Skip to main content

Advertisement

Log in

Thermochemical conversion of waste tyres—a review

  • Process Engineering for Pollution Control and Waste Minimization
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

A review of the energy recovery from waste tyres is presented and focuses on the three thermochemical processes used to valorise waste tyres: pyrolysis, gasification, and combustion/incineration. After recalling the chemical composition of tyres, the thermogravimetric behaviours of tyres or their components under different atmospheres are described. Different kinetic studies on the thermochemical processes are treated. Then, the three processes were investigated, with a particular attention given to the gasification, due to the information unavailability on this process. Pyrolysis is a thermochemical conversion to produce a hydrocarbon rich gas mixture, condensable liquids or tars, and a carbon-rich solid residue. Gasification is a form of pyrolysis, carried out at higher temperatures and under given atmosphere (air, steam, oxygen, carbon dioxide, etc.) in order to yield mainly low molecular weight gaseous products. Combustion is a process that needs a fuel and an oxidizer with an ignition system to produce heat and/or steam. The effects of various process parameters such as temperature, heating rate, residence time, catalyst addition, etc. on the energy efficiency and the products yields and characteristics are mainly reviewed. These thermochemical processes are considered to be the more attractive and practicable methods for recovering energy and material from waste tyres. For the future, they are the main promising issue to treat and valorise used tyres. However, efforts should be done in developing more efficient technical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Atal A, Levendis YA (1995) Comparison of the combustion behaviour of pulverized waste tyres and coal. Fuel 74:1570–1581

    Article  CAS  Google Scholar 

  • Atal A, Levendis YA, Carlson J, Dunayevskiy Y, Vouros P (1997) On the survivability and Pyrosynthesis of PAH during combustion of pulverized coal and tire crumb. Combust Flame 110:462–478

    Article  CAS  Google Scholar 

  • Basu P (2006) Combustion and gasification in fluidized beds. Taylor and Francis

  • Berrueco C, Esperanza E, Mastral FJ, Ceamanos J, Garcıa-Bacaicoa P (2005) Pyrolysis of waste tyres in an atmospheric static-bed batch reactor: analysis of the gases obtained. J Anal Appl Pyrol 74:245–253

    Article  CAS  Google Scholar 

  • Betancur M, Martínez JD, Murillo R (2009) Production of activated carbon by waste tire thermochemical degradation with CO2. J Hazard Mater 168:882–887

    Article  CAS  Google Scholar 

  • Bhowmick AK, Rampalli S, Gallagher K, Seeger R, McIntyre D (1987) The degradation of guayule rubber and the effect of resin components on degradation at high temperature. J Appl Polym Sci 33:1125–1139

    Article  CAS  Google Scholar 

  • Bignozzi MC, Sandrolini F (2006) Tyre rubber waste recycling in self-compacting concrete. Cement Concrete Res 36:735–739

    Article  CAS  Google Scholar 

  • Bosscher PJ, Edil TB, Kuraoka S (1997) Design of highway embankments using tire chips. J Geotech Geoenviron 123(4):295–304

    Article  CAS  Google Scholar 

  • Bouvier JM, Charbel F, Gelus M (1987) Gas-solid pyrolysis of tyre wastes: kinetics and material balances of batch pyrolysis of used tyres. Resour Conserv 15(3):205–214

    Article  CAS  Google Scholar 

  • Boxiong S, Chunfei W, Binbin G, Rui W, Cai L (2007a) Pyrolysis of waste tyres with zeolite USY and ZSM-5 catalysts. Appl Catal B 73:150–157

    Article  CAS  Google Scholar 

  • Boxiong S, Chunfei W, Cai L, Binbin G, Rui W (2007b) Pyrolysis of waste tyres: the influence of USY catalyst/tyre ratio on products. J Anal Appl Pyrol 78:243–249

    Article  CAS  Google Scholar 

  • Castaldi MJ, Kwon E (2007) An investigation into the mechanisms for styrene-butadiene copolymer (SBR) conversion in combustion and gasification environments. Int J Green Energy 4:45–63

    Article  CAS  Google Scholar 

  • Castaldi MJ, Kwon E, Weiss B (2007) Beneficial use of waste tires: an integrated gasification and combustion process design via thermo-gravimetric analysis (TGA) of styrene-butadiene rubber (SBR) and poly-isoprene (IR). Environ Eng Sci 24:1160–1178

    Article  CAS  Google Scholar 

  • Chen KS, Yeh RZ, Chang YR (1997) Kinetics of thermal decomposition of styrene-butadiene rubber at low heating rates in nitrogen and oxygen. Combust Flame 108:408–418

    Article  CAS  Google Scholar 

  • Choi G-G, Jung S-H, Oh S-J, Kim J-S (2014) Total utilization of waste tire rubber through pyrolysis to obtain oils and CO2 activation of pyrolysis char. Fuel Process Technol 123:57–64

    Article  CAS  Google Scholar 

  • Choudhury NR, Bhattacharya SN (1996) Effect of compatibilisation on mechanical and rheological properties of ground rubber tyre-polyethylene blends. Rubber Compos Process Appl 25:448–457

    CAS  Google Scholar 

  • Clark C, Meardon K, Russell D (1991) Burning tires for fuel and tire pyrolysis: air implications, control technology center (CTC). Environmental Protection Agency, report number: EPA-450/3–91-024, December 1991.

