Skip to main content
Log in

Assessing and managing the risks of hypoxia in transitional waters: a case study in the tidal Garonne River (South-West France)

  • Fate and effect of pollutants in rivers: from analysis to modelling
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The Gironde estuary (S-W France) is one of the largest European macrotidal estuaries. In the tidal Garonne River, its main tributary, episodes of low (<5 mg L−1) to hypoxic (<2 mg L−1) dissolved oxygen (DO) concentrations have been occasionally recorded close to Bordeaux, about 100 km from the mouth. Projected long-term environmental changes (increase in temperature and population, decrease in river discharge) suggest the establishment of summer chronic oxygen deficiency in the tidal Garonne River in the next decades. Assessing and managing the risk of hypoxia on such a large, hyper-turbid fluvio-estuarine system is complex, due to the different forcing factors (temperature, river discharge, turbidity, urban wastes) acting over a wide range of temporal and spatial scales. In this context, we show the interest of a real-time, high-frequency monitoring of the water quality, the MAGEST network, which continuously records since 2005 temperature, salinity, turbidity, and dissolved oxygen in surface waters in Bordeaux. Through the analysis of the 10-year DO records, we demonstrate the interest of a high-frequency, long-term database to better document DO variability and to define the controlling factors of DO concentrations. This real-time monitoring is also of great interest for the development of manager’s oriented tools and the follow-up of DO objectives in the tidal Garonne River.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Benson BB, Krause D Jr (1984) The concentration and isotopic fractionation of oxygen dissolved in freshwater and seawater in equilibrium with the atmosphere. Limnol Oceanogr 29:620–632. doi:10.4319/lo.1984.29.3.0620

    Article  CAS  Google Scholar 

  • Best MA, Wither AW, Coastes S (2007) Dissolved oxygen as a physical-chemical supporting element in the water framework directive. Mar Pol Bull 55:53–64. doi:10.1016/j.marpolbul.2006.08.037

    Article  CAS  Google Scholar 

  • Boé J, Habets F (2014) Multi-decadal river flow variations in France. Hydrol Earth Syst Sci 18:691–708. doi:10.5194/hess-18-691-2014

    Article  Google Scholar 

  • Cassou C, Cattiaux J (2016) Disruption of the European climate seasonal clock in a warming world. Nat Clim Chang. doi:10.1038/NCLIMATE2969

    Google Scholar 

  • Chevalier L, Laignel B, Massei N, Munier S, Becker M, Turki I, Coynel A, Cazenave A (2013) Hydrological variability of major French rivers over recent decades, assessed from gauging station and GRACE observations. Hydrol Sci J 59:1844–1855. doi:10.1080/02626667.2013.866708

    Article  Google Scholar 

  • Diaz RJ, Rosenberg R (2008) Spreading dead zones and consequences for marine ecosystems. Science 321:926–929. doi:10.1126/science.1156401

    Article  CAS  Google Scholar 

  • Etcheber H, Schmidt S, et al. (2011) Monitoring water quality in estuarine environments: lessons from the MAGEST monitoring program in the Gironde fluvial-estuarine system. Hydrol Earth Syst Sci 15:831–840. doi:10.5194/hess-15-831-2011

    Article  Google Scholar 

  • Gilbert D, Sundby B, Gobeil C, Mucci A, Tremblay G (2005) A seventy-two-year record of diminishing deep-water oxygen in the St. Lawrence estuary: the northwest Atlantic connection. Limnol Oceanogr 50:1654–1666. doi:10.4319/lo.2005.50.5.1654

    Article  CAS  Google Scholar 

  • Gilbert D, Rabalais NN, Diaz RJ, Zhang J (2010) Evidence for greater oxygen decline rates in the coastal ocean than in the open ocean. Biogeosciences 7:2283–2296. doi:10.5194/bg-7-2283-2010

    Article  CAS  Google Scholar 

  • Jalón-Rojas I, Schmidt S, Sottolichio A (2015) Turbidity in the fluvial Gironde Estuary (S.-W. France) based on 10-year continuous monitoring: sensitivity to hydrological conditions. Hydrological and Earth System Sciences 19:2805–2819

    Article  Google Scholar 

  • Jalón-Rojas I, Schmidt S, Sottolichio A (2016) Evaluation of spectral methods for high-frequency, multiannual time-series in coastal transitional waters: advantages of combined analyses. Limnol Oceanogr Methods. doi:10.1002/lom3.10097

    Google Scholar 

  • Lanoux A, Etcheber H, Schmidt S, Sottolichio A, Chabaud G, Richard M, Abril G (2013) Factors contributing to hypoxia in a highly turbid, macrotidal estuary (the Gironde, France. Environ Sci: Process Impacts 15:585–595. doi:10.1039/c2em30874f

    CAS  Google Scholar 

  • Lanoux A, Lepage M, De Watteville J, Jatteau P, Schmidt S, Sottolichio A (2014) Effects of hypoxia on the fish and crustacean fauna in the Gironde Estuary. The 46th International Liege Colloquium, Liege, Belgium. DOI: 10.13140/2.1.1172.4165.

