Skip to main content

Advertisement

Log in

Bioassays with terrestrial and aquatic species as monitoring tools of hydrocarbon degradation

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In this study chemical analyses and ecotoxicity tests were applied for the assessment of a heavily hydrocarbon-contaminated soil prior and after the application of a remediation procedure that consisted in the stimulation of soil autochthonous populations of hydrocarbon degraders in static-ventilated biopiles. Terrestrial bioassays were applied in mixtures of test soils and artificial control soil and studied the survival and reproduction of Eisenia fetida and the avoidance response of E. fetida and Folsomia candida. Effects on aquatic organisms were studied by means of acute tests with Vibrio fischeri, Raphidocelis subcapitata, and Daphnia magna performed on aqueous elutriates from test soils. The bioremediation procedure led to a significant reduction in the concentration of hydrocarbons (from 34264 to 3074 mg kg−1, i.e., 91 % decrease) and toxicity although bioassays were not able to report a percentage decrease of toxicity as high as the percentage reduction. Sublethal tests proved the most sensitive terrestrial bioassays and avoidance tests with earthworms and springtails showed potential as monitoring tools of hydrocarbon remediation due to their high sensitivity and short duration. The concentrations of hydrocarbons in water extracts from test soils were 130 and 100 μg L−1 before and after remediation, respectively. Similarly to terrestrial tests, most aquatic bioassays detected a significant reduction in toxicity, which was almost negligible at the end of the treatment. D. magna survival was the most affected by soil elutriates although toxicity to the crustacean was associated to the salinity of the samples rather than to the concentration of hydrocarbons. Ecotoxicity tests with aqueous soil elutriates proved less relevant in the assessment of hydrocarbon-contaminated soils due to the low hydrosolubility of hydrocarbons and the influence of the physicochemical parameters of the aquatic medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Al-Mutairi N, Bufarsan A, Al-Rukaibi F (2008) Ecorisk evaluation and treatability potential of soils contaminated with petroleum hydrocarbon-based fuels. Chemosphere 74:142–148

    Article  CAS  Google Scholar 

  • ASTM (1988) Standard guide for conducting acute toxicity tests with fishes, macroinvertebrates, and amphibians. E729-88a. American Society for Testing and Materials, Philadelphia, p 20

    Google Scholar 

  • Atlas RM, Bartha R (1992) Hydrocarbon biodegradation and oil spill bioremediation. Adv Microb Ecol 12:287–338

    Article  CAS  Google Scholar 

  • Békaert C, Rast C, Ferrier V, Bispo A, Jourdain MJ, Vasseur P (1999) Use of in vitro (Ames and Mutatox tests) and in vivo (Amphibian Micronucleus test) assays to assess the genotoxicity of leachates from a contaminated soil. Org Geochem 30:953–962

    Article  Google Scholar 

  • Bispo A, Jourdain MJ, Jauzein M (1999) Toxicity and genotoxicity of industrial soils polluted by polycyclic aromatic hydrocarbons (PAHs). Org Geochem 30:947–952

    Article  CAS  Google Scholar 

  • Bori J, Riva MC (2015) An alternative approach to assess the habitat selection of Folsomia candida in contaminated soils. Bull Environ Contam Toxicol 95(5):670–674

    Article  CAS  Google Scholar 

  • Bori J, Ribalta C, Domene X, Riva MC, Ribó JM (2015) Environmental effects of an imidacloprid-containing formulation: from soils to waters. Afinidad 571(72):169–176

    Google Scholar 

  •  Bori J, Vallès B, Navarro A, Riva MC (2016) Geochemistry and environmental threats of soils surrounding an abandoned mercury mine. Environ Sci Pollut Res Int: In revision

  • Bossert I, Bartha R (1984) The fate of petroleum in soil ecosystem. In: Atlas RM (ed) Petroleum microbiology. Macmillan Co., New York, pp 435–476

    Google Scholar 

  • Brassington KJ, Hough RL, Paton GI, Semple KT, Risdon GC, Crossley J et al (2007) Weathered hydrocarbon wastes: a risk management primer. Crit Rev Environ Sci Technol 37:199–232

    Article  CAS  Google Scholar 

  • British Standard EN 12457-2 (2002) Characterization of waste. Leaching. Compliance test for leaching of granular waste materials and sludges. One stage batch test at a liquid to solid ratio of 10 l/kg for materials with particle size below 4 mm (without or with size reduction). British Standards Institutions