  • Conesa JA, Marcilla A (1996) Kinetic study of the thermogravimetric behavior of different rubbers. J Anal Appl Pyrol 37:95–110

    Article  CAS  Google Scholar 

  • Conesa JA, Font R, Fullana A, Caballero JA (1998) Kinetic model for the combustion of tyre wastes. Fuel 77:1469–1475

    Article  CAS  Google Scholar 

  • Conesa JA, Martín-Gullón I, Font R, Jauhiainen J (2004) Complete study of the pyrolysis and gasification of scrap tires in a pilot plant reactor. Envrion Sci Technol 38:3189–3194

    Article  CAS  Google Scholar 

  • Courtemanche B, Levendis YA (1998) A laboratory study on the NO, NO2, SO2, CO and CO2 emissions from the combustion of pulverized coal, municipal waste plastics and tires. Fuel 77:183–196

    Article  CAS  Google Scholar 

  • Crane G, Elefritz RA, Kay EL, Laman JR (1978) Scrap tire disposal procedures. Rubber Chem Technol 51:577–599

    Article  CAS  Google Scholar 

  • Cunliffe AM, Williams PT (1998) Composition of oils derived from the batch pyrolysis of tyres. J Anal Appl Pyrol 44:131–152

    Article  CAS  Google Scholar 

  • Cunliffe AM, Williams PT (1999) Influence of process conditions on the rate of activation of chars derived from pyrolysis of used tires. Energ Fuels 13:166–175

    Article  CAS  Google Scholar 

  • Cypres R, Bettens B (1989) In: Ferrero GL, Mariatis K, Buckens A, Bridgewater AV (eds) Pyrolysis and gasification. Elsevier Applied Science, Barking, UK

    Google Scholar 

  • Dai X, Yin X, Wu C, Zhang W, Chen Y (2001) Pyrolysis of waste tires in a circulating fluidized-bed reactor. Energy 26:385–399

    Article  CAS  Google Scholar 

  • Díez C, Martínez O, Calvo LF, Cara J, Morán A (2004) Pyrolysis of tyres. Influence of the final temperature of the process on emissions and the calorific value of the products recovered. Waste Manag 24:463–469

    Article  CAS  Google Scholar 

  • Donatelli A, Iovane P, Molino A (2010) High energy syngas production by waste tyres steam gasification in a rotary kiln pilot plant. Experimental and numerical investigations Fuel 89:2721–2728

    CAS  Google Scholar 

  • Downard J, Singh A, Bullard R, Jayarathne T, Rathnayake CM, Simmons DL, Wels BR, Spak SN, Peters T, Beardsley D, Stanier CO, Stone EA (2015) Uncontrolled combustion of shredded tires in a landfill - part 1: characterization of gaseous and particulate emissions. Atmos Environ 104:195–204

    Article  CAS  Google Scholar 

  • Elbaba IF, Williams PT (2012) Two stage pyrolysis-catalytic gasification of waste tyres: influence of process parameters. Appl Catal B 125:136–143

    Article  CAS  Google Scholar 

  • Elbaba IF, Williams PT (2013) High yield hydrogen from the pyrolysis-catalytic gasification of waste tyres with a nickel/dolomite catalyst. Fuel 106:528–536

    Article  CAS  Google Scholar 

  • Elbaba IF, Williams PT (2014) Deactivation of nickel catalysts by sulfur and carbon for the pyrolysis-catalytic gasification/reforming of waste tires for hydrogen production. Energ Fuels 28:2104–2113

    Article  CAS  Google Scholar 

  • Elbaba IF, Wu C, Williams PT (2010) Catalytic pyrolysis-gasification of waste tire and tire elastomers for hydrogen production. Energ Fuels 24:3928–3935

    Article  CAS  Google Scholar 

  • Elbaba IF, Wu C, Williams PT (2011) Hydrogen production from the pyrolysis-gasification of waste tyres with a nickel/cerium catalyst. Int J Hydrogen Energ 36:6628–6637

    Article  CAS  Google Scholar 

  • Eldin NN, Senouci AB (1993a) Observations on rubberized concrete behaviour. Cem Concr Aggregates 15(1):74–84

    CAS  Google Scholar 

  • Eldin NN, Senouci AB (1993b) Rubber-tire particles as concrete aggregate. J Mater Civ Eng 5(4):478–496

    Article  CAS  Google Scholar 

  • European Commission. Council directive 1999/31/EC of 26 April 1999 on the landfill of waste. Official Journal of the European Communities, L182; 1999. p. 1–19.

