Skip to main content
Log in

A review and investigation of the effect of nanophotocatalytic ozonation process for phenolic compound removal from real effluent of pulp and paper industry

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Phenol and its derivatives are the major environmental pollutants discharged from paper and pulp industries into water bodies. All these compounds and chlorinated phenolic compounds in particular are very toxic to fauna and flora, even at relatively low concentration. This study aimed to investigate the removal rate of phenolic compounds from the effluent of pulp and paper industries using a combination of ozonation and photocatalytic processes. Firstly, a certain volume from the effluent of paper and pulp industries containing certain phenol concentrations was obtained and fed into a prefabricated reactor at laboratory scale. Then, the combined and separate effects of zinc oxide dosage (ZnO), ozone flow rate (O3), and pH under ultra violet radiation for 30 min were evaluated. The concentration of phenolic compounds and the produced ozone gas flow rate were measured by a spectrophotometry and iodometric method, respectively. The results showed that the phenolic removal rate increased at acidic PHs compared with alkaline PHs; it was also decreased with the increase in ZnO dosages. Furthermore, the highest phenolic compound’s removal rate was 99% at the optimal condition (pH 5, ZnO dosage of 0.1 g L−1 at the 30 min with UV-C illumination of 125 W). Finally, Daphnia toxicity test showed that treated effluent was safe and met the standards to the extent that it can be discharged into the receiving waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agustina TE, Ang H, Vareek V (2005) A review of synergistic effect of photocatalysis and ozonation on wastewater treatment. J Photochem Photobiol C: Photochem Rev 6:264–273

    Article  CAS  Google Scholar 

  • Al-Ananzeh NM (2004) Oxidation processes: experimental study and theoretical investigations (Doctoral dissertation, Purdue University)

  • Ali M, Sreekrishnan T (2001) Aquatic toxicity from pulp and paper mill effluents: a review. Adv Environ Res 5:175–196

    Article  CAS  Google Scholar 

  • Alley ER (2007) Water quality control handbook. McGraw-Hill, New York, pp. 2–3

    Google Scholar 

  • Am Water Works Res F, Langlais B, Reckhow DA, Brink DR (1991) Ozone in water treatment: application and engineering. CRC press

  • Amat A, Arques A, Miranda M, Lopez F (2005) Use of ozone and/or UV in the treatment of effluents from board paper industry. Chemosphere 60:1111–1117

    Article  CAS  Google Scholar 

  • Anju S, Yesodharan S, Yesodharan E (2012) Zinc oxide mediated sonophotocatalytic degradation of phenol in water. Chem Eng J 189:84–93

    Article  Google Scholar 

  • Bazrafshan E, Biglari H, Mahvi AH (2012) Phenol removal by electrocoagulation process from aqueous solutions. Fresenius Environ Bull 21:364–371

    CAS  Google Scholar 

  • Beltran FJ, Aguinaco A, García-Araya JF, Oropesa A (2008) Ozone and photocatalytic processes to remove the antibiotic sulfamethoxazole from water. Water Res 42:3799–3808

    Article  CAS  Google Scholar 

  • Benhebal H, Chaib M, Salmon T, Geens J, Léonard A, Lambert SD, Crine M, Heinrichs B (2013) Photocatalytic degradation of phenol and benzoic acid using zinc oxide powders prepared by the sol–gel process. Alex Eng J 52:517–523

    Article  Google Scholar 

  • Berden G, Meerts WL, Schmitt M, Kleinermanns K (1996) High resolution UV spectroscopy of phenol and the hydrogen bonded phenol-water cluster. J Chem Phys 104:972–982

    Article  CAS  Google Scholar 

  • Beulker S, Jekel M (1993) Ozonation and precipitation for treatment of bleachery effluents from pulp mills. 361–370

  • Biglari H, Chavoshani A, Javan N, Hossein Mahvi A (2016) Geochemical study of groundwater conditions with special emphasis on fluoride concentration. Iran Desalination and Water Treatment:1–8