  • Mazzega P, Therond O, Debril T, March H, Sibertin-Blanc C, Lardy R, Santana D (2014) Critical multi-level governance issues of integrated modelling: an example of low-water management in the Adour-Garonne basin (France. J Hydrol 519:2515–2526. doi:10.1016/j.jhydrol.2014.09.043

    Article  Google Scholar 

  • Meire L, Soetaert K, Meysman FJR (2013) Impact of global change on coastal oxygen dynamics and risk of hypoxia. Biogeosciences 10:2633–2653. doi:10.5194/bg-10-2633-2013

    Article  CAS  Google Scholar 

  • Newton A, Olieveira PS, Icely JD, Foster PA (2010) Monitoring of oxygen condition in the Ria Formasa coastal lagoon, Portugal. J Env Monit 12:355–360. doi:10.1039/b914015h

    Article  CAS  Google Scholar 

  • O’Boyle S, McDermott G, Wilkes R (2009) Dissolved oxygen levels in estuarine and coastal waters around Ireland. Mar Pol Bull 58:1687–1663. doi:10.1016/j.marpolbul.2009.07.002

    Google Scholar 

  • Rabalais NN, Diaz RJ, Levin LA, Turner RE, Gilbert D, Zhang J (2010) Dynamics and distribution of natural and human-caused hypoxia. Biogeosciences 7:585–619

    Article  CAS  Google Scholar 

  • Schmidt S (2014) MAGEST: annual scientific report (in French). 26 p

  • Schmidt S, Etcheber H, Sottolichio A, Castaing P (2016) Le réseau MAGEST: bilan de 10 ans de suivi haute-fréquence de la qualité des eaux de l’estuaire de la Gironde. Mesures à haute résolution dans l’environnement marin côtier, Schmitt FG and Lefebvre A. (Eds.), CNRS Editions, ISBN 978–2–271-08592-4

  • Smiddest (2013) SAGE Estuaire. Schéma d’aménagement et de gestion des eaux “Estuaire de la Gironde et de Gestion Durable – PAGD Réglement, p. 144

  • Steckbauer A, Duarte CM, Carstensen J, Vaquer-Sunyer R, Conley (2011). Ecosystem impacts of hypoxia: thresholds of hypoxia and pathways to recovery. Environ Res Lett 6. doi:10.1088/1748-9326/6/2/025003

  • Stramma L, Schmidtko S, Levin LA, Johnson GC (2010) Ocean oxygen minima expansions and their biological impacts. Deep-Sea Res 57:587–595. doi:10.1016/j.dsr.2010.01.005

    Article  CAS  Google Scholar 

  • Vaquer-Sunyer R, Duarte CM (2008) Thresholds of hypoxia for marine diversity. PNAS 150:15452–15457

    Article  Google Scholar 

  • Wang B, Wei Q, Chen J, Xie L (2012) Annual cycle of hypoxia off the Changjiang (Yangtze River) Estuary. Mar Envir Res 77:1–5

    Article  CAS  Google Scholar 

  • Zhang J, Gilbert D, Gooday AJ, Levin L, Naqvi SWA, Middelburg JJ, Scranton M, Ekau W, Peña A, Dewitte B, Oguz T, Monteiro PMS, Urban E, Rabalais NN, Ittekkot V, Kemp WM, Ulloa O, Elmgren R, Escobar-Briones E, Van der Plas AK (2010) Natural and human-induced hypoxia and consequences for coastal areas: synthesis and future development. Biogeosciences 7:1443–1467. doi:10.5194/bg-7-1443-2010

    Article  CAS  Google Scholar 

  • Zhao W, Zhu X, Sun X, Shu Y, Li Y (2015) Water quality changes in response to urban expansion: spatially varying relations and determinants. Environ Sci Pollut Res 22:16997–17011. doi:10.1007/s11356-015-4795-x

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This network is funded by the following organisms: AEAG (Agence de l’Eau Adour-Garonne), SMIDDEST (Syndicat MIxte pour le Développement Durable de l’ESTuaire de la Gironde), SMEAG (Syndicat Mixte d’Etudes et d’Aménagement de la Garonne), EPIDOR (Etablissement Public Interdépartemental de la Dordogne), EDF, GPMB (Grand Port Maritime de Bordeaux), CUB (Communauté Urbaine de Bordeaux), Conseil Régional Aquitaine, CG-33 (Conseil Général de Gironde), IRSTEA, CNRS, and Université de Bordeaux.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabine Schmidt.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmidt, S., Bernard, C., Escalier, JM. et al. Assessing and managing the risks of hypoxia in transitional waters: a case study in the tidal Garonne River (South-West France). Environ Sci Pollut Res 24, 3251–3259 (2017). https://doi.org/10.1007/s11356-016-7654-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7654-5

Keywords

Navigation