  • European Commission. Directive 2000/76/EC of the European Parliament and of the Council of 4 December 2000 on incineration of waste. Official Journal of the European Communities, L332; 2000. p. 91–111.

  • European Commission, Directorate General Environment Nuclear Safety and Civil Protection. Definition of Waste Recovery and Disposal operations, March 2004.

  • European Tyre & Rubber Manufacturers’ Association, ELTs treatment data in 2010, ETRMA, 2011.

  • Evans A, Evans R (2006) The composition of a Tyre: typical components, waste and resources action Programme. Banbury Oxford, United Kingdom

    Google Scholar 

  • Fernández AM, Barriocanal C, Alvarez R (2012) Pyrolysis of a waste from the grinding of scrap tyres. J Hazard Mater 203–204:236–243

    Article  CAS  Google Scholar 

  • Ferrer G (1997) The economics of tire remanufacturing. Resour Conserv Recy 19:221–225

    Article  Google Scholar 

  • Fullana A, Font R, Conesa JA, Blasco P (2000) Evolution of products in the combustion of scrap tires in a horizontal, laboratory scale reactor. Environ Sci Technol 34:2092–2099

    Article  CAS  Google Scholar 

  • Gagliano A, Nocera F, Patania F, Detommaso M, Bruno M (2015) Evaluation of the performance of a small biomass gasifier and micro-CHP plant for agro-industrial firms. International Journal of Heat and Technology 33:145–154

    Article  Google Scholar 

  • Galvagno S, Casu S, Casabianca T, Calabrese A, Cornacchia G (2002) Pyrolysis process for the treatment of scrap tyres: preliminary experimental results. Waste Manag 22:917–923

    Article  CAS  Google Scholar 

  • Galvagno S, Casu S, Casciaro G, Martino M, Russo A, Portofino S (2006) Steam gasification of refuse-derived fuel (RDF): influence of process temperature on yield and product composition. Energ Fuels 20:2284–2288

    Article  CAS  Google Scholar 

  • Galvagno S, Casciaro G, Casu S, Martino M, Mingazzini C, Russo A, Portofino S (2009) Steam gasification of tyre waste, poplar, and refuse-derived fuel: a comparative analysis. Waste Manag 29:678–689

    Article  CAS  Google Scholar 

  • Gieré R, LaFree ST, Carleton LE, Tishmack JK (2004) Environmental impact of energy recovery from waste tyres. Geol Soc Lond, Spec Publ 236:475–498

    Article  Google Scholar 

  • González JF, Encinar JM, Canito JL, Rodríguez JJ (2001) Pyrolysis of automobile Tyre waste. Influence of operating variables and kinetics study J Anal Appl Pyrol 58–59:667–683

    Google Scholar 

  • Grigoryeva OP, Fainleib AM, Tolstov AL, Starostenko OM, Lievana E, Karger-Kocsis J (2005) Thermoplastic elastomers based on recycled high-density polyethylene, ethylene–propylene–diene monomer rubber, and ground tire rubber. J Appl Polym Sci 95:659–671

    Article  CAS  Google Scholar 

  • Hernandez-Olivares F, Barluenga G, Bollati M, Witoszek B (2002) Static and dynamic behaviour of recycled tyre rubber-filled concrete. Cement Concrete Res 32:1587–1596

    Article  CAS  Google Scholar 

  • Hita I, Arabiourrutia M, Olazar M, Bilbao J, Arandes JM, Castaño P (2016) Opportunities and barriers for producing high quality fuels from the pyrolysis of scrap tires. Renew Sust Energ Rev 56:745–759

    Article  CAS  Google Scholar 

  • Hower JC, Robertson JD (2004) Chemistry and petrology of fly ash derived from the co-combustion of western United States coal and tire-derived fuel. Fuel Process Technol 85:359–377

    Article  CAS  Google Scholar 

  • Huang H, Tang L, Wu CZ (2003) Characterization of gaseous and solid product from thermal plasma pyrolysis of waste rubber. Environ Sci Technol 37:4463–4467

    Article  CAS  Google Scholar 

  • Indian Tyre Industry ITI (2011) Investment Information and Credit Rating Agency of India, Indian Tyre Industry, September 2011

  • Janajreh I, Raza SS (2015) Numerical simulation of waste tyres gasification. Waste Manage Res 33:460–468

