Skip to main content
Log in

Microwave-irradiation-assisted hybrid chemical approach for titanium dioxide nanoparticle synthesis: microbial and cytotoxicological evaluation

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Titanium dioxide nanoparticles (TNPs) are widely used in the pharmaceutical and cosmetics industries. It is used for protection against UV exposure due to its light-scattering properties and high refractive index. Though TNPs are increasingly used, the synthesis of TNPs is tedious and time consuming; therefore, in the present study, microwave-assisted hybrid chemical approach was used for TNP synthesis. In the present study, we demonstrated that TNPs can be synthesized only in 2.5 h; however, the commonly used chemical approach using muffle furnace takes 5 h. The activity of TNP depends on the synthetic protocol; therefore, the present study also determined the effect of microwave-assisted hybrid chemical approach synthetic protocol on microbial and cytotoxicity. The results showed that TNP has the best antibacterial activity in decreasing order from Escherichia coli, Bacillus subtilis, and Staphylococcus aureus. The IC50 values of TNP for HCT116 and A549 were found to be 6.43 and 6.04 ppm, respectively. Cell death was also confirmed from trypan blue exclusion assay and membrane integrity loss was observed. Therefore, the study determines that the microwave-assisted hybrid chemical approach is time-saving; hence, this technique can be upgraded from lab scale to industrial scale via pilot plant scale. Moreover, it is necessary to find the mechanism of action at the molecular level to establish the reason for greater bacterial and cytotoxicological toxicity.

A graphical representation of TNP synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abulaiti A, Shintani Y, Funaki S et al (2013) Interaction between non-small-cell lung cancer cells and fibroblasts via enhancement of TGF-β signaling by IL-6. Lung Cancer 82:204–213. doi:10.1016/j.lungcan.2013.08.008

    Article  Google Scholar 

  • Agnihotri S, Mukherji S, Mukherji S (2014) Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Adv 4:3974–3983

    Article  CAS  Google Scholar 

  • Arin M, Lommens P, Hopkins SC et al (2012) Deposition of photocatalytically active TiO2 films by inkjet printing of TiO2 nanoparticle suspensions obtained from microwave-assisted hydrothermal synthesis. Nanotechnology 23:165603

    Article  Google Scholar 

  • Avadi M (2004) Diethylmethyl chitosan as an antimicrobial agent: synthesis, characterization and antibacterial effects. Eur Polym J 40:1355–1361. doi:10.1016/j.eurpolymj.2004.02.015

    Article  CAS  Google Scholar 

  • Bagheri S, Shameli K, Abd Hamid SB (2012) Synthesis and characterization of anatase titanium dioxide nanoparticles using egg white solution via sol-gel method. J Chem 2013:1–5. doi:10.1155/2013/848205

    Article  Google Scholar 

  • Balasubramanian B, Kraemer KL, Reding NA et al (2010) Synthesis of monodisperse TiO2-paraffin core-shell nanoparticles for improved dielectric properties. ACS Nano 4:1893–1900. doi:10.1021/nn9016422

    Article  CAS  Google Scholar 

  • Beer C, Foldbjerg R, Hayashi Y et al (2012) Toxicity of silver nanoparticles—nanoparticle or silver ion? Toxicol Lett 208:286–292. doi:10.1016/j.toxlet.2011.11.002

    Article  CAS  Google Scholar 

  • Bilecka I, Djerdj I, Niederberger M (2008) One-minute synthesis of crystalline binary and ternary metal oxide nanoparticles. Chem Commun (Camb) 886–888. doi:10.1039/b717334b

  • Brahma S, Shivashankar SA (2009) Surfactant-mediated synthesis of functional metal oxide nanostructures via microwave irradiation-assisted chemical synthesis. MaterRes Soc Symp Proc 1174:1174V02–1174V08

    Google Scholar 

  • Brahma S, Rao KJ, Shivashankar S (2010) Rapid growth of nanotubes and nanorods of würtzite ZnO through microwave-irradiation of a metalorganic complex of zinc and a surfactant in solution. Bull Mater Sci 33:89–95

    Article  CAS  Google Scholar 

  • Carrière M, Pigeot-Rémy S, Casanova A et al (2014) Impact of titanium dioxide nanoparticle dispersion state and dispersion method on their toxicity towards A549 lung cells and Escherichia coli bacteria. J Transl Toxicol 1:10–20

