Skip to main content

Advertisement

Log in

Comparative assessment of metallurgical recovery of metals from electronic waste with special emphasis on bioleaching

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Waste electrical and electronic equipment (WEEE) or electronic waste (e-waste) is one of the fastest growing waste streams in the urban environment worldwide. The core component of printed circuit board (PCB) in e-waste contains a complex array of metals in rich quantity, some of which are toxic to the environment and all of which are valuable resources. Therefore, the recycling of e-waste is an important aspect not only from the point of waste treatment but also from the recovery of metals for economic growth. Conventional approaches for recovery of metals from e-waste, viz. pyrometallurgical and hydrometallurgical techniques, are rapid and efficient, but cause secondary pollution and economically unviable. Limitations of the conventional techniques have led to a shift towards biometallurgical technique involving microbiological leaching of metals from e-waste in eco-friendly manner. However, optimization of certain biotic and abiotic factors such as microbial species, pH, temperature, nutrients, and aeration rate affect the bioleaching process and can lead to profitable recovery of metals from e-waste. The present review provides a comprehensive assessment on the metallurgical techniques for recovery of metals from e-waste with special emphasis on bioleaching process and the associated factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adhapure NN, Dhakephalkar PK, Dhakephalkar AP, Tembhurkar VR, Rajgure AV, Deshmukh AM (2014) Use of large pieces of printed circuit boards for bioleaching to avoid ‘precipitate contamination problem’ and to simplify overall metal recovery. MethodsX 1:181–186

    Article  CAS  Google Scholar 

  • Akcil A, Yazici EY, Deveci H (2009) E-wastes: mines of future. Waste management Recycling and Environmental Technologies Magazine 10:65–73

    Google Scholar 

  • Akcil A, Deveci H, Jain S, Khan A (2010) Mineral biotechnology of sulphides. In: Rai MK (ed) Geomicrobiology. Science Publishers, Enfield, pp 101–137

    Chapter  Google Scholar 

  • Anders BJ, Colin W (1995) Ferric sulphate oxidation using Thiobacillus ferrooxidans: a review. Process Biochem 30:225–236

    Article  Google Scholar 

  • APME (2000) Plastics: insight into consumption and recovery in Western Europe. Association of Plastics Manufacturers in Europe (APME), Brussels

    Google Scholar 

  • Arshadi M, Mousavi SM (2015) Multi-objective optimization of heavy metals bioleaching from discarded mobile phone PCBs: simultaneous Cu and Ni recovery using Acidithiobacillus ferrooxidans. Sep Purif Technol 147:210–219

    Article  CAS  Google Scholar 

  • Atlas RM, Bartha R (1997) Microbial ecology: fundamentals and applications. Benjamin Cummings, USA

    Google Scholar 

  • Aung KMM, Ting YP (2005) Bioleaching of spent fluid catalytic cracking catalysts using Asperlligus niger. J Biotechnol 116:159–170

    Article  CAS  Google Scholar 

  • Ayres RU (1997) Metal recycling: economic and environmental implications. Resour Conserv Recy 21:145–173

    Article  Google Scholar 

  • Barontini F, Cozzani V (2006) Formation of hydrogen bromide and organobrominated compounds in the thermal degradation of electronic boards. J Anal Appl Pyrolysis 77:41–55

    Article  CAS  Google Scholar 

  • Beolchini F, Fonti V, Dell’Anno A, Rocchetti L, Veglio F (2012) Assessment of biotechnological strategies for the valorization of metal bearing wastes. Waste Manag 32:949–956

    Article  CAS  Google Scholar 

  • Bosecker K (1997) Bioleaching: metal solubilisation by microorganisms. FEMS Microbiol Revi 20:591–604

    Article  CAS  Google Scholar 

  • Brandl H, Bosshard R, Wegmann M (2001) Computer-munching microbes: metal leaching from electronic scrap by bacteria and fungi. Hydrometallurgy 59:319–326

    Article  CAS  Google Scholar 

  • Brandl H, Lehmann S, Faramarzi MA, Martinelli D (2008) Biomobilization of silver, gold, and platinum from solid waste materials by HCN-forming microorganisms. Hydrometallurgy 94:14–17

    Article  CAS  Google Scholar 

  • Brierley JA, Brierley CL (2001) Present and future commercial applications of biohyudrometallurgy. Hydrometallurgy 59:233–239