  • Brown DG, Knightes CD, Peters CA (1999) Risk assessment for polycyclic aromatic hydrocarbon NAPLs using component fractions. Environ Sci Tech 33:4357–4363

    Article  CAS  Google Scholar 

  • Chaineau CH, Yepremian C, Vidalie JF, Ducreux J, Ballerini D (2003) Bioremediation of a crude oil-polluted soil: biodegradation, leaching and toxicity assessments. Water Air Soil Pollut 144:419–440

    Article  CAS  Google Scholar 

  • Cortet J, Gomot-De Vaufleury A, Poinsot-Balaguer N, Gomot L, Texier C, Cluzeau D (1999) The use of invertebrate soil fauna in monitoring pollutant effects. Eur J Soil Biol 35(3):115–134

    Article  CAS  Google Scholar 

  • Cvancarova M, Kresinova Z, Cajthaml T (2013) Influence of the bioaccessible fraction of polycyclic aromatic hydrocarbons on the ecotoxicity of historically contaminated soils. J Hazard Mater 254–255:116–124

    Article  Google Scholar 

  • Davies NA, Hodson ME, Black S (2003) Is the OECD acute worm toxicity test environmentally relevant? The effect of mineral form on calculated lead toxicity. Environ Pollut 121:49–54

    Article  CAS  Google Scholar 

  • Deutsche Gesellschäft für Chemisches Apparatewesen, Chemische Technik und Biotechnologie (1995) Biologische Testmethoden für Böden. Adhoc-Arbeitsgruppe Methoden zur Toxikologischen/Ökotoxikologischen Bewertung von Böden. DECHEMA, Frankfurt am Main

    Google Scholar 

  • Eom IC, Rast C, Veber AM, Vasseur P (2007) Ecotoxicity of a polycyclic aromatic hydrocarbon (PAH)-contaminated soil. Ecotoxicol Environ Saf 67:190–205

    Article  CAS  Google Scholar 

  • Fernandez MD, Cagigal E, Vega MM, Urzelai A, Babin M, Pro J, Tarazona JV (2005) Ecological risk assessment of contaminated soils through direct toxicity assessment. Ecotoxicol Environ Saf 62:174–184

    Article  CAS  Google Scholar 

  • Haeseler F, Blanchet D, Werner P, Vandecasteele JP (2001) Ecotoxicological characterization of metabolites produced during PAH biodegradation in contaminated soils. In: Magar VS, Johnson G, Ong SK, Leeson A (eds) Bioremediation of energetics, phenolics, and polycyclic aromatic hydrocarbons, 6(3), 227-234. Batelle press, San Diego, p 313

    Google Scholar 

  • Hentati O, Lachhab R, Ayadi M, Ksibi M (2013) Toxicity assessment for petroleum-contaminated soil using terrestrial invertebrate and plant bioassays. Environ Monit Assess 185:2989–2998

    Article  CAS  Google Scholar 

  • Hubálek T, Vosáhlová S, Matějů V, Kováčová N, Novotný C (2007) Ecotoxicity monitoring of hydrocarbon-contaminated soil during bioremediation: a case study. Arch Environ Contam Toxicol 52:1–7

    Article  Google Scholar 

  • Hund-Rinke K, Wiechering H (2001) Earthworm avoidance test for soil assessment: an alternative for acute and reproduction tests. J Soils Sediments 1:15–20

    Article  CAS  Google Scholar 

  • Hund-Rinke K, Koerdel W, Hennecke D, Achazi R, Warnecke D, Wilke BM, Winkel B, Heiden S (2002) Bioassays for the ecotoxicological and genotoxicological assessment of contaminated soils (results of a round-robin test): part II—assessment of the habitat function of soils-tests with soil microflora and fauna. J Soils Sediments 2(2):83–90

    Article  CAS  Google Scholar 

  • ISO 11348-3 (2007) Water quality: determination of the inhibitory effect of water samples on the light emission of Vibrio fischeri (luminescent bacteria test)—part 3: method using freeze-dried bacteria. International Organization for Standardization, Geneva

    Google Scholar 

  • ISO 17512-1 (2008) Soil quality: avoidance test for determining the quality of soils and effects of chemicals on behaviour—part 1: test with earthworms (Eisenia fetida and Eisenia andrei). International Organization for Standardization, Geneva, Switzerland