    Google Scholar 

  • Case CL, Johnson TR (1984) Laboratory experiments in microbiology. Benjamin Cummings, San Francisco

    Google Scholar 

  • Cullity BD, Stock SR (2001) Elements of X-ray diffraction, 3rd edn. Prentice Hall Chapter 1

  • Dasgupta N, Ranjan S, Mundekkad D et al (2015) Nanotechnology in agro-food: from field to plate. Food Res Int 69:381–400. doi:10.1016/j.foodres.2015.01.005

    Article  Google Scholar 

  • Dasgupta N, Ranjan S, Rajendran B et al (2016) Thermal co-reduction approach to vary size of silver nanoparticle: its microbial and cellular toxicology. Environ Sci Pollut Res Int 23(5):4149–4163

    Article  CAS  Google Scholar 

  • Giovanni M, Tay CY, Setyawati MI et al (2014) Toxicity profiling of water contextual zinc oxide, silver, and titanium dioxide nanoparticles in human oral and gastrointestinal cell systems. Environ Toxicol. doi:10.1002/tox.22015

    Google Scholar 

  • Gupta K, Singh RP, Pandey A, Pandey A (2013) Photocatalytic antibacterial performance of TiO2 and Ag-doped TiO2 against S. aureus, P. aeruginosa and E. coli. Beilstein J Nanotechnol 4:345–351. doi:10.3762/bjnano.4.40

    Article  Google Scholar 

  • Hartshorn RE, Thomas EC, Anklam K et al (2013) Short communication: Minimum bactericidal concentration of disinfectants evaluated for bovine digital dermatitis-associated Treponema phagedenis-like spirochetes. J Dairy Sci 96:3034–3038. doi:10.3168/jds.2012-5994

    Article  CAS  Google Scholar 

  • IARC (2015) IARC monographs on the evaluation of carcinogenic risks to humans. In: Int. Agency Res. Cancer, Lyon, Fr. http://monographs.iarc.fr/ENG/Monographs/. Accessed 27 Apr 2015

  • Jena A, Vinu R, Shivashankar SA, Madras G (2010) Microwave assisted synthesis of nanostructured titanium dioxide with high photocatalytic activity. Ind Eng Chem Res 49:9636–9643

    Article  CAS  Google Scholar 

  • Jenkins R, Snyder R (2012) Introduction to X-ray powder diffractometry. Wiley, New York

    Google Scholar 

  • Jens A-N, Des M (2011) Elements of modern X-ray physics, 2nd edn. Wiley, New York

    Google Scholar 

  • Jin CY, Zhu BS, Wang XF, Lu QH (2008) Cytotoxicity of titanium dioxide nanoparticles in mouse fibroblast cells. Chem Res Toxicol 21:1871–1877. doi:10.1021/tx800179f

    Article  CAS  Google Scholar 

  • Jung Y, Song K-H, Cho JE et al (2015) Area under the concentration–time curve to minimum inhibitory concentration ratio as a predictor of vancomycin treatment outcome in methicillin-resistant Staphylococcus aureus bacteraemia. Int J Antimicrob Agents 43:179–183. doi:10.1016/j.ijantimicag.2013.10.017

    Article  Google Scholar 

  • Kansara K, Patel P, Shah D et al (2014) TiO2 nanoparticles induce cytotoxicity and genotoxicity in human alveolar cells. Mol Cytogenet 7:P77. doi:10.1186/1755-8166-7-S1-P77

    Article  Google Scholar 

  • Kansara K, Patel P, Shah D et al (2015) TiO2 nanoparticles induce DNA double strand breaks and cell cycle arrest in human alveolar cells. Environ Mol Mutagen 56:204–217. doi:10.1002/em.21925

    Article  CAS  Google Scholar 

  • Kasap S, Tel H, Piskin S (2011) Preparation of TiO2 nanoparticles by sonochemical method, isotherm, thermodynamic and kinetic studies on the sorption of strontium. J Radioanal Nucl Chem 289:489–495

    Article  CAS  Google Scholar 

  • Kingsley JD, Ranjan S, Dasgupta N, Saha P (2013) Nanotechnology for tissue engineering: need, techniques and applications. J Pharm Res 7:200–204. doi:10.1016/j.jopr.2013.02.021

    Google Scholar 

  • Kui L, Lin X, Zhao J (2013) Toxic effects of the interaction of titanium dioxide nanoparticles with chemicals or physical factors. Int J Nanomedicine 8:2509–2520

