Skip to main content

Advertisement

Log in

Cow bones char as a green sorbent for fluorides removal from aqueous solutions: batch and fixed-bed studies

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Cow bone char was investigated as sorbent for the defluoridation of aqueous solutions. The cow bone char was characterized in terms of its morphology, chemical composition, and functional groups present on the bone char surface using different analytical techniques: SEM, EDS, N2-BET method, and FTIR. Batch equilibrium studies were performed for the bone chars prepared using different procedures. The highest sorption capacities for fluoride were obtained for the acid washed (q = 6.2 ± 0.5 mg/g) and Al-doped (q = 6.4 ± 0.3 mg/g) bone chars. Langmuir and Freundlich models fitted well the equilibrium sorption data. Fluoride removal rate in batch system is fast in the first 5 h, decreasing after this time until achieving equilibrium due to pore diffusion. The presence of carbonate and bicarbonate ions in the aqueous solution contributes to a decrease of the fluoride sorption capacity of the bone char by 79 and 31 %, respectively. Regeneration of the F-loaded bone char using 0.5 M NaOH solution leads to a sorption capacity for fluoride of 3.1 mg/g in the second loading cycle. Fluoride breakthrough curve obtained in a fixed-bed column presents an asymmetrical S-shaped form, with a slow approach of C/C 0 → 1.0 due to pore diffusion phenomena. Considering the guideline value for drinking water of 1.5 mg F/L, as recommended by World Health Organization, the service cycle for fluoride removal was of 71.0 h ([F]feed ∼ 9 mg/L; flow rate = 1 mL/min; m sorbent = 12.6 g). A mass transfer model considering the pore diffusion was able to satisfactorily describe the experimental data obtained in batch and continuous systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

Bi :

Biot number

C :

Fluoride concentration in the column output at time t (mg/L)

C 0 :

Fluoride feed concentration (mg/L)

C b :

Fluoride concentration in the liquid phase at time t (mg/L)

\( {C}_{b_o} \) :

Initial concentration of fluoride in the liquid phase (mg/L)

C eq :

Equilibrium fluoride concentration in the liquid phase (mg/L)

\( {C}_m^{obs} \) :

Experimental concentration of fluoride at the point m (mg/L)

\( {C}_m^{\mathrm{cal}} \) :

Simulated concentration of fluoride at the point m (mg/L)

C p :

Concentration of fluoride in the pores inside the particle (mg/L)

D ax :

Axial dispersion coefficient (cm2/s)

D c :

Column internal diameter (cm)

d p :

Particle diameter (cm)

D pe :

Pore diffusion coefficient for fluoride ions (cm2/s)

f LUB :

Fraction of unused bed (%)

F cal :

Ratio between the variances of models A and B

F α :

Tabulated critical F values

K L :

Equilibrium Langmuir constant (L/mg)

K F :

Indicator of the sorption capacity (mg1–1/nL1/n/g)

k f :

Film mass transfer coefficient (cm/s)

L :

Bed length (cm)

L MTZ :

Length of the mass transfer zone (cm)

m :

Number of observations

n :

Total number of observations

n F :

Empirical parameter of the Freundlich equation

N d :

Number of mass transfer units inside particle

N f :

Number of mass transfer units in the film

p :

Number of adjusted parameters

Pe :

Peclet number

Q :

Flow rate (mL/min)

q :

Fluoride concentration on the solid phase at time t (mg/g of the adsorbent)

q c :

Fluoride sorption capacity in the fixed-bed column (mg/g)

q eq :

Concentration of fluoride in the solid phase (mg/g) in equilibrium with C eq

q max :

Maximum uptake capacity of fluoride per gram of adsorbent (mg/g)

r :

Radial position (cm)

r p :

Radius of particle (cm)

T :

Temperature (K)

t :

Time (h)

t Bp :

Breakthrough time (h)

t e :

Exhaustion time (h)

t st :

Stoichiometric time (h)

u i :

Interstitial fluid velocity (cm/s)