    Article  CAS  Google Scholar 

  • Jang JW, Yoo TS, Oh JH, Iwasaki I (1998) Discarded tire recycling practices in the United States, Japan and Korea. Resour Conserv Recy 22:1–14

    Article  Google Scholar 

  • Jeguirim M, Bikai J, Elmay Y, Limousy L, Njeugna E (2014) Thermal characterization and pyrolysis kinetics of tropical biomass feedstocks for energy recovery. Energy For Sustainable Developmentn 23:188–193

    Article  CAS  Google Scholar 

  • Juma M, Koreňová Z, Markoš J, Jelemensky L, Bafrnec M (2007) Experimental study of pyrolysis and combustion of scrap tire. Polym Adv Technol 18:144–148

    Article  CAS  Google Scholar 

  • Kandasamy J, Gökalp I (2015) Pyrolysis, combustion, and steam gasification of various types of scrap tires for energy recovery. Energ Fuels 29:346–354

    Article  CAS  Google Scholar 

  • Karatas H, Olgun H, Akgun F (2012) Experimental results of gasification of waste tire with air & CO2, air & steam and steam in a bubbling fluidized bed gasifier. Fuel Process Technol 102:166–174

    Article  CAS  Google Scholar 

  • Karatas H, Olgun H, Engin B, Akgun F (2013) Experimental results of gasification of waste tire with air in a bubbling fluidized bed gasifier. Fuel 105:566–571

    Article  CAS  Google Scholar 

  • Kim JR, Lee JS, Kim SD (1994) Combustion characteristics of shredded waste tires in a fluidized bed combustor. Energy 19:845–854

    Article  CAS  Google Scholar 

  • Ko DCK, Mui ELK, Lau KST, McKay G (2004) Production of activated carbons from waste tire - process design and economical analysis. Waste Manag 24:875–888

    Article  CAS  Google Scholar 

  • Koo J-K, Kim S-W (1995) Characterization of organic and inorganic byproducts from field-scale gasification/incinerator for waste tires. Toxicol Environ Chem 52:203–213

    Article  CAS  Google Scholar 

  • Kumar CR, Fuhrmann I, Karger-Kocsis J (2002) LDPE-based thermoplastic elastomers containing ground tire rubber with and without dynamic curing. Polym Degrad Stabil 76:137–144

    Article  CAS  Google Scholar 

  • Kwon E, Castaldi MJ (2006) Thermo-gravimetric analysis (TGA) of combustion and gasification of major constituents of waste tire: Comparison between Styrene-Butadiene Rubber (SBR) and Poly-Isoprene (IR). A and MW, 25th Annual International Conference on Incineration and Thermal Treatment Technologies, IT3, 1:233–246.

  • Kwon E, Castaldi MJ (2007) Investigation of thermo-gravimetric analysis (TGA) on waste tires and chemical analysis including light hydrocarbons, substituted aromatics, and polycyclic aromatic hydrocarbon (PAH). Proceedings of the 15th Annual North American Waste To Energy Conference. NAWTEC 15:183–190

    Google Scholar 

  • Kwon E, Castaldi MJ (2008) An investigation of the thermal degradation mechanisms of a waste tire through chemical analysis including hydrocarbons, benzene derivatives, and polycyclic aromatic hydrocarbons (PAHs) at high temperature. Proceedings of the 16th annual north American waste to energy conference. NAWTEC 16:97–106

    Google Scholar 

  • Kwon E, Yi H, Castaldi MJ (2012) Utilizing carbon dioxide as a reaction medium to mitigate production of polycyclic aromatic hydrocarbons from the thermal decomposition of styrene butadiene rubber. Environ Sci Technol 46:10752–10757

    Article  CAS  Google Scholar 

  • Lahijani P, Zainal ZA, Mohamed AR, Mohammadi M (2013) Co-gasification of tire and biomass for enhancement of tire-char reactivity in CO2 gasification process. Bioresour Technol 138:124–130

    Article  CAS  Google Scholar 

  • Laresgoiti MF, Caballero BM, de Marco I, Torres A, Cabrero MA, Chomón MJ (2004) Characterization of the liquid products obtained in Tyre pyrolysis. J Anal Appl Pyrol 71:917–934

    Article  CAS  Google Scholar 

  • Larsen MB, Schultz L, Glarborg P, Skaarup-Jensen L, Dam-Johansen K, Frandsen F, Henriksen U (2006) Devolatilization characteristics of large particles of tyre rubber under combustion conditions. Fuel 85:1335–1345

    Article  CAS  Google Scholar 

  • Larsen MB, Hansen ML, Glarborg P, Skaarup-Jensen L, Dam-Johansen K, Frandsen F (2007) Kinetics of tyre char oxidation under combustion conditions. Fuel 86:2343–2350