    Google Scholar 

  • Kumar A, Pandey AK, Singh SS et al (2011a) Cellular uptake and mutagenic potential of metal oxide nanoparticles in bacterial cells. Chemosphere 83:1124–1132. doi:10.1016/j.chemosphere.2011.01.025

    Article  CAS  Google Scholar 

  • Kumar A, Pandey AK, Singh SS et al (2011b) Engineered ZnO and TiO2 nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli. Free Radic Biol Med 51:1872–1881. doi:10.1016/j.freeradbiomed.2011.08.025

    Article  CAS  Google Scholar 

  • Kumar A, Khan S, Dhawan A (2014) Comprehensive molecular analysis of the responses induced by titanium dioxide nanoparticles in human keratinocyte cells. J Transl Toxicol 1:28–39

    Google Scholar 

  • Liu Y, Xu Z, Li X (2013) Cytotoxicity of titanium dioxide nanoparticles in rat neuroglia cells. Brain Inj 27:934–939

    Article  Google Scholar 

  • Ma R, Levard C, Marinakos SM et al (2012) Size-controlled dissolution of organic-coated silver nanoparticles. Environ Sci Technol 46:752–759. doi:10.1021/es201686j

    Article  CAS  Google Scholar 

  • Maddinedi SB, Mandal BK, Ranjan S, Dasgupta N (2015) Diastase assisted green synthesis of size-controllable gold nanoparticles. RSC Adv 5:26727–26733. doi:10.1039/C5RA03117F

    Article  CAS  Google Scholar 

  • Magdolenova Z, Bilaničová D, Pojana G et al (2012) Impact of agglomeration and different dispersions of titanium dioxide nanoparticles on the human related in vitro cytotoxicity and genotoxicity. J Environ Monit 14:455–464

    Article  CAS  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63. doi:10.1016/0022-1759(83)90303-4

    Article  CAS  Google Scholar 

  • Nandita D, Ranjan S, Mundra S et al (2015) Fabrication of food grade vitamin E nanoemulsion by low energy approach, characterization and its application. Int J food Prop. doi:10.1080/10942912.2015.1042587

    Google Scholar 

  • Perez Holmberg J, Johnson A-C, Bergenholtz J et al (2013) Near room temperature synthesis of monodisperse TiO2 nanoparticles: growth mechanism. J Phys Chem C 117:5453–5461. doi:10.1021/jp4001434

    Article  CAS  Google Scholar 

  • Picskin S, Palantöken A, Yilmaz MS (2013) Antimicrobial activity of synthesized TiO2 nanoparticles. In: International Conference on Emerging Trends in Engineering and Technology (ICETET’2013) Patong Beach, Phuket (Thailand)

  • Rai AK, Anh LT, Gim J et al (2013) Simple synthesis and particle size effects of TiO2 nanoparticle anodes for rechargeable lithium ion batteries. Electrochim Acta 90:112–118. doi:10.1016/j.electacta.2012.11.104

    Article  CAS  Google Scholar 

  • Ranjan S, Dasgupta N, Chakraborty AR et al (2014) Nanoscience and nanotechnologies in food industries: opportunities and research trends. J Nanoparticle Res 16:1–23. doi:10.1007/s11051-014-2464-5

    Article  Google Scholar 

  • Ranjan S, Dasgupta N, Chinnappan S et al (2015) A novel approach to evaluate titanium dioxide nanoparticle-protein interaction through docking: an insight into mechanism of action. Proc Natl Acad Sci India B Biol Sci. doi:10.1007/s40011-015-0673-z

    Google Scholar 

  • Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S (2008) Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater 4:707–716. doi:10.1016/j.actbio.2007.11.006

    Article  CAS  Google Scholar 

  • Saquib Q, Al-Khedhairy AA, Siddiqui MA et al (2012) Titanium dioxide nanoparticles induced cytotoxicity, oxidative stress and DNA damage in human amnion epithelial (WISH) cells. Toxicol In Vitro 26:351–361. doi:10.1016/j.tiv.2011.12.011

    Article  CAS  Google Scholar 

  • Shi L, Shan J, Ju Y et al (2012) Nanoparticles as delivery vehicles for sunscreen agents. Colloids Surf A Physicochem Eng Asp 396:122–129. doi:10.1016/j.colsurfa.2011.12.053

    Article  CAS  Google Scholar 

  • Shirato K, Taguchi F (2009) Mast cell degranulation is induced by A549 airway epithelial cell infected with respiratory syncytial virus. Virology 386:88–93. doi:10.1016/j.virol.2009.01.011