V :

Solution volume (L)

V pore :

Pore volume (cm3/g)

W :

Mass of sorbent (g)

x :

Dimensionless radial coordinate inside particle

y :

Axial position normalized by bed length

y p :

Dimensionless concentration of fluoride in the pores inside particle

y b :

Dimensionless concentration of fluoride in the bulk

z :

Axial position (cm)

α:

Level of significance

ε c :

Column porosity

ε p :

Particle porosity

ε r :

Volumetric fraction of liquid inside the batch adsorber

ρ p :

Particle density (g/cm3)

τ :

Space time (s)

τ d :

Time constant for intraparticle diffusion of fluoride ions (s)

τ f :

Time constant for diffusion of fluoride ions in the film (s)

θ :

Dimensionless time

References

  • Abe I, Iwasaki S, Tokimoto T, Kawasaki N, Nakamura T, Tanada S (2004) Adsorption of fluoride ions onto carbonaceous materials. J Colloid Interface Sci 275:35–39

    Article  CAS  Google Scholar 

  • Aksu Z, Gonen F (2006) Binary biosorption of phenol and chromium(VI) onto immobilized activated sludge in a packed bed: prediction of kinetic parameters and breakthrough curves. Sep Purif Technol 49:205–216

    Article  CAS  Google Scholar 

  • Amini M, Mueller K, Abbaspour KC, Rosenberg T, Afyuni M, Moller KN, Sarr M, Johnson CA (2008) Statistical modeling of global geogenic fluoride contamination in groundwaters. Environ Sci Technol 42:3662–3668

    Article  CAS  Google Scholar 

  • Bhatnagar A, Kumar E, Sillanpaa M (2011) Fluoride removal from water by adsorption—a review. Chem Eng J 171:811–840

    Article  CAS  Google Scholar 

  • Briao VB, Magoga J, Hemkemeier M, Briao EB, Girardelli L, Sbeghen L, Favaretto DPC (2014) Reverse osmosis for desalination of water from the Guarani aquifer system to produce drinking water in southern Brazil. Desalination 344:402–411

    Article  CAS  Google Scholar 

  • Brunson LR, Sabatini DA (2009) An evaluation of fish bone char as an appropriate arsenic and fluoride removal Technology for Emerging Regions. Environ Eng Sci 26:1777–1784

    Article  CAS  Google Scholar 

  • Brunson LR, Sabatini DA (2014) Practical considerations, column studies and natural organic material competition for fluoride removal with bone char and aluminum amended materials in the main Ethiopian Rift Valley. Sci Total Environ 488:584–591

    Google Scholar 

  • Buamah R, Oduro CA, Sadik MH (2016) Fluoride removal from drinking water using regenerated aluminum oxide coated media. J Environ Chem Eng 4:250–258

    Article  CAS  Google Scholar 

  • Burwell RL (1976) Manual of symbols and terminology for physicochemical quantities and units—appendix 2—definitions, terminology and symbols in colloid and surface-chemistry. 2. Heterogeneous catalysis. Pure Appl Chem 46:71

    Google Scholar 

  • Cazon JP, Viera M, Donati E, Guibal E (2013) Zinc and cadmium removal by biosorption on Undaria pinnatifida in batch and continuous processes. J Environ Manag 129:423–434

    Article  Google Scholar 

  • Cechinel MAP, Mayer DA, Pozdniakova TA, Mazur LP, Boaventura RAR, de Souza AAU, de Souza SMAGU, Vilar VJP (2016) Removal of metal ions from a petrochemical wastewater using brown macro-algae as natural cation-exchangers. Chem Eng J 286:1–15

    Article  CAS  Google Scholar 

  • Chen L, Zhang K-S, He J-Y, Xu W-H, Huang X-J, Liu J-H (2016) Enhanced fluoride removal from water by sulfate-doped hydroxyapatite hierarchical hollow microspheres. Chem Eng J 285:616–624