    Article  CAS  Google Scholar 

  • Lee JM, Lee JS, Kim JR, Kim SD (1995) Pyrolysis of waste tires with partial oxidation in a fluidized-bed reactor. Energy 20:969–976

    Article  CAS  Google Scholar 

  • Lee JS, Kim SD (1996) Gasification kinetics of waste tire-char with CO2 in a thermobalance reactor. Energy 21:343–352

    Article  CAS  Google Scholar 

  • Lee U, Chung JN, Ingley HA (2014) High-temperature steam gasification of municipal solid waste rubber, plastic and wood. Energ Fuels 28:4573–4587

    Article  CAS  Google Scholar 

  • Lemieux PL, Ryan JV (1993) Characterization of air pollutants emitted from a simulated scrap tire fire. J Air Waste Manage Assoc 43:1106–1115

    Article  CAS  Google Scholar 

  • Leung DYC, Wang CL (1998) Kinetic study of scrap Tyre pyrolysis and combustion. J Anal Appl Pyrol 45:153–169

    Article  CAS  Google Scholar 

  • Leung DYC, Wang CL (2003) Fluidized-bed gasification of waste tire powders. Fuel Process Technol 84:175–196

    Article  CAS  Google Scholar 

  • Leung DYC, Yin XL, Zhao ZL, Xu BY, Chen Y (2002) Pyrolysis of tire powder: influence of operation variables on the composition and yield of gaseous product. Fuel Process Technol 79:141–155

    Article  CAS  Google Scholar 

  • Levendis YA, Atal A, Carlson J, Dunayevskiy Y, Vouros P (1996) Comparative study on the combustion and emissions of waste tire crumb and pulverized coal. Environ Sci Technol 30:2742–2754

    Article  CAS  Google Scholar 

  • Levendis YA, Atal A, JB C (1998a) On the correlation of CO and PAH emissions from the combustion of pulverized coal and waste tires. Environ Sci Technol 32:3767–3777

    Article  CAS  Google Scholar 

  • Levendis YA, Atal A, JB C (1998b) PAH and soot emissions from com-bustion of coal and waste tire-derived-fuel in fixed beds. Combust Sci Technol 134:407–431

  • Levendis YA, Atal A, Courtemanche B, JB C (1998c) Burning charac-teristics and gaseous/solid emissions of blends of pulverized coal with waste tire-derived fuel. Combust Sci Technol 131:147–185

  • Li Z, Li F, Li JSL (1998) Properties of concrete incorporating rubber tyre particles. Mag Concr Res 50(4):297–304

    Article  CAS  Google Scholar 

  • Li R-D, Yan J-H, Li S-Q, Chi Y, Huang J-T, Wang L, Li X-D, Cen K-F (2001) Gasification kinetics of waste tire char with CO2. J Fuel Chem Technol 29:318

    Google Scholar 

  • Li Z, Zhao W, Meng B, Liu C, Zhu Q, Zhao G (2008) Kinetic study of corn straw pyrolysis: comparison of two different three-pseudocomponent models. Bioresource Technol 99:7616–7622

    Article  CAS  Google Scholar 

  • Liu ZR, Tang HY, Zheng YL (1992) Handbook of rubber industry. Chemical Industry Publishing House, China:477–478

  • López FA, Centeno TA, Alguacil FJ, Lobato B, López-Delgado A, Fermoso J (2012) Gasification of the char derived from distillation of granulated scrap tyres. Waste Manag 32:743–752

    Article  CAS  Google Scholar 

  • López-Fonseca R, Landa I, Elizundia U, Gutiérrez-Ortiz MA, González-Velasco JR (2007) A kinetic study of the combustion of porous synthetic soot. Chem Eng J 129:41–49

    Article  CAS  Google Scholar 

  • Malkow T (2004) Novel and innovative pyrolysis and gasification technologies for energy efficient and environmentally sound MSW disposal. Waste Manag 24:53–79

    Article  CAS  Google Scholar 

  • Marks J (1991) Thermal value makes tires a decent fuel for utilities. Power Eng 95:35–37

    Google Scholar 

  • Martínez JD, Puy N, Murillo R, García T, Navarro MV, Mastral AM (2013) Waste tyre pyrolysis—a review. Renew Sust Energ Rev 23:179–213

    Article  CAS  Google Scholar 

  • Matsui I, Kunii D, Furusawa T (1987) Study of char gasification by carbon dioxide. 1. Kinetic study by thermogravimetric analysis. Ind Eng Chem Res 26:91–95

    Article  CAS  Google Scholar 

  • Matsunami J, Yoshida S, Yokota O, Nezuka M, Tsuji M, Tamaura Y (1999) Gasification of waste Tyre and plastic (PET) by solar thermochemical process for solar energy utilization. Sol Energy 65:21–23