    Article  CAS  Google Scholar 

  • Bryan CG, Watkina EL, McCreddena TJ, Wong ZR, Harrison STL, Kaksonen AH (2015) The use of pyrite as a source of lixiviant in the bioleaching of electronic waste. Hydrometallurgy 152:33–43

    Article  CAS  Google Scholar 

  • Burgstaller W, Schinner F (1993) Leaching of metals with fungi. J Biotechnol 27:91–116

    Article  CAS  Google Scholar 

  • Castro IM, Fietto JLR, Vieira RX, Tropia MJM, Campos LMM, Paniago EB, Brandao RL (2000) Bioleaching of zinc and nickel from silicate using Aspergillus niger culture. Hydrometallurgy 57:39–49

    Article  CAS  Google Scholar 

  • Chatterjee S (2012) Sustainable electronic waste management and recycling process. Am J Environ Eng 2(1):23–33

    Article  Google Scholar 

  • Chen A, Dietrich KN, Huo X, Ho SM (2011) Developmental neurotoxicants in e-waste: an emerging health concern. Environ Health Persp 119(4):431–433

    Article  Google Scholar 

  • Chiang H-L, Lin K-H (2014) Exhaust constituent emission factors of printed circuit board pyrolysis processes and its exhaust control. J Hazard Mater 264:545–551

    Article  CAS  Google Scholar 

  • Chien Y-C, Liang C-P, Shih P-H (2009) Emission of polycyclic aromatic hydrocarbons from the pyrolysis of liquid crystal wastes. J Hazard Mater 170:910–914

    Article  CAS  Google Scholar 

  • Chmielewski AG, Urbanski TS, Migdal W (1997) Separation technologies for metals recovery from industrial wastes. Hydrometallurgy 45(3):333–344

    Article  CAS  Google Scholar 

  • Choi MS, Cho KS, Kim DS, Kim DJ (2004) Microbial recovery of copper from printed circuit boards of waste computer by Acidithiobacillus ferrooxidans. J Environ Sci Health A A 39(11–12):2973–2982

    Article  Google Scholar 

  • Choubey PK, Panda R, Jha MK, Lee J-c, Pathak DD (2015) Recovery of copper and recycling of acid from the leach liquor of discarded printed circuit boards (PCBs). Sep Purif Technol 156:269–275

    Article  CAS  Google Scholar 

  • CMCA (2006) Electronic waste recovery study. CM Consulting Associates (CMCA) 3–32

  • Colmer AR, Hinkle ME (1947) The role of microorganisms in acid mine drainage: a preliminary report. Science 106:253–256

    Article  CAS  Google Scholar 

  • Cui J, Forssberg E (2003) Mechanical recycling of waste electric and electronic equipment: a review. J Hazard Mater 99(3):243–263

    Article  CAS  Google Scholar 

  • Cui J, Zhang L (2008) Metallurgical recovery of metals from electronic waste: a review. J Hazard Mater 158:228–256

    Article  CAS  Google Scholar 

  • Dalrymple I, Wright N, Kellner R (2007) An integrated approach to electronic waste (WEEE) recycling. Circuit World 33:52–58

    Article  Google Scholar 

  • Das A, Vidyadhar A, Mehrotra SP (2009) A novel flowsheet for the recovery of metal values from waste printed circuit boards. Resour Conserv Recy 53:464–469

    Article  Google Scholar 

  • Deng WJ, Zheng JS, Bi XH, Fu JM, Wong MH (2007) Distribution of PBDEs in air particles from an electronic waste recycling site compared with Guangzhou and Hong Kong, South China. Environ Int 33:1063–1069

    Article  CAS  Google Scholar 

  • Dunn J, Wendell E, Carda DD et al. (1991) Chlorination process for recovering gold values from gold alloys. US Patent, US5004500

  • Ebert J, Bahadir M (2003) Formation of PBDD/F from flame-retarded plastic materials under thermal stress. Environ Int 29:711–716

    Article  CAS  Google Scholar 

  • Fan RY, Xie F, Guan XL, Zhang QL, Luo ZR (2014) Selective adsorption and recovery of Au(III) from three kinds of acidic systems by persimmon residual based bio-sorbent: a method for gold recycling from e-wastes. Bioresour Technol 163:167–171

