrir R, Drogui P, Tshibangu J (2014) Efficient treatment of domestic wastewater by electrochemical oxidation process using bored doped diamond anode. Sep Purif Technol 131:79–83

    Article  CAS  Google Scholar 

  • Deligiorgis A, Xekoukoulotakis NP, Diamadopoulos E, Mantzavinos D (2008) Electrochemical oxidation of table olive processing wastewater over boron-doped diamond electrodes: treatment optimization by factorial design. Water Res 42:1229–1237

    Article  CAS  Google Scholar 

  • Domínguez JR, González T, Palo P, Sánchez-Martín J (2010) Anodic oxidation of ketoprofen on boron-doped diamond (BDD) electrodes. Role of operative parameters. Chem Eng J 162:1012–1018

    Article  Google Scholar 

  • El-Ghenymy A, Garrido JA, Rodríguez RM, Cabot PL, Centellas F, Arias C, Brillas E (2013) Degradation of sulfanilamide in acidic medium by anodic oxidation with a boron-doped diamond anode. J Electroanal Chem 689:149–157

    Article  CAS  Google Scholar 

  • Feng L, Van Hullebusch ED, Rodrigo MA, Esposito G, Oturan MA (2013) Removal of residual anti-inflammatory and analgesic pharmaceuticals from aqueous systems by electrochemical advanced oxidation processes. A review. Chem Eng J 228:944–964

    Article  CAS  Google Scholar 

  • García-Gómez C, Drogui P, Zaviska F, Seyhi B, Gortáres-Moroyoqui P, Buelna G, Neira-Sáenz C, Estrada-alvarado M, Ulloa-Mercado RG (2014) Experimental design methodology applied to electrochemical oxidation of carbamazepine using Ti/PbO2 and Ti/BDD electrodes. J Electroanal Chem 732:1–10

    Article  Google Scholar 

  • Hammad Khan M, Jung JY (2008) Ozonation catalyzed by homogeneous and heterogeneous catalysts for degradation of DEHP in aqueous phase. Chemosphere 72:690–696

    Article  CAS  Google Scholar 

  • Kapałka A, Fóti G, Comninellis C (2008) Determination of the Tafel slope for oxygen evolution on boron-doped diamond electrodes. Electrochem Commun 10:607–610

    Article  Google Scholar 

  • Li M, Feng C, Hu W, Zhang Z, Sugiura N (2009) Electrochemical degradation of phenol using electrodes of Ti/RuO2-Pt and Ti/IrO2-Pt. J Hazard Mater 162:455–462

    Article  CAS  Google Scholar 

  • Liao C-H, Kang S-F, Wu F-A (2001) Hydroxyl radical scavenging role of chloride and bicarbonate ions in the H2O2/UV process. Chemosphere 44:1193–1200

    Article  CAS  Google Scholar 

  • Magdouli S, Daghrir R, Brar S, Drogui P, Tyagi R (2013) Di 2-ethylhexylphtalate in the aquatic and terrestrial environment: a critical review. J Environ Manag 127:36–49

    Article  CAS  Google Scholar 

  • Martínez-Huitle C, Ferro S, Reyna S, Cerro-López M, De Battisti A, Quiroz M (2008) Electrochemical oxidation of oxalic acid in the presence of halides at boron doped diamond electrode. J Braz Chem Soc 19:150–156

    Article  Google Scholar 

  • Martinez-Huitle CA, Ferro S (2006) Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes. Chem Soc Rev 35:1324–1340

    Article  CAS  Google Scholar 

  • Martínez-Huitle CA, Brillas E (2009) Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review. Appl Catal B Environ 87:105–145

    Article  Google Scholar 

  • Martínez-Huitle CA, Ferro S, De Battisti A (2005) Electrochemical incineration in the presence of halides. Electrochem Solid-State Lett 8:D35–D39