    Google Scholar 

  • ISO 17512-2 (2011) Soil quality: avoidance test for determining the quality of soils and effects of chemicals on behaviour—part 2: test with collembolans (Folsomia candida). International Organization for Standardization, Geneva, Switzerland

    Google Scholar 

  • Juvonen R, Martikainen E, Schultz E, Joutti A, Ahtiainen J, Lehtokari M (2000) A battery of toxicity tests as indicators of decontamination in composting oily waste. Ecotoxicol Environ Saf 47:156–166

    Article  CAS  Google Scholar 

  • Keddy CJ, Greene JC, Bonnell MA (1995) Review of whole-organism bioassays: soil, freshwater sediment, and freshwater assessment in Canada. Ecotoxicol Environ Saf 30:221–251

    Article  CAS  Google Scholar 

  • Loibner A, Szolar O, Braun R, Hirmann D (2003) Ecological assessment and toxicity screening in contaminated land analysis. In: Thompson KC, Nathanail CP (eds) Chemical analysis of contaminated land. Blackwell, Oxford, pp 29–267

    Google Scholar 

  • Lors C, Perie F, Grand C, Damidot D (2009) Benefits of ecotoxicological bioassays in the evaluation of a field biotreatment of PAHs polluted soil. Global NEST Journal 11(3):251–259

    Google Scholar 

  • McElroy AE, Farrington JW, Teal JM (1989) Bioavailability of polycyclic aromatic hydrocarbons in the aquatic environment. In: Varanasi U (ed) Metabolism of polycyclic aromatic hydrocarbons in the aquatic environment. CRC Press, Boca Raton, pp 1–39

    Google Scholar 

  • Megharaj M, Ramakrishnan B, Venkateswarlu K, Sethunathan N, Naidu R (2011) Bioremediation approaches for organic pollutants: a critical perspective. Environ Int 37:1362–1375

    Article  CAS  Google Scholar 

  • Mendonça E, Picado A (2002) Ecotoxicological monitoring of remediation in a coke oven soil. Environ Toxicol 17(1):74–79

    Article  Google Scholar 

  • Ministry of Housing, Spatial Planning and Environment (VROM) (2000) Circular on target values and intervention values for soil remediation. Hague

  • Morgan P, Watkinson RJ (1989) Hydrocarbon degradation in soils and methods for soil biotreatment. Crit Rev Biotechnol 4:305–333

    Article  Google Scholar 

  • Natal-Da-Luz T, Römbke J, Sousa JP (2008) Avoidance tests in site-specific risk assessment—influence of soil properties on the avoidance response of Collembola and earthworms. Environmetal Toxicology and Chemistry 27(5):1112–1117

    Article  CAS  Google Scholar 

  • OECD 201 (2011) Freshwater alga and cyanobacteria, growth inhibition test, guideline for testing of chemicals. Organization for Economic Cooperation and Development

  • OECD 202 (2004) Daphnia sp. acute immobilization test, guideline for testing of chemicals. Organization for Economic Cooperation and Development

  • OECD 207 (1984) Earthworms acute toxicity tests, guideline for testing of chemicals. Organization for Economic Cooperation and Development

  • OECD 222 (2004) Earthworm reproduction test (Eisenia fetida/Eisenia andrei), guideline for testing of chemicals. Organization for Economic Cooperation and Development

  • Official Bulletin of the Community of Madrid (BOCM) (2006) Order 2770/2006, of August 11th, laying proceeds to establishing generic reference levels of heavy metals and other trace elements in contaminated soils from Madrid

    Google Scholar 

  • Rila JP, Eisentraeger A (2003) Application of bioassays for risk characterization and remediation control of soils polluted with nitroaromatics and PAHs. Water Air Soil Pollut 148:223–242

    Article  CAS  Google Scholar 

  • Riva MC (1991) Nociones y planteamientos en la preservación del medio ambiente acuático. Boletin INTEXTER (UPC) 99:63–83

    Google Scholar 

  • Riva MC, Lopez D (2001) Impacto ambiental de los efluentes del proceso de blanqueo de algodón: parámetros químicos y biológicos. Boletin INTEXTER (UPC) 119:51–57

    Google Scholar 

  • Riva MC, Cegarra J, Crespi M (1993) Effluent ecotoxicology in the wool-scouring process. Sci Total Environ 134(2):1143–1150

    Article  Google Scholar 

  • Riva MC, Ribó J, Gibert C, Alañón P (2007) Acute toxicity of leather processing effluents on Vibrio fisheri and Brachydanio rerio. Afinidad 528:182–188