    Article  CAS  Google Scholar 

  • Faramarzi MA, Stagars M, Pensini E (2004) Metal solubilization from metal-containing solid materials by cyanogenic Chromobacterium violaceum. J Biotechnol 113(3):321–326

    Article  CAS  Google Scholar 

  • Fujimori T, Takigami H (2014) Pollution distribution of heavy metals in surface soil at an informal electronic-waste recycling site. Environ Geochem Health 36:159–168

    Article  CAS  Google Scholar 

  • Gadd GM (2004) Microbial influence on metal mobility and application for bioremediation. Geoderma 122:109–119

    Article  CAS  Google Scholar 

  • Gehrke T, Telegdi J, Thierry D, Sand W (1998) Importance of extracellular polymeric substances from Thiobacillus ferrooxidans for bioleaching. Appl Environ Microbiol 64(7):2743–2747

    CAS  Google Scholar 

  • Grossman E (2006) High tech trash: digital devices, hidden toxics, and human health. Island Press, Washington, DC, pp 336–352

    Google Scholar 

  • Guo J, Guo J, Xu Z (2009) Recycling of non-metallic fractions from waste printed circuit boards: a review. J Hazard Mater 168:567–590

    Article  CAS  Google Scholar 

  • Ha VH, Lee J, Huynh TH, Jeong J, Pandey BD (2014) Optimizing the thiosulfate leaching of gold fromprinted circuit boards of discarded mobile phone. Hydrometallurgy 149:118–126

    Article  CAS  Google Scholar 

  • Hadi P, Xu M, Lin CSK, Hui C-W, McKaya G (2015) Waste printed circuit board recycling techniques and product utilization. J Hazard Mater 283:234–243

    Article  CAS  Google Scholar 

  • Hageluken C (2006) Recycling of electronic scrap at umicore’s integrated metals smelter and refinery. World of Metallurgy – ERZMETALL 59(3):152–161

    CAS  Google Scholar 

  • Haxel GB, Hedrick JB, Orris GJ (2002) Rare earth elements—critical resources for high technology. US Geological Survey, Reston, VA

    Google Scholar 

  • He WZ, Li GM, Ma XF, Wang H, Huang JW, Xu M, Huang CJ (2006) WEEE recovery strategies and the WEEE treatment status in China. J Hazard Mater 136:502–512

    Article  CAS  Google Scholar 

  • Hicks C, Dietmar R, Eugster M (2005) The recycling and disposal of electrical and electronic waste in China – legislative and market responses. Environ Impact Assess Rev 25:459–471

    Article  Google Scholar 

  • Hoffmann JE (1992) Recovering precious metals from electronic scrap. J Min Met Mat S 44:43–48

  • Hong Y, Valix M (2014) Bioleaching of electronic waste using acidophilic sulfur oxidising bacteria. J Clean Prod 65:465–472

    Article  CAS  Google Scholar 

  • Huang K, Jie Guo J, Xu Z (2009) Recycling of waste printed circuit boards: a review of current technologies and treatment status in China. J Hazard Mater 164:399–408

    Article  CAS  Google Scholar 

  • Iji M, Yokoyama S (1997) Recycling of printed wiring boards with mounted electronic components. Circuit World 23:10–15

    Article  Google Scholar 

  • Ilyas S, Anwar MA, Niazi SB, Afzal GM (2007) Bioleaching of metals from electronic scrap by moderately thermophilic acidophilic bacteria. Hydrometallurgy 88:180–188

    Article  CAS  Google Scholar 

  • Ilyas S, Ruan C, Bhatti HN, Ghauri MA, Anwar MA (2010) Column bioleaching of metals from electronic scrap. Hydrometallurgy 101:135–140

    Article  CAS  Google Scholar 

  • Ilyas S, Lee J-c, R-a C (2013) Bioleaching of metals from electronic scrap and its potential for commercial exploitation. Hydrometallurgy 131-132:138–143

    Article  CAS  Google Scholar 

  • Isildar A, van de Vossenberg J, Rene ER, van Hullebusch ED, Lens PNL (2016) Two-step bioleaching of copper and gold from discarded printed circuit boards (PCB). Waste Manag 57:149–157

    Article  CAS  Google Scholar 

  • Ivanus RC (2010) Bioleaching of metals from electronic scrap by pure and mixed culture of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. Metal Int 15:62–70