    Article  Google Scholar 

  • Mastral AM, Callén MS, García T (2000) Polyaromatic environmental impact in coal-tire blend atmospheric fluidized bed (AFB) combustion. Energ Fuels 14:164–168

    Article  CAS  Google Scholar 

  • Mastral AM, Murillo R, García T, Navarro MV, Callen MS, López JM (2002) Study of the viability of the process for hydrogen recovery from old tyre oils. Fuel Process Technol 75:185–199

    Article  CAS  Google Scholar 

  • Mui ELK, Ko DCK, McKay G (2004) Production of actived carbons from waste tyres—a review. Carbon 42:2789–2805

    Article  CAS  Google Scholar 

  • Nakomcic-Smaragdakis B, Cepic Z, Senk N, Doric J, Radovanovic LJ (2016) Use of scrap tires in cement production and their impact on nitrogen and sulfur oxides emissions. Energy Sources, Part A: Recovery, Utilization and Environmental Effects 38:485–493

    Article  CAS  Google Scholar 

  • Navarro FJ, Partal P, Martınez-Boza F, Gallegos C (2004) Thermo-rheological behaviour and storage stability of ground tire rubber-modified bitumens. Fuel 83:2041–2049

    Article  CAS  Google Scholar 

  • Ogasawara S, Kuroda M, Wakao N (1987) Preparation of activated carbon by thermal decomposition of used automotive tires. Ind Eng Chem Res 26:2552–2556

    Article  CAS  Google Scholar 

  • Oliphant K, Baker WE (1993) The use of cryogenically ground rubber tires as a filler in polyolefin blends. Polym Eng Sci 33:166–174

    Article  CAS  Google Scholar 

  • Otero M, Calvo LF, Gil MV, Garcıa AI, Moran A (2008) Co-combustion of different sewage sludge and coal: a non-isothermal thermogravimetric kinetic analysis. Bioresource Technol 99:6311–6319

    Article  CAS  Google Scholar 

  • Pakdel H, Roy C, Aubin H, Jean G, Coulombe S (1992) Formation of limonene in used tire vacuum pyrolysis oils. Environ Sci Technol 25(9):1646–1949

    Article  Google Scholar 

  • Piatkowski N, Steinfeld A (2010) Reaction kinetics of the combined pyrolysis and steam-gasification of carbonaceous waste materials. Fuel 89:1133–1140

    Article  CAS  Google Scholar 

  • Pierce CE, Blackwell MC (2003) Potential of scrap tire rubber as lightweight aggregate in flowable fill. Waste Manag 23:197–208

    Article  CAS  Google Scholar 

  • Pipilikaki P, Katsioti M, Papageorgiou D, Fragoulis D, Chaniotakis E (2005) Use of tire derived fuel in clinker burning. Cement Concrete Comp 27:843–847

    Article  CAS  Google Scholar 

  • Piskorz J, Majerski P, Radlein D, Wik T, Scott DS (1999) Recovery of carbon black from scrap rubber. Energ Fuels 13:544–551

    Article  CAS  Google Scholar 

  • Portofino S, Casu S, Iovane P, Russo A, Martino M, Donatelli A, Galvagno S (2011) Optimizing H2 production from waste tires via combined steam gasification and catalytic reforming. Energ Fuels 25:2232–2241

    Article  CAS  Google Scholar 

  • Portofino S, Donatelli A, Iovane P, Innella C, Civita R, Martino M, Matera DA, Russo A, Cornacchia G, Galvagno S (2013) Steam gasification of waste tyre: influence of process temperature on yield and product composition. Waste Manag 33:672–678

    Article  CAS  Google Scholar 

  • Raghavan D, Huynh H, Ferraris CF (1998) Workability, mechanical properties and chemical stability of a recycled tyre rubber-filled cementitious composite. J Mater Sci 33:1745–1752

    Article  CAS  Google Scholar 

  • Rajalingam P, Baker WE (1992) The role of functional polymers in ground rubber tire-polyethylene composite. Rubber Chem Technol 65:908–916

    Article  CAS  Google Scholar 

  • Raman KP, Walawender WP, Fan LT (1981) Gasification of waste tires in a fluidized bed reactor. Conserv Recycl 4:79–88

    Article  CAS  Google Scholar 

  • Rodriguez IM, Laresgoiti MF, Cabrero MA, Torres A, Chomón MJ, Caballero B (2001) Pyrolysis of scrap tyres. Fuel Process Technol 72:9–22

    Article  CAS  Google Scholar 

  • Roy C, Chaala A, Darmstadt H (1999) The vacuum pyrolysis of used tires end-uses for oil and carbon black products. J Anal Appl Pyrol 51:201–221

    Article  CAS  Google Scholar 

  • Sainz-Diaz CI, Kelly DR, Avenell CS, Griffiths AG (1997) Pyrolysis of furniture and tire wastes in a flaming pyrolyzer minimizes discharges to the environment. Energ Fuels 11:1061–1072

    Article  CAS  Google Scholar 

  • Saito I, Sakae K, Ogiri T, Ueda Y (1987) Effective use of waste tyres by gasification in cement plant. World Cement 18(264–266):268

    Google Scholar 

  • Sánchez D, Paez M, Sierra R, Gordillo G (2013) Waster tire rubber gasification using air steam for partial oxidation and N2 as carrier gas. Proceedings of the ASME Turbo Expo, volume 2; Code 101331.