    Article  CAS  Google Scholar 

  • Cheung CW, Porter JF, McKay G (2002) Removal of Cu(II) and Zn(II) ions by sorption onto bone char using batch agitation. Langmuir 18:650–656

    Article  CAS  Google Scholar 

  • Dahi E (2015) Optimisation of bone char production using the standard defluoridation capacity procedure. International Society for Fluoride Research, Chiang Mai, pp. 29–36

    Google Scholar 

  • Daifullah AAM, Yakout SM, Elreefy SA (2007) Adsorption of fluoride in aqueous solutions using KMnO4-modified activated carbon derived from steam pyrolysis of rice straw. J Hazard Mater 147:633–643

    Article  CAS  Google Scholar 

  • Das DP, Das J, Parida K (2003) Physicochemical characterization and adsorption behavior of calcined Zn/Al hydrotalcite-like compound (HTlc) towards removal of fluoride from aqueous solution. J Colloid Interface Sci 261:213–220

    Article  CAS  Google Scholar 

  • Davila-Rodriguez JL, Escobar-Barrios VA, Rangel-Mendez JR (2012) Removal of fluoride from drinking water by a chitin-based biocomposite in fixed-bed columns. J Fluor Chem 140:99–103

    Article  CAS  Google Scholar 

  • Dey S, Goswami S, Ghosh UC (2004) Hydrous ferric oxide (HFO)—a scavenger for fluoride from contaminated water. Water Air Soil Pollut 158:311–323 doi:10.1023/B:WATE.0000044854.71497.b6

  • Dimović S, Smičiklas I, Plećaš I, Antonović D, Mitrić M (2009) Comparative study of differently treated animal bones for Co2+ removal. J Hazard Mater 164:279–287

    Article  Google Scholar 

  • Du XL, Yuan Q, Li Y (2008) Mathematical analysis of solanesol adsorption on macroporous resins using the general rate model. Chem Eng Technol 31:1310–1318

    Article  CAS  Google Scholar 

  • Fan X, Parker DJ, Smith MD (2003) Adsorption kinetics of fluoride on low cost materials. Water Res 37:4929–4937

    Article  CAS  Google Scholar 

  • Figueiredo M, Fernando A, Martins G, Freitas J, Judas F, Figueiredo H (2010) Effect of the calcination temperature on the composition and microstructure of hydroxyapatite derived from human and animal bone. Ceram Int 36:2383–2393

    Article  CAS  Google Scholar 

  • Freundlich H (1906): Über die Adsorption in Lösungen. W. Engelmann

  • Garcia-Sanchez JJ, Solache-Rios M, Martinez-Miranda V, Morelos CS (2013) Removal of fluoride ions from drinking water and fluoride solutions by aluminum modified iron oxides in a column system. J Colloid Interface Sci 407:410–415

    Article  CAS  Google Scholar 

  • García-Sánchez JJ, Solache-Ríos M, Alarcón-Herrera MT, Martínez-Miranda V (2016) Removal of fluoride from well water by modified iron oxides in a column system. Desalin Water Treat 57:2125–2133

    Article  Google Scholar 

  • Ghorai S, Pant KK (2004) Investigations on the column performance of fluoride adsorption by activated alumina in a fixed-bed. Chem Eng J 98:165–173

    Article  CAS  Google Scholar 

  • Gupta S, Babu BV (2009) Modeling, simulation, and experimental validation for continuous Cr(VI) removal from aqueous solutions using sawdust as an adsorbent. Bioresour Technol 100:5633–5640

    Article  CAS  Google Scholar 

  • Gupta VK, Ali I, Saino VK (2007) Defluoridation of wastewaters using waste carbon slurry. Water Res 41:3307–3316

    Article  CAS  Google Scholar 

  • Hernandez-Montoya V, Ramirez-Montoya LA, Bonilla-Petriciolet A, Montes-Moran MA (2012) Optimizing the removal of fluoride from water using new carbons obtained by modification of nut shell with a calcium solution from egg shell. Biochem Eng J 62:1–7