    CAS  Google Scholar 

  • Ivanus RC, Ivanus D (2009) Metal leaching from electronic scrap by fungi. Metal Int 14:58–65

    Google Scholar 

  • Jadhav U, Hocheng H (2014) Use of Aspergillus niger 34770 culture supernatant for tin metal removal. Corros Sci 82:248–254

    Article  CAS  Google Scholar 

  • Jha MK, Choubey PK, Jha AK, Kumari A, Lee J-c, Kumar V, Jeong J (2012) Leaching studies for tin recovery from waste e-scrap. Waste Manag 32:1919–1925

    Article  CAS  Google Scholar 

  • Jomova K, Jenisova Z, Feszterova M, Baros S, Liska J, Hudecova D, Rhodes CJ, Valko M (2011) Arsenic: toxicity, oxidative stress and human disease. J Appl Toxicol 31(2):95–107

    CAS  Google Scholar 

  • Jujun R, Xingjiong Z, Yiming Q, Jian H (2014) A new strain for recovering precious metals from waste printed circuit boards. Waste Manag 34:901–907

    Article  CAS  Google Scholar 

  • Kahhat R, Williams E (2009) Product or waste? Importation and end-of-life processing of computers in Peru. Environ Sci Technol 43:6010–6016

    Article  CAS  Google Scholar 

  • Karavaiko GI, Rossi G, Agate AD, Groudev SN, Avakyan ZA (1988) Biogeotechnology of metals - a manual. Centre for International Projects, Moscow

    Google Scholar 

  • Karwowska E, Andrzejewska-Morzuch D, Lebkowska M, Tabernacka A, Wojtkowska M, Telepko A, Konarzewska A (2014) Bioleaching of metals from printed circuit boards supported with surfactant-producing bacteria. J Hazard Mater 264:203–210

    Article  CAS  Google Scholar 

  • Krebs W, Brombacher C, Bosshard PP, Bachofen R, Brandl H (1997) Microbial recovery of metals from solids. FEMS Microbiol Rev 20:605–617

    Article  CAS  Google Scholar 

  • Krikke J (2008) Recycling e-waste: the sky is the limit. IT Professional 10(1):50–55

    Article  Google Scholar 

  • Le L, Tang J, Ryan D, Valix M (2006) Bioleaching nickel laterite ores using multi metal tolerant Aspergillus foetidus organism. Miner Eng 19:1259–1265

    Article  CAS  Google Scholar 

  • Lee J-c, Song HT, Yoo J-M (2007) Present status of the recycling of waste electrical and electronic equipment in Korea. Resour Conserv Recy 50:380–397

    Article  Google Scholar 

  • Li J, Shrivastava P, Gao Z, Zhang H-C (2004) Printed circuit board recycling: a state-of-the-art survey. IEEE Trans Electron Packag Manuf 27(1):33–42

    Article  CAS  Google Scholar 

  • Li J, Lu H, Guo J, Xu Z, Zhou Y (2007) Recycle technology for recovering resources and products from waste printed circuit boards. Environ Sci Technol 41:1995–2000

    Article  CAS  Google Scholar 

  • Liang G, Tang J, Liu W, Zhou Q (2013) Optimizing mixed culture of two acidophiles to improve copper recovery from printed circuit boards (PCBs). J Hazard Mater 250–251:238–245

    Article  CAS  Google Scholar 

  • Lim SR, Schoenung JM (2010) Human health and ecological toxicity potentials due to metal content in waste electronic devices with flat panel displays. J Hazard Mater 177:251–259

    Article  CAS  Google Scholar 

  • Lin C, Wu M, Yang C, Ger J, Tsai W, Deng J (2009) Acute severe chromium poisoning after dermal exposure to hexavalent chromium. J Chin Med Assoc 72(4):219–221

    Article  CAS  Google Scholar 

  • Lu R, Ma E, Xu Z (2012) Application of pyrolysis process to remove and recover liquid crystal and films from waste liquid crystal display glass. J Hazard Mater 243:311–318

    Article  CAS  Google Scholar 

  • Madrigal-Arias JE, Argumedo-Delira R, Alarcón A, Mendoza-López MR, García-Barradas O, Cruz-Sánchez JS, Ferrera-Cerrato R, Jiménez-Fernández M (2015) Bioleaching of gold, copper and nickel from waste cellular phone PCBs and computer goldfinger motherboards by two Aspergillus niger strains. Braz J Microbiol 46(3):707–713