    Article  CAS  Google Scholar 

  • Shukla RK, Kumar A, Pandey AK et al (2011a) Titanium dioxide nanoparticles induce oxidative stress-mediated apoptosis in human keratinocyte cells. J Biomed Nanotechnol 7:100–101. doi:10.1166/jbn.2011.1221

    Article  CAS  Google Scholar 

  • Shukla RK, Sharma V, Pandey AK et al (2011b) ROS-mediated genotoxicity induced by titanium dioxide nanoparticles in human epidermal cells. Toxicol In Vitro 25:231–241. doi:10.1016/j.tiv.2010.11.008

    Article  CAS  Google Scholar 

  • Shukla RK, Kumar A, Gurbani D et al (2013a) TiO2 nanoparticles induce oxidative DNA damage and apoptosis in human liver cells. Nanotoxicology 7:48–60. doi:10.3109/17435390.2011.629747

    Article  CAS  Google Scholar 

  • Shukla RK, Kumar A, Vallabani NVS et al (2013b) Titanium dioxide nanoparticle-induced oxidative stress triggers DNA damage and hepatic injury in mice. Nanomedicine (Lond). doi:10.2217/nnm.13.100

    Google Scholar 

  • Shukla RK, Kumar A, Vallabani NVS et al (2014) TiO2 NPs induced hepatic injury in mammals: a mechanistic approach. Mol Cytogenet 7:P82. doi:10.1186/1755-8166-7-S1-P82

    Article  Google Scholar 

  • Torrico M, Giménez MJ, González N et al (2010) Bactericidal activity of daptomycin versus vancomycin in the presence of human albumin against vancomycin-susceptible but tolerant methicillin-resistant Staphylococcus aureus (MRSA) with daptomycin minimum inhibitory concentrations of 1–2 μg/mL. Int J Antimicrob Agents 35:131–137. doi:10.1016/j.ijantimicag.2009.09.021

    Article  CAS  Google Scholar 

  • Vallabani NVS, Shukla RK, Konka D et al (2014) TiO2 nanoparticles induced micronucleus formation in human liver (HepG2) cells: comparison of conventional and flow cytometry based methods. Mol Cytogenet 7:P79. doi:10.1186/1755-8166-7-S1-P79

    Article  Google Scholar 

  • Wagner S, Münzer S, Behrens P, et al (2009) Cytotoxicity of titanium and silicon dioxide nanoparticles. Journal of Physics: Conference Series. p 12022

  • Wang Y, Cui H, Zhou J et al (2014) Cytotoxicity, DNA damage, and apoptosis induced by titanium dioxide nanoparticles in human non-small cell lung cancer A549 cells. Environ Sci Pollut Res 22:5519–5530. doi:10.1007/s11356-014-3717-7

    Article  Google Scholar 

  • Wang X, Tian J, Fei C et al (2015) Rapid construction of TiO2 aggregates using microwave assisted synthesis and its application for dye-sensitized solar cells. RSC Adv 5:8622–8629

    Article  CAS  Google Scholar 

  • XpertArena (2014) Nanomaterials: its pros and cons in industries. www.xpertarena.com. Accessed 28 Oct 2015

Download references

Acknowledgments

The Centre for Nanotechnology Research, VIT University, Vellore is kindly acknowledged for providing AFM analysis and the School of Advanced Sciences, VIT University, Vellore, India, is kindly acknowledged for providing XRD facility. The authors acknowledged Dr. Venkatraman M, School of Bio Sciences and Technology, VIT University, India, for his support in cell culture work and the Department of Biotechnology (DBT, India) for the project grant (BT/PR10414/PFN/20/961/2014) and Veer Kunwar Singh Memorial Trust, Chapra, Bihar, India, for partial support (VKSMT/SN/NFNA/0011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shivendu Ranjan or Chidambaram Ramalingam.

Additional information

Responsible editor: Santiago V. Luis

Shivendu Ranjan and Nandita Dasgupta contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranjan, S., Dasgupta, N., Rajendran, B. et al. Microwave-irradiation-assisted hybrid chemical approach for titanium dioxide nanoparticle synthesis: microbial and cytotoxicological evaluation. Environ Sci Pollut Res 23, 12287–12302 (2016). https://doi.org/10.1007/s11356-016-6440-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6440-8

Keywords

Navigation