    Article  CAS  Google Scholar 

  • Inamuddin M, Luqman M (2012) Ion exchange technology I: theory and materials. Springer

  • Jagtap S, Thakre D, Wanjari S, Kamble S, Labhsetwar N, Rayalu S (2009) New modified chitosan-based adsorbent for defluoridation of water. J Colloid Interface Sci 332:280–290

    Article  CAS  Google Scholar 

  • Kamble SP, Jagtap S, Labhsetwar NK, Thakare D, Godfrey S, Devotta S, Rayalu SS (2007) Defluoridation of drinking water using chitin, chitosan and lanthanum-modified chitosan. Chem Eng J 129:173–180

    Article  CAS  Google Scholar 

  • Kanyora AK, Kinyanjui TK, Kariuki SM, Chepkwony CK (2014) Efficiency of various sodium solutions in regeneration of fluoride saturated bone char for de-fluoridation. IOSR J Environ Sci Toxicol Food Technol 8:10–16

    CAS  Google Scholar 

  • Kanyora A, Kinyanjui T, Kariuki S, Njogu M (2015) Fluoride removal capacity of regenerated bone char in treatment of drinking water. Asian J Nat Appl Sci 4

  • Kaseva ME (2006) Optimization of regenerated bone char for fluoride removal in drinking water: a case study in Tanzania. J Water Health 4:139–147

    CAS  Google Scholar 

  • Kawasaki N, Ogata F, Tominaga H, Yamaguchi I (2009) Removal of fluoride ion by bone char produced from animal biomass. J Oleo Sci 58:529–535

    Article  CAS  Google Scholar 

  • Koyuncu H, Yıldız N, Salgın U, Köroğlu F, Çalımlı A (2011) Adsorption of o-, m- and p-nitrophenols onto organically modified bentonites. J Hazard Mater 185:1332–1339

    Article  CAS  Google Scholar 

  • Krzesińska M, Majewska J (2015) Physical properties of continuous matrix of porous natural hydroxyapatite related to the pyrolysis temperature of animal bones precursors. J Anal Appl Pyrolysis 116:202–214

    Article  Google Scholar 

  • Ku Y, Chiou H-M (2002) The adsorption of fluoride ion from aqueous solution by activated alumina. Water Air Soil Pollut 133:349–361

    Article  CAS  Google Scholar 

  • Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403

    Article  CAS  Google Scholar 

  • Liang C-H, Chiang P-C, Chang EE (2007) Modeling the behaviors of adsorption and biodegradation in biological activated carbon filters. Water Res 41:3241–3250

    Article  CAS  Google Scholar 

  • Liu J, He L, Dong F, Hudson-Edwards KA (2016) The role of nano-sized manganese coatings on bone char in removing arsenic(V) from solution: implications for permeable reactive barrier technologies. Chemosphere 153:146–154

    Article  CAS  Google Scholar 

  • Loganathan P, Vigneswaran S, Kandasamy J, Naidu R (2013) Defluoridation of drinking water using adsorption processes. J Hazard Mater 248–249:1–19

    Article  Google Scholar 

  • Ma W, Ya F, Wang R, Zhao Y (2008) Fluoride removal from drinking water by adsorption using bone char as a biosorbent. Int J Environ Technol Manag 9:59–69

    Article  CAS  Google Scholar 

  • Markovic M, Fowler BO, Tung MS (2004) Preparation and comprehensive characterization of a calcium hydroxyapatite reference material. J Res Natl Inst Standards Technol 109:553–568

    Article  CAS  Google Scholar 

  • Medellin-Castillo NA, Leyva-Ramos R, Ocampo-Perez R, de la Cruz RFG, Aragon-Pina A, Martinez-Rosales JM, Guerrero-Coronado RM, Fuentes-Rubio L (2007) Adsorption of fluoride from water solution on bone char. Ind Eng Chem Res 46:9205–9212