    Article  CAS  Google Scholar 

  • Mishra D, Rhee YH (2014) Microbial leaching of metals from solid industrial wastes. J Microbiol 52(1):1–7

    Article  CAS  Google Scholar 

  • Morin D, Lips A, Pinches T (2006) BioMine – integrated project for the development of biotechnology for metal-bearing materials in Europe. Hydrometallurgy 83(4):69–76

    Article  CAS  Google Scholar 

  • Mrazikova A, Marcincakova R, Kadukova J, Velgosova O, Balintova M (2015) Influence of used bacterial culture on zinc and aluminium bioleaching from printed circuit boards. Nova Biotechnologica et Chimica 14(1):45–51

    Article  CAS  Google Scholar 

  • Nakajima K, Takeda O, Miki T, Matsubae K, Nakamura S, Nagasaka T (2010) Thermodynamic analysis of contamination by alloying elements in aluminium recycling. Environ Sci Technol 44:5594–5600

    Article  CAS  Google Scholar 

  • Natarajan KA, Deo N (2001) Role of bacterial interaction and bioreagents in iron ore flotation. Int J Miner Process 62:143–157

    Article  CAS  Google Scholar 

  • Ni M, Xiao H, Chi Y, Yan J, Buekens A, Jin Y, Lu S (2012) Combustion and inorganic bromine emission of waste printed circuit boards in a high temperature furnace. Waste Manag 32:568–574

    Article  CAS  Google Scholar 

  • Norgate TE, Jahanshahi S, Rankin WJ (2007) Assessing the environmental impact of metal production processes. J Clean Prod 15(8):838–848

    Article  Google Scholar 

  • Olson GJ, Brierley JA, Brierley CL (2003) Progress in bioleaching: applications of microbial processes by the minerals industries. Appl Microbiol Biotechnol 63(3):249–257

    Article  CAS  Google Scholar 

  • Owens CV, Lambright C, Bobseine K (2007) Identification of estrogenic compounds emitted from the combustion of computer printed circuit boards in electronic waste. Environ Sci Technol 41:8506–8511

    Article  CAS  Google Scholar 

  • Padiyar N (2011) Nickel allergy-is it a cause of concern in everyday dental practice. Int J Contemp Dent 12(1):80–81

    Google Scholar 

  • Pant D, Joshi D, Upreti MK, Kotnala RK (2012) Chemical and biological extraction of metals present in e-waste: a hybrid technology. Waste Manag 32:979–990

    Article  CAS  Google Scholar 

  • Plum LA, Rink L, Haase H (2010) The essential toxin: impact of zinc on human health. Int J Environ Res Public Health 7:1342–1365

    Article  CAS  Google Scholar 

  • Rath SS, Nayak P, Mukherjee PS, Chaudhury GR, Mishra BK (2012) Treatment of electronic waste to recover metal values using thermal plasma coupled with acid leaching- a response surface modelling approach. Waste Manag 32:575–583

    Article  CAS  Google Scholar 

  • Rawlings DE (2002) Metal mining using microbes. Ann Rev Microbiol 56:65–91

    Article  CAS  Google Scholar 

  • Reck BK, Graedel TE (2012) Challenges in metal recycling. Science 337:690–695

    Article  CAS  Google Scholar 

  • Robinson BH (2009) E-waste: an assessment of global production and environmental impacts. Sci Total Environ 408:183–191

    Article  CAS  Google Scholar 

  • Rochat D, Hageluken C, Keller M, Widmwe R (2007) Optimal recycling of printed wiring boards in India. Conference paper http://www.n.ethz.ch/%7Eschmia/download/cited_papers/optimal_recycling_for_PWBs.pdf. Accessed 15 July 2015

  • Saidan M, Brown B, Valix M (2012) Leaching of electronic waste using Biometabolised acids. Chin J Chem Eng 20(3):530–534

    Article  CAS  Google Scholar 

  • Sand W, Gehrke T, Jozsa PG, Schippers A (2001) (bio)chemistry of bacterial leaching—direct vs. indirect bioleaching. Hydrometallurgy 59:159–175