  • San Miguel G, Fouler GD, Sollans CJ (1998) Pyrolysis of tire rubber: porosity and adsorption characteristics of the pyrolytic chars. Ind Eng Chem Res 37:2430–2435

    Article  CAS  Google Scholar 

  • Schrama H, Blumenthal H, Weatherhead EC (1995) A survey of tire burning technology for the cement industry. IEEE cement industry technical conference, San Juan, Puerto Rico, pp. 206–283

    Google Scholar 

  • Segre N, Joekes I (2000) Use of tire rubber particles as addition to cement paste. Cement Concrete Res 30:1421–1425

    Article  CAS  Google Scholar 

  • Senneca O, Chirone R, Salatino P, Nappi L (2007) Patterns and kinetics of pyrolysis of tobacco under inert and oxidative conditions. J Anal Appl Pyrol 79:227–233

    Article  CAS  Google Scholar 

  • Sharma VK, Mincarini M, Fortuna F, Cognini F, Cornacchia G (1998) Disposal of waste tyres for energy recovery and safe environment—review. Energ Convers Manage 39:511–528

    Article  CAS  Google Scholar 

  • Sharma VK, Fortuna F, Mincarini M, Berillo M, Cornacchia G (2000) Disposal of waste tyres for energy recovery and safe environment. Appl Energ 65:381–394

    Article  CAS  Google Scholar 

  • Siddique R, Naik TR (2004) Properties of concrete containing scrap-tire rubber—an overview. Waste Manag 24:563–569

    Article  CAS  Google Scholar 

  • Sienkiewicz M, Kucinska-Lipka J, Janik H, Balas A (2012) Progress in used tyres management in the European Union: a review. Waste Manag 32:1742–1751

    Article  CAS  Google Scholar 

  • Singh S, Nimmo W, Gibbs BM, Williams PT (2009) Waste tire rubber as a secondary fuel for power plants. Fuel 88:2473–2480

    Article  CAS  Google Scholar 

  • Singh S, Nimmo W, Williams PT (2013) An experimental study of ash behaviour and the potential fate of ZnO/Zn in the co-combustion of pulverized of slagging and fouling South African coal and waste Tyre rubber. Fuel 111:269–279

    Article  CAS  Google Scholar 

  • Song BH, Kim SD (2006) Gasification of tire scrap and sewage sludge in a circulating fluidized bed with a draft tube. Stud Surf Sci Catal 159:565–568

    Article  CAS  Google Scholar 

  • Straka P, Bučko Z (2009) Co-gasification of a lignite/waste-tyre mixture in a moving bed. Fuel Process Technol 90:1202–1206

    Article  CAS  Google Scholar 

  • Suuberg EM, Aarna I (2009) Kinetics of tire derived fuel (TDF) char oxidation and accompanying changes in surface area. Fuel 88:179–186

    Article  CAS  Google Scholar 

  • Tang Y, Curtis CW (1996) Thermal and catalytic coprocessing of waste tires with coal. Fuel Proc Technol 46:195–215

    Article  CAS  Google Scholar 

  • Tendler M, Rutberg P, Van Oost G (2005) Plasma based waste treatment and energy production. Plasma Phys Control Fusion 47:A219–A230

    Article  CAS  Google Scholar 

  • The Japan Automobile Tyre Manufacturers Association, Tyre Industry of Japan 2011.

  • Topciu C (1995) The properties of rubberized concretes. Cem Concr Res 25(2):304–310

    Article  Google Scholar 

  • Tzan DY, Juch C (1995) Proceedings of the Third Asia-Pacific International Symposium on Combustion and Energy Utilization 115–121.

  • Ucar S, Karagoz S, Ozkan AR, Yanik (2005) Evaluation of two different scrap tires as hydrocarbon source by pyrolysis. Fuel 84:1884–1892.