    Article  CAS  Google Scholar 

  • Medellin-Castillo NA, Leyva-Ramos R, Padilla-Ortega E, Perez RO, Flores-Cano JV, Berber-Mendoza MS (2014) Adsorption capacity of bone char for removing fluoride from water solution. Role of hydroxyapatite content, adsorption mechanism and competing anions. J Ind Eng Chem 20:4014–4021

    Article  CAS  Google Scholar 

  • Miretzky P, Cirelli AF (2011) Fluoride removal from water by chitosan derivatives and composites: a review. J Fluor Chem 132:231–240

    Article  CAS  Google Scholar 

  • Mohan SV, Ramanaiah SV, Rajkumar B, Sarma PN (2007) Removal of fluoride from aqueous phase by biosorption onto algal biosorbent spirogyra sp.-IO2: sorption mechanism elucidation. J Hazard Mater 141:465–474

    Article  CAS  Google Scholar 

  • Mohapatra M, Anand S, Mishra BK, Giles DE, Singh P (2009) Review of fluoride removal from drinking water. J Environ Manag 91:67–77

    Article  CAS  Google Scholar 

  • Mondal P, George S (2015) A review on adsorbents used for defluoridation of drinking water. Rev Environ Sci Biotechnol 14:195–210

    Article  CAS  Google Scholar 

  • Montgomery DC (2001) Design and analysis of experiments, vol xii. John Wiley, New York, p. 684

    Google Scholar 

  • Nigussie W, Zewge F, Chandravanshi BS (2007) Removal of excess fluoride from water using waste residue from alum manufacturing process. J Hazard Mater 147:954–963

    Article  CAS  Google Scholar 

  • Nur T, Loganathan P, Nguyen TC, Vigneswaran S, Singh G, Kandasamy J (2014) Batch and column adsorption and desorption of fluoride using hydrous ferric oxide: solution chemistry and modeling. Chem Eng J 247:93–102

    Article  CAS  Google Scholar 

  • Onyango MS, Matsuda H (2006) Chapter 1: fluoride removal from water using adsorption technique. In: Alain T (Editor), Advances in fluorine science. Elsevier, pp. 1–48

  • Ooi CY, Hamdi M, Ramesh S (2007) Properties of hydroxyapatite produced by annealing of bovine bone. Ceram Int 33:1171–1177

    Article  CAS  Google Scholar 

  • Patel S, Han J, Qiu W, Gao W (2015) Synthesis and characterisation of mesoporous bone char obtained by pyrolysis of animal bones, for environmental application. J Environ Chem Eng 3:2368–2377

    Article  CAS  Google Scholar 

  • Paudyal H, Pangeni B, Inoue K, Kawakita H, Ohto K, Ghimire KN, Harada H, Alam S (2013) Adsorptive removal of trace concentration of fluoride ion from water by using dried orange juice residue. Chem Eng J 223:844–853

    Article  CAS  Google Scholar 

  • Prahas D, Kartika Y, Indraswati N, Ismadji S (2008) Activated carbon from jackfruit peel waste by H3PO4 chemical activation: pore structure and surface chemistry characterization. Chem Eng J 140:32–42

    Article  CAS  Google Scholar 

  • Reynel-Avila HE, Mendoza-Castillo DI, Bonilla-Petriciolet A, Silvestre-Albero J (2015) Assessment of naproxen adsorption on bone char in aqueous solutions using batch and fixed-bed processes. J Mol Liq 209:187–195

    Article  CAS  Google Scholar 

  • Reynel-Avila HE, Mendoza-Castillo DI, Bonilla-Petriciolet A (2016) Relevance of anionic dye properties on water decolorization performance using bone char: adsorption kinetics, isotherms and breakthrough curves. J Mol Liq 219:425–434

    Article  CAS  Google Scholar 

  • Rezaee A, Rangkooy H, Jonidi-Jafari A, Khavanin A (2013) Surface modification of bone char for removal of formaldehyde from air. Appl Surf Sci 286:235–239