  • Byrappa K, Subramani A, Ananda S, Rai KL, Dinesh R, Yoshimura M (2006) Photocatalytic degradation of rhodamine B dye using hydrothermally synthesized ZnO. Bull Mater Sci 29:433–438

    Article  CAS  Google Scholar 

  • Chaichanawong J, Yamamoto T, Ohmori T (2010) Enhancement effect of carbon adsorbent on ozonation of aqueous phenol. J Hazard Mater 175:673–679

    Article  CAS  Google Scholar 

  • Chun H, Yizhong W, Hongxiao T (2000) Destruction of phenol aqueous solution by photocatalysis or direct photolysis. Chemosphere 41:1205–1209

    Article  CAS  Google Scholar 

  • Devipriya SP, Yesodharan S (2010) Photocatalytic degradation of phenol in water using TiO2 and ZnO

  • Dong Y, Zhao H, Wang Z, Wang G, He A, Jiang P (2012) Facile preparation of ZnO nanocatalysts for ozonation of phenol and effects of calcination temperatures. Bull Kor Chem Soc 33:215–220

    Article  Google Scholar 

  • Esplugas S, Gimenez J, Contreras S, Pascual E, Rodrı́guez M (2002) Comparison of different advanced oxidation processes for phenol degradation. Water Res 36:1034–1042

    Article  CAS  Google Scholar 

  • Farley R (2003) Ozone and the reef aquarium, Part 1: chemistry and biochemistry. Reefkeeping Online Magazine. June, 2006–03

  • Farrokhi M, Hosseini S-C, Yang J-K, Shirzad-Siboni M (2014) Application of ZnO–Fe3O4 nanocomposite on the removal of azo dye from aqueous solutions: kinetics and equilibrium studies. Water Air Soil Pollut 225:1–12

    Article  CAS  Google Scholar 

  • Federation WE, Association APH (2005) Standard methods for the examination of water and wastewater. American Public Health Association (APHA): Washington, DC, USA. section of 5–47, Direct Method

  • Feigelson L, Muszkat L, Bir L, Muszkat K (2000) Dye photo-enhancement of TiO2-photocatalyzed degradation of organic pollutants: the organobromine herbicide bromacil. Water Science & Technology 42:275–279

    CAS  Google Scholar 

  • García-Araya JF, Beltrán FJ, Aguinaco A (2010) Diclofenac removal from water by ozone and photolytic TiO2 catalysed processes. J Chem Technol Biotechnol 85:798–804

    Article  Google Scholar 

  • Gaya UI, Abdullah AH, Hussein MZ, Zainal Z (2010) Photocatalytic removal of 2, 4, 6-trichlorophenol from water exploiting commercial ZnO powder. Desalination 263:176–182

    Article  CAS  Google Scholar 

  • Giri R, Ozaki H, Taniguchi S, Takanami R (2008) Photocatalytic ozonation of 2, 4-dichlorophenoxyacetic acid in water with a new TiO2 fiber. International Journal of Environmental Science & Technology 5:17–26

    Article  CAS  Google Scholar 

  • Giri J, Srivastva A, Pachauri S, Srivastva P (2014) Effluents from paper and pulp industries and their impact on soil properties and chemical composition of plants in Uttarakhand India. J Environ Waste Manag 1:26–32

    Google Scholar 

  • Goslan EH, Gurses F, Banks J, Parsons SA (2006) An investigation into reservoir NOM reduction by UV photolysis and advanced oxidation processes. Chemosphere 65:1113–1119

    Article  CAS  Google Scholar 

  • Grabowska E, Reszczyńska J, Zaleska A (2012) Mechanism of phenol photodegradation in the presence of pure and modified-TiO 2: a review. Water Res 46:5453–5471

    Article  CAS  Google Scholar 

  • Guo Z, Ma R, Li G (2006) Degradation of phenol by nanomaterial TiO 2 in wastewater. Chem Eng J 119:55–59

    Article  CAS  Google Scholar 

  • Hayat K, Gondal M, Khaled MM, Ahmed S, Shemsi AM (2011) Nano ZnO synthesis by modified sol gel method and its application in heterogeneous photocatalytic removal of phenol from water. Appl Catal A Gen 393:122–129