  • USRMA (2011) US Rubber Manufacturers Association, U.S. Scrap Tire Management Summary 2005–2009, October 2011

  • Vlaev LT, Markovska IG, Lyubchev LA (2003) Non-isothermal kinetics of pyrolysis of rice husk. Thermochim Acta 406:1–7

    Article  CAS  Google Scholar 

  • Vekemans O, Laviolette JP, Chaouk J (2016) Co-combustion of coal and waste in pulverized coal boiler. Energy 94:742–754

    Article  CAS  Google Scholar 

  • Wallman PH, Thorsness CB, Winter JD (1998) Hydrogen production from wastes. Energy 23:271–278

    Article  CAS  Google Scholar 

  • Wang CL, Leung DYC (2000) Characteristics of tyre powder gasification using a fluidized bed with an air/steam mixture. Proceedings of the Third Asia-Pacific Conference on Sustainable Energy and Environmental Technologies 247–251.

  • Wang H, Xu H, Xuan X (2009) Review of Waste Tire Reuse& Recyclin China—current situation, problems and countermeasures. Advances in Natural Science 2(1):31–39

    CAS  Google Scholar 

  • Wang Z, Li K, Lambert P, Yang C (2007) Identification, characterization and quantitation of pyrogenic polycyclic aromatic hydrocarbons and other organic compounds in tire fire products. J Chromatogr A 1139:14–26

    Article  CAS  Google Scholar 

  • Weiss B, Castaldi MJ (2006a) Novel integrated process for beneficial use of waste tires: generation of synthesis gas and electricity. A and MW, 25th Annual International Conference on Incineration and Thermal Treatment Technologies, IT3, 1:217–232.

  • Weiss B, MJ C (2006b) A tire gasification senior design project that integrates laboratory experiments and computer simulation. Chem Eng Educ 40:203–210

    CAS  Google Scholar 

  • Williams PT, Besler S (1995) Pyrolysis-thermogravimetric analysis of tyres and Tyre components. Fuel 14:1277–1283

    Article  Google Scholar 

  • Williams PT, Besler S, D.T. T (1990) The pyrolysis of scrap automotive tyres: the influence of temperature and heating rate on product composition. Fuel 69:1474–1482

    Article  CAS  Google Scholar 

  • Williams PT, Brindle AJ (2002) Catalytic pyrolysis of tyres: influence of catalyst temperature. Fuel 81:2425–2434

    Article  CAS  Google Scholar 

  • Williams PT, Brindle AJ (2003a) Fluidised bed pyrolysis and catalytic pyrolysis of scrap tyres. Environ Technol 24:921–929

    Article  CAS  Google Scholar 

  • Williams PT, Brindle AJ (2003b) Aromatic chemicals from the catalytic pyrolysis of scrap tyres. J Anal Appl Pyrol 67:143–164

    Article  CAS  Google Scholar 

  • Williams PT (2013) Pyrolysis of waste tyres: a review. Waste Manag 33:1714–1728

    Article  CAS  Google Scholar 

  • Xiang-guo L, Bao-guo M, Li X, Zhen-wu H, Xin-gang W (2006) Thermogravimetric analysis of the co-combustion of the blends with high ash coal and waste tyres. Thermochim Acta 441:79–83

    Article  CAS  Google Scholar 

  • Xiao G, Ni MJ, Chi Y, Cen KF (2008) Low-temperature gasification of waste tire in a fluidized bed. Energ Convers Manage 49:2078–2082

    Article  CAS  Google Scholar 

  • Yang J, Kaliaguine S, Roy C (1993) Improved quantitative determination of elastomers in Tyre rubber by kinetic simulation of DTG curves. Rubber Chem Technol 66:213–229

    Article  CAS  Google Scholar 

  • Yusup S, Moghadam RA, Shoaibi AA, Melati M, Khan Z, Tzeng LM, Wan Azlina AKGH (2013) Hydrogen production from catalytic steam co-gasification of waste Tyre and palm kernel shell in pilot scale fluidized bed gasifier. In: Biomass processing. Nova Science Publishers, Inc., Conversion and Biorefinery, pp. 181–191

    Google Scholar 

  • Zabaniotou AA, Stavropoulos G (2003) Pyrolysis of used automobile tires and residual char utilization. J Anal Appl Pyrol 70:711–722

    Article  CAS  Google Scholar 

  • Zebala J, Ciepka P, Reza A, Janczur R (2007) Influence of rubber compound and tread pattern of retreaded tyres on vehicle active safety. Forensic Sci Int 167:173–180

    Article  CAS  Google Scholar 

  • Zhang Y, Wu C, Nahil MA, Williams P (2015) Pyrolysis-catalytic reforming/gasification of waste tires for production of carbon nanotubes and hydrogen. Energ Fuels 29:3328–3334

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mejdi Jeguirim.

Additional information

Article editorial responsibility: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Labaki, M., Jeguirim, M. Thermochemical conversion of waste tyres—a review. Environ Sci Pollut Res 24, 9962–9992 (2017). https://doi.org/10.1007/s11356-016-7780-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7780-0

Keywords

Navigation