    Article  Google Scholar 

  • Martínez-Huitle CA, Quiroz MA, Comninellis C, Ferro S, De Battisti A (2004) Electrochemical incineration of chloranilic acid using Ti/IrO2, Pb/PbO2 and Si/BDD electrodes. Electrochim Acta 50:949–956

    Article  Google Scholar 

  • Michaud PA, Panizza M, Ouattara L, Diaco T, Foti G, Comninellis C (2003) Electrochemical oxidation of water on synthetic boron-doped diamond thin film anodes. J Appl Electrochem 33:151–154

    Article  CAS  Google Scholar 

  • Mitadera M, Spataru N, Fujishima A (2004) Electrochemical oxidation of aniline at boron-doped diamond electrodes. J Appl Electrochem 34:249–254

    Article  CAS  Google Scholar 

  • Muff J, Bennedsen LR, Søgaard EG (2011) Study of electrochemical bleaching of p-nitrosodimethylaniline and its role as hydroxyl radical probe compound. J Appl Electrochem 41:599–607

    Article  CAS  Google Scholar 

  • Murugananthan M, Latha SS, Bhaskar Raju G, Yoshihara S (2010) Anodic oxidation of ketoprofen—an anti-inflammatory drug using boron doped diamond and platinum electrodes. J Hazard Mater 180:753–758

    Article  CAS  Google Scholar 

  • Panizza M, Cerisola G (2007) Electrocatalytic materials for the electrochemical oxidation of synthetic dyes. Appl Catal B Environ 75:95–101

    Article  CAS  Google Scholar 

  • Persin F, Rumeau M (1989) Le traitement électrochimique des eaux et des effluents. Tribune de l’Eau 42:45–66

    CAS  Google Scholar 

  • Pham T, Tyagi R, Brar S, Surampalli R (2011) Effect of ultrasonication and Fenton oxidation on biodegradation of bis (2-ethylhexyl) phthalate (DEHP) in wastewater sludge. Chemosphere 82:923–928

    Article  CAS  Google Scholar 

  • Sires I, Brillas E (2012) Remediation of water pollution caused by pharmaceutical residues based on electrochemical separation and degradation technologies: a review. Environ Int 40:212–229

    Article  CAS  Google Scholar 

  • Tran N, Drogui P (2013) Electrochemical removal of microcystin-LR from aqueous solution in the presence of natural organic pollutants. J Environ Manag 114:253–260

    Article  CAS  Google Scholar 

  • Velegraki T, Balayiannis G, Diamadopoulos E, Katsaounis A, Mantzavinos D (2010) Electrochemical oxidation of benzoic acid in water over boron-doped diamond electrodes: statistical analysis of key operating parameters, kinetic modeling, reaction by-products and ecotoxicity. Chem Eng J 160:538–548

    Article  CAS  Google Scholar 

  • Zaviska F (2011) Modélisation du traitement de micropolluants organiques par oxydation électrochimique. Université du Québec, Québec

    Google Scholar 

  • Zhang C, Liu L, Wang J, Rong F, Fu D (2013) Electrochemical degradation of ethidium bromide using boron-doped diamond electrode. Sep Purif Technol 107:91–101

    Article  CAS  Google Scholar 

  • Zolfaghari M, Drogui P, Seyhi B, Brar S, Buelna G, Dubé R (2014) Occurrence, fate and effects of di (2-ethylhexyl) phthalate in wastewater treatment plants: a review. Environ Pollut 194:281–293

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Sincere thanks to the Ministry of International Relations of Québec (MRI-UBR-122366) and National Council of Science and Technology (CONACYT) for their financial support to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Drogui.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Espinoza, J.D.G., Drogui, P., Zolfaghari, M. et al. Performance of electrochemical oxidation process for removal of di (2-ethylhexyl) phthalate. Environ Sci Pollut Res 23, 12164–12173 (2016). https://doi.org/10.1007/s11356-016-6304-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6304-2

Keywords

Navigation