    Article  CAS  Google Scholar 

  • Hong S-S, Ju C-S, Lim C-G, Ahn B-H, Lim K-T, Lee G-D (2001) A photocatalytic degradation of phenol over TiO2 prepared by sol-gel method. J Ind Eng Chem 7:99–104

    CAS  Google Scholar 

  • Hsu Y-C, Chen J-H, Yang H-C (2007) Calcium enhanced COD removal for the ozonation of phenol solution. Water Res 41:71–78

    Article  CAS  Google Scholar 

  • Hu C, Xing S, Qu J, He H (2008) Catalytic ozonation of herbicide 2, 4-D over cobalt oxide supported on mesoporous zirconia. J Phys Chem C 112:5978–5983

    Article  CAS  Google Scholar 

  • Huang C-R, Shu H-Y (1995) The reaction kinetics, decomposition pathways and intermediate formations of phenol in ozonation, UVO3 and UVH2O2 processes. J Hazard Mater 41:47–64

    Article  CAS  Google Scholar 

  • Huang Y, Cui C, Zhang D, Li L, Pan D (2015) Heterogeneous catalytic ozonation of dibutyl phthalate in aqueous solution in the presence of iron-loaded activated carbon. Chemosphere 119:295–301

    Article  CAS  Google Scholar 

  • Janotti A, Van de Walle CG (2009) Fundamentals of zinc oxide as a semiconductor. Rep Prog Phys 72:126501

    Article  Google Scholar 

  • Jorgensen SE, Johnsen I (2011) Principles of environmental science and technology, 14. Elsevier

  • Kashif N, Ouyang F (2009) Parameters effect on heterogeneous photocatalysed degradation of phenol in aqueous dispersion of TiO 2. J Environ Sci 21:527–533

    Article  CAS  Google Scholar 

  • Khan MH, Jung JY (2008) Ozonation catalyzed by homogeneous and heterogeneous catalysts for degradation of DEHP in aqueous phase. Chemosphere 72:690–696

    Article  Google Scholar 

  • Konstantinova M, Razumovskii S, Zaikov G (1991) Mechanism of the reaction of ozone with phenols. Bulletin of the Academy of Sciences of the USSR, Division of chemical science 40:271–275

    Article  Google Scholar 

  • Larson TE, Buswell AM, Ludwig HF, Langelier W (1942) Calcium carbonate saturation index and alkalinity interpretations [with discussion]. Journal (American Water Works Association):1667–1684

  • Lee KM, Lai CW, Ngai KS, Juan JC (2016) Recent developments of zinc oxide based photocatalyst in water treatment technology: a review. Water Res 88:428–448

    Article  CAS  Google Scholar 

  • Li L, Zhu W, Zhang P, Chen Z, Han W (2003) Photocatalytic oxidation and ozonation of catechol over carbon-black-modified nano-TiO2 thin films supported on Al sheet. Water Res 37(15):3646–3651

  • Lin S-H, Chiou C-H, Chang C-K, Juang R-S (2011) Photocatalytic degradation of phenol on different phases of TiO 2 particles in aqueous suspensions under UV irradiation. J Environ Manag 92:3098–3104

    Article  CAS  Google Scholar 

  • Lindholm-Lehto PC, Knuutinen JS, Ahkola HS, Herve SH (2015) Refractory organic pollutants and toxicity in pulp and paper mill wastewaters. Environ Sci Pollut Res 22:6473–6499

    Article  CAS  Google Scholar 

  • Liotta L, Gruttadauria M, Di Carlo G, Perrini G, Librando V (2009) Heterogeneous catalytic degradation of phenolic substrates: catalysts activity. J Hazard Mater 162:588–606

    Article  CAS  Google Scholar 

  • Lukes P, Locke BR (2005) Degradation of substituted phenols in a hybrid gas-liquid electrical discharge reactor. Ind Eng Chem Res 44:2921–2930

    Article  CAS  Google Scholar 

  • Marsalek R (2014) Particle size and zeta potential of ZnO. APCBEE Procedia 9:13–17