    Article  CAS  Google Scholar 

  • Rojas-Mayorga CK, Bonilla-Petriciolet A, Aguayo-Villarreal IA, Hernandez-Montoya V, Moreno-Virgen MR, Tovar-Gomez R, Montes-Moran MA (2013) Optimization of pyrolysis conditions and adsorption properties of bone char for fluoride removal from water. J Anal Appl Pyrolysis 104:10–18

    Article  CAS  Google Scholar 

  • Rojas-Mayorga CK, Bonilla-Petriciolet A, Sánchez-Ruiz FJ, Moreno-Pérez J, Reynel-Ávila HE, Aguayo-Villarreal IA, Mendoza-Castillo DI (2015a) Breakthrough curve modeling of liquid-phase adsorption of fluoride ions on aluminum-doped bone char using micro-columns: effectiveness of data fitting approaches. J Mol Liq 208:114–121

    Article  CAS  Google Scholar 

  • Rojas-Mayorga CK, Bonilla-Petriciolet A, Silvestre-Albero J, Aguayo-Villarreal IA, Mendoza-Castillo DI (2015b) Physico-chemical characterization of metal-doped bone chars and their adsorption behavior for water defluoridation. Appl Surf Sci 355:748–760

    Article  CAS  Google Scholar 

  • Rojas-Mayorga CK, Silvestre-Albero J, Aguayo-Villarreal IA, Mendoza-Castillo DI, Bonilla-Petriciolet A (2015c) A new synthesis route for bone chars using CO2 atmosphere and their application as fluoride adsorbents. Microporous Mesoporous Mater 209:38–44

    Article  CAS  Google Scholar 

  • Sadeghi Pouya E, Abolghasemi H, Assar M, Hashemi SJ, Salehpour A, Foroughi-dahr M (2015) Theoretical and experimental studies of benzoic acid batch adsorption dynamics using vermiculite-based adsorbent. Chem Eng Res Des 93:800–811

    Article  CAS  Google Scholar 

  • Sathish RS, Raju NSR, Raju GS, Nageswara Rao G, Kumar KA, Janardhana C (2007) Equilibrium and kinetic studies for fluoride adsorption from water on zirconium impregnated coconut Shell carbon. Sep Sci Technol 42:769–788

    Article  CAS  Google Scholar 

  • Sathish RS, Sairam S, Raja VG, Rao GN, Janardhana C (2008) Defluoridation of water using zirconium impregnated coconut fiber carbon. Sep Sci Technol 43:3676–3694

    Article  CAS  Google Scholar 

  • Schwartz CE, Smith JM (1953) Flow distribution in packed beds. Ind Eng Chem 45:1209–1218

    Article  CAS  Google Scholar 

  • Smith EJ, Davison W, Hamilton-Taylor J (2002) Methods for preparing synthetic freshwaters. Water Res 36:1286–1296

    Article  CAS  Google Scholar 

  • Sternitzke V, Kaegi R, Audinot JN, Lewin E, Hering JG, Johnson CA (2012) Uptake of fluoride from aqueous solution on nano-sized hydroxyapatite: examination of a fluoridated surface layer. Environ Sci Technol 46:802–809

    Article  CAS  Google Scholar 

  • Sundaram CS, Viswanathan N, Meenakshi S (2008) Defluoridation chemistry of synthetic hydroxyapatite at nano scale: equilibrium and kinetic studies. J Hazard Mater 155:206–215

    Article  CAS  Google Scholar 

  • Sundaram CS, Viswanathan N, Meenakshi S (2009) Defluoridation of water using magnesia/chitosan composite. J Hazard Mater 163:618–624

    Article  Google Scholar 

  • Swain SK, Mishra S, Patnaik T, Patel RK, Jha U, Dey RK (2012) Fluoride removal performance of a new hybrid sorbent of Zr(IV)-ethylenediamine. Chem Eng J 184:72–81