    Google Scholar 

  • Rojíčková-Padrtová R, Maršálek B, Holoubek I (1998) Evaluation of alternative and standard toxicity assays for screening of environmental samples: Selection of an optimal test battery. Chemosphere 37(3):495–507

    Article  Google Scholar 

  • Salanitro JP, Dorn PB, Hueseman H, Moore KO, Rhodes IA, Rice Jackson LM, Vipond TE, Western M, Misniewski HL (1997) Crude oil hydrocarbon bioremediation and soil ecotoxicity assessment. Environ Sci Tech 31:1769–1776

    Article  CAS  Google Scholar 

  • Saterbak A, Toy RJ, Wong DCL, Mcmain BJ, Williams MP, Dorn PB, Brzuzy LP, Chai EY, Salanitro PS (1999) Ecotoxicological and analytical assessment of hydrocarbon-contaminated soils and application to ecological risk assessment. Environ Toxicol Chem 18(7):1591–1607

    Article  CAS  Google Scholar 

  • Son AJ, Shin KH, Lee JU, Kim KW (2003) Chemical and ecotoxicity assessment of PAH-contaminated soils remediated by enhanced soil flushing. Environ Eng Sci 20(3)

  • Stroo HF, Jensen R, Loehr RC, Nakles DV, Fairbrother A, Liban CB (2000) Environmentally acceptable endpoints for PAHs at a manufactured gas plant site. Environ Sci Technol 34:3831–3836

    Article  CAS  Google Scholar 

  • Suguira K, Ishihara M, Shimauchi T, Harayama S (1997) Physicochemical properties and biodegradability of crude oil. Environ Sci Tech 31:45–51

    Article  Google Scholar 

  • Thavamani P, Smith E, Kavitha R, Mathieson G, Megharaj M, Srivastava P, Naidu R (2015) Risk based land management requires focus beyond the target contaminants—a case study involving weathered hydrocarbon contaminated soils. Environmental Toxicology and Innovation 4:98–109

    Google Scholar 

  • US Environmental Protection Agency (EPA) (2016) Water quality criteriahttp://www.epa.gov/wqc/national-recommended-water-quality-criteria-aquatic-life-criteria-table Accessed May 2016

  • Van Gestel CAM, Weeks JM (2004) Recommendation of the 3rd international workshop on earthworm ecotoxicology, Aarhus, Denmark, August 2001. Ecotoxicological Environment and Safety 57:100–105

    Article  Google Scholar 

  • Van Gestel CAM, Van der Waarde JJ, Derksen JGMA, Van der Hoek EE, Veul MFXW, Bouwens S, Rusch B, Kronenbur R, Stokman GNM (2001) The use of acute and chronic bioassays to determine the ecological risk and bioremediation efficiency of oil-polluted soils. Environ Toxicol Chem 20(7):1438–1449

    Article  Google Scholar 

  • Walker CH, Hopkin SP, Sibly RM, Peakall DR (2006) Principles of ecotoxicology, 3rd edn. Taylor and Francis, CRC Press, Boca Raton

    Google Scholar 

  • Wheeler MW, Park RM, Bailer AJ (2006) Comparing median lethal concentration values using confidence interval overlap or ratio tests. Environ Toxicol Chem 25(5):1441–1444

    Article  CAS  Google Scholar 

  • White PA, Claxton LD (2004) Mutagens in contaminated soil: a review. Mutat Res 567:227–345

    Article  CAS  Google Scholar 

  • Zar JH (1998) Biostatistical analysis, 5th edn. Prentice-Hall, Upper Saddle River, NJ, pp 561–569

    Google Scholar 

Download references

Acknowledgments

Authors want to thank Geotecnia 2000 for supplying the soils. This research was funded by the Universitat Politècnica de Catalunya (UPC) and R&D Gestió i Serveis Ambientals S.L. (Spain) through a doctoral grant to Jaume Bori (Beca UPC Recerca 2012-2016) and by the Spanish Ministry of Economy and Competitiveness through the project CTM2010-18167.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaume Bori.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Henner Hollert

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bori, J., Vallès, B., Ortega, L. et al. Bioassays with terrestrial and aquatic species as monitoring tools of hydrocarbon degradation. Environ Sci Pollut Res 23, 18694–18703 (2016). https://doi.org/10.1007/s11356-016-7097-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7097-z

Keywords

Navigation