    Article  CAS  Google Scholar 

  • Mehrjouei M, Müller S, Sekiguchi K, Möller D (2010) Decolorization of wastewater produced in a pyrolysis process by ozone: enhancing the performance of ozonation. Ozone Sci Eng 32:349–354

    Article  CAS  Google Scholar 

  • Mehrjouei M, Müller S, Möller D (2015) A review on photocatalytic ozonation used for the treatment of water and wastewater. Chem Eng J 263:209–219

    Article  CAS  Google Scholar 

  • Moussavi G, Khavanin A, Alizadeh R (2009) The investigation of catalytic ozonation and integrated catalytic ozonation/biological processes for the removal of phenol from saline wastewaters. J Hazard Mater 171:175–181

    Article  CAS  Google Scholar 

  • Mvula E, Schuchmann MN, von Sonntag C (2001) Reactions of phenol-OH-adduct radicals. Phenoxyl radical formation by water elimination vs. oxidation by dioxygen. J Chem Soc Perkin Trans 2:264–268

    Article  Google Scholar 

  • Neyens E, Baeyens J (2003) A review of classic Fenton’s peroxidation as an advanced oxidation technique. J Hazard Mater 98:33–50

    Article  CAS  Google Scholar 

  • Orge C, Pereira M, Faria J (2015) Photocatalytic ozonation of model aqueous solutions of oxalic and oxamic acids. Appl Catal B Environ 174:113–119

    Article  Google Scholar 

  • Paz Y (2006) Preferential photodegradation–why and how? Comptes Rendus Chimie 9:774–787

    Article  CAS  Google Scholar 

  • Piera E, Calpe JC, Brillas E, Domènech X, Peral J (2000) 2, 4-Dichlorophenoxyacetic acid degradation by catalyzed ozonation: TiO 2/UVA/O 3 and Fe (II)/UVA/O 3 systems. Appl Catal B Environ 27:169–177

    Article  CAS  Google Scholar 

  • Pimentel M, Oturan N, Dezotti M, Oturan MA (2008) Phenol degradation by advanced electrochemical oxidation process electro-Fenton using a carbon felt cathode. Appl Catal B Environ 83:140–149

    Article  CAS  Google Scholar 

  • Pokhrel D, Viraraghavan T (2004) Treatment of pulp and paper mill wastewater—a review. Sci Total Environ 333:37–58

    Article  CAS  Google Scholar 

  • Prabha I, Lathasree S (2014) Photodegradation of phenol by zinc oxide, titania and zinc oxide–titania composites: nanoparticle synthesis, characterization and comparative photocatalytic efficiencies. Mater Sci Semicond Process 26:603–613

    Article  CAS  Google Scholar 

  • Raj A, Kumar S, Haq I, Singh SK (2014) Bioremediation and toxicity reduction in pulp and paper mill effluent by newly isolated ligninolytic Paenibacillus sp. Ecol Eng 71:355–362

    Article  Google Scholar 

  • Rivas L, Bellobono IR, Ascari F (1998) Photomineralization of n-alkanoic acids in aqueous solution by photocatalytic membranes. Influence of radiation power. Chemosphere 37:1033–1044

    Article  CAS  Google Scholar 

  • Rodríguez EM, Márquez G, León EA, Álvarez PM, Amat AM, Beltrán FJ (2013) Mechanism considerations for photocatalytic oxidation, ozonation and photocatalytic ozonation of some pharmaceutical compounds in water. J Environ Manag 127:114–124

    Article  Google Scholar 

  • Savant D, Abdul-Rahman R, Ranade D (2006) Anaerobic degradation of adsorbable organic halides (AOX) from pulp and paper industry wastewater. Bioresour Technol 97:1092–1104

    Article  CAS  Google Scholar 

  • Sehested K, Holcman J, Bjergbakke E, Hart EJ (1984) A pulse radiolytic study of the reaction hydroxyl + ozone in aqueous medium. J Phys Chem 88:4144–4147