    Article  CAS  Google Scholar 

  • Tang D, Zhang G (2016) Efficient removal of fluoride by hierarchical Ce–Fe bimetal oxides adsorbent: thermodynamics, kinetics and mechanism. Chem Eng J 283:721–729

    Article  CAS  Google Scholar 

  • Tovar-Gómez R, Moreno-Virgen MR, Dena-Aguilar JA, Hernández-Montoya V, Bonilla-Petriciolet A, Montes-Morán MA (2013) Modeling of fixed-bed adsorption of fluoride on bone char using a hybrid neural network approach. Chem Eng J 228:1098–1109

    Article  Google Scholar 

  • Velazquez-Jimenez LH, Vences-Alvarez E, Flores-Arciniega JL, Flores-Zuniga H, Rangel-Mendez JR (2015) Water defluoridation with special emphasis on adsorbents-containing metal oxides and/or hydroxides: a review. Sep Purif Technol 150:292–307

    Article  CAS  Google Scholar 

  • Vilar VJP, Botelho CMS, Loureiro JM, Boaventura RAR (2008) Biosorption of copper by marine algae Gelidium and algal composite material in a packed bed column. Bioresour Technol 99:5830–5838

    Article  CAS  Google Scholar 

  • Walker GM, Weatherley LR (2001) Adsorption of dyes from aqueous solution—the effect of adsorbent pore size distribution and dye aggregation. Chem Eng J 83:201–206

    Article  CAS  Google Scholar 

  • Yao RH, Meng FP, Zhang LJ, Ma DD, Wang ML (2009) Defluoridation of water using neodymium-modified chitosan. J Hazard Mater 165:454–460

    Article  CAS  Google Scholar 

  • Yu XL, Tong SR, Ge MF, Zuo JC (2013) Removal of fluoride from drinking water by cellulose@hydroxyapatite nanocomposites. Carbohydr Polym 92:269–275

    Article  CAS  Google Scholar 

  • Yu Y, Yu L, Chen JP (2015) Adsorption of fluoride by Fe-Mg-La triple-metal composite: adsorbent preparation, illustration of performance and study of mechanisms. Chem Eng J 262:839–846

    Article  CAS  Google Scholar 

  • Zhu H, Wang H, Wang G, Zhang K (2011) Removal of fluorine from water by the aluminum-modified bone char. In: IPCBEE (Hrsg.), 2010 International Conference on Biology, Environment and Chemistry. IACSIT Press, Singapore, pp. 455–457

Download references

Acknowledgments

Financial support was partially provided by (i) UID/EQU/50020/2013 - POCI-01-0145-FEDER-006984 project, co-financed by FCT/MEC (Fundação para a Ciência e a Tecnologia/Ministério da Educação e Ciência), and FEDER (Fundo Europeu de Desenvolvimento Regional) through COMPETE 2020 and (ii) NORTE-07-0124-FEDER-0000008 project, co-financed by QREN (Quadro de Referência Estratégico Nacional), ON2 program (Programa Operacional Regional do Norte) and FEDER. Elbert M. Nigri acknowledges the Erasmus Mundus, CAPES-Brazil, CNPq and FAPEMIG for financial support. Maria A. P. Cechinel acknowledges her Doctoral fellowship provided by ANP-MME/MCT-PFRH09. Diego A. Mayer acknowledges his master scholarship provided by ANP (48610.002724/99-40.) L. P. Mazur acknowledges CAPES (Brazil) for her scholarship (BEX-1012/13-4). V.J.P. Vilar acknowledges the FCT Investigator 2013 Programme (IF/00273/2013).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sônia D. F. Rocha or Vítor J. P. Vilar.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

ESM 1

(DOCX 6886 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nigri, E.M., Cechinel, M.A.P., Mayer, D.A. et al. Cow bones char as a green sorbent for fluorides removal from aqueous solutions: batch and fixed-bed studies. Environ Sci Pollut Res 24, 2364–2380 (2017). https://doi.org/10.1007/s11356-016-7816-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7816-5

Keywords

Navigation