    Article  CAS  Google Scholar 

  • Senturk HB, Ozdes D, Gundogdu A, Duran C, Soylak M (2009) Removal of phenol from aqueous solutions by adsorption onto organomodified Tirebolu bentonite: equilibrium, kinetic and thermodynamic study. J Hazard Mater 172:353–362

    Article  CAS  Google Scholar 

  • Sobczyński A, Duczmal Ł (2004) Photocatalytic destruction of catechol on illuminated titania. React Kinet Catal Lett 82:213–218

    Article  Google Scholar 

  • Sun H, Feng X, Wang S, Ang HM, Tadé MO (2011) Combination of adsorption, photochemical and photocatalytic degradation of phenol solution over supported zinc oxide: effects of support and sulphate oxidant. Chem Eng J 170:270–277

    Article  CAS  Google Scholar 

  • Treguer R, Tatin R, Couvert A, Wolbert D, Tazi-Pain A (2010) Ozonation effect on natural organic matter adsorption and biodegradation–application to a membrane bioreactor containing activated carbon for drinking water production. Water Res 44:781–788

    Article  CAS  Google Scholar 

  • Tso C-p, C-m Z, Y-h S, Tseng Y-M, Wu S-c, R-a D (2010) Stability of metal oxide nanoparticles in aqueous solutions. Water Sci Technol 61:127

    Article  CAS  Google Scholar 

  • Wang G-S, Hsieh S-T, Hong C-S (2000) Destruction of humic acid in water by UV light—catalyzed oxidation with hydrogen peroxide. Water Res 34:3882–3887

    Article  CAS  Google Scholar 

  • Weinberg BL, Drayson SR, Freese K (1996) Wavelet analysis and visualization of the formation and evolution of low total ozone events over northern Sweden. Geophys Res Lett 23:2223–2226

  • Wojtowicz JA (2001) Use of ozone in the treatment of swimming pools and spas. Journal of the swimming pool and spa industry 4:41–53

    Google Scholar 

  • Wu Z, Franke M, Ondruschka B, Zhang Y, Ren Y, Braeutigam P, Wang W (2011) Enhanced effect of suction-cavitation on the ozonation of phenol. J Hazard Mater 190:375–380

    Article  CAS  Google Scholar 

  • Wu D, Yang Z, Wang W, Tian G, Xu S, Sims A (2012) Ozonation as an advanced oxidant in treatment of bamboo industry wastewater. Chemosphere 88:1108–1113

    Article  CAS  Google Scholar 

  • Xiao J, Xie Y, Cao H (2015) Organic pollutants removal in wastewater by heterogeneous photocatalytic ozonation. Chemosphere 121:1–17

    Article  CAS  Google Scholar 

  • Yamamoto Y, Niki E, Shiokawa H, Kamiya Y (1979) Ozonation of organic compounds. 2. Ozonation of phenol in water. The Journal of Organic Chemistry 44:2137–2142

    Article  CAS  Google Scholar 

  • Yan M, Wang D, Shi B, Wang M, Yan Y (2007) Effect of pre-ozonation on optimized coagulation of a typical North-China source water. Chemosphere 69:1695–1702

    Article  CAS  Google Scholar 

  • Yousef RI, El-Eswed B, Ala’a H (2011) Adsorption characteristics of natural zeolites as solid adsorbents for phenol removal from aqueous solutions: kinetics, mechanism, and thermodynamics studies. Chem Eng J 171:1143–1149

    Article  CAS  Google Scholar 

  • Zhang F, Yang J (2009) Preparation of nano-ZnO and its application to the textile on antistatic finishing. Int J Chem 1:18

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was scientifically supported by Gonabad University of Medical Science. The authors are grateful to the Deputy of Research & Technology and Dept. of Environmental Health Engineering for the logistical and technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Hossein Mahvi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Responsible editor: Suresh Pillai

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biglari, H., Afsharnia, M., Alipour, V. et al. A review and investigation of the effect of nanophotocatalytic ozonation process for phenolic compound removal from real effluent of pulp and paper industry. Environ Sci Pollut Res 24, 4105–4116 (2017). https://doi.org/10.1007/s11356-016-8079-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-8079-x

Keywords

Navigation