    Article  CAS  Google Scholar 

  • Scharnhorst W, Jolliet O, Hilty LM (2005) The end of life treatment of second generation mobile phone networks: strategies to reduce the environmental impact. Environ Impact Assess Rev 25:540–566

    Article  Google Scholar 

  • Shi S, Fang Z (2005) Bioleaching of marmatite flotation concentrates by adapted mixed mesoacidophilic cultures in an airlift reactor. Int J Miner Process 76:3–12

    Article  CAS  Google Scholar 

  • Silvas FPC, Correa MMJ, Caldas MPK, de Moraes VT, Espinosa DCR, Tenório JAS (2015) Printed circuit board recycling: physical processing and copper extraction by selective leaching. Waste Manag 46:503–510

    Article  CAS  Google Scholar 

  • Sum EYL (2005) The recovery of metals from electronic scrap. J Min Met Mat S 43:53–61

    Article  Google Scholar 

  • Tasaki T, Takasuga T, Sako M, Sakai S (2004) Substance flow analysis of brominated flame retardants and related compounds in waste TV sets in Japan. Waste Manag 24:571–580

    Article  CAS  Google Scholar 

  • Terakado O, Ohhashi R, Hirasawa M (2013) Bromine fixation by metal oxide in pyrolysis of printed circuit board containing brominated flame retardant. J Anal Appl Pyrolysis 103:216–221

    Article  CAS  Google Scholar 

  • Tsydenova O, Bengtsson M (2011) Chemical hazards associated with treatment of waste electrical and electronic equipment. Waste Manag 31(1):45–58

    Article  CAS  Google Scholar 

  • Tuncuk A, Akcil A, Yazici EY, Devici H (2012) Aqueous metal recovery techniques from e scrape: hydrometallurgy in recycling. Miner Eng 25:28–37

    Article  CAS  Google Scholar 

  • UNEP (2009) Recycling – from E-waste to resources. United Nations Environmental Programme (UNEP), Paris

    Google Scholar 

  • UNU (2015) E-waste World Map: Update to quantitative data and legal texts – STEP. United Nations University (UNU). http://step-initiative.org/index.php/newsdetails/items/e-waste-world-map/. Accessed 11 Nov 2016

  • Valix M, Tang JY, Malik R (2001) Metal tolerance of fungi. Miner Eng 14(5):499–505

    Article  CAS  Google Scholar 

  • Veldbuizen H, Sippel B (1994) Mining discarded electronics. Ind Environ 17(3):7–14

    Google Scholar 

  • Wang J, Bai J, Xu J, Liang B (2009) Bioleaching of metals from printed wire boards by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans and their mixture. J Hazard Mater 172:1100–1105

    Article  CAS  Google Scholar 

  • Wang X, Lu X, Zhang S (2013) Study on the-waste liquid crystal display treatment: focus on the resource recovery. J Hazard Mater 244–245:342–347

    Article  CAS  Google Scholar 

  • Widmer R, Oswald-Krapf H, Sinha-Khetriwal D, Schnellmann M, Boni H (2005) Global perspectives on E-waste. Environ Impact Asses Rev 25:436–458

    Article  Google Scholar 

  • Wilner J, Fornalczyk A (2013) Extraction of metals from electronic waste by bacterial leaching. Environ Prot Eng 39(1):197–208

    Google Scholar 

  • World Bank (2015) http://data.worldbank.org/indicator/NY.GDP.PCAP.PP.CD?end=2014&start=1990. Accessed 18 November 2016

  • Xiang Y, Wu P, Zhu N, Zhang T, Liu W, Wu J, Li P (2010) Bioleaching of copper from waste printed circuit boards by bacterial consortium enriched from acid mine drainage. J Hazard Mater 184:812–818

    Article  CAS  Google Scholar 

  • Xie F, Cai T, Ma Y, Li H, Li C, Huang Z, Yuan G (2009) Recovery of Cu and Fe from printed circuit board waste sludge by ultrasound: evaluation of industrial application. J Clean Prod 17:1494–1498

    Article  CAS  Google Scholar 

  • Xin B, Zhang X, Xia Y, Wu F, Chen S, Li L (2009) Bioleaching mechanism of Co and Li from spent lithium-ion battery by the mixed culture of acidophilic sulfur-oxidizing and iron-oxidising bacteria. Bioresour Technol 100:6163–6169

    Article  CAS  Google Scholar 

  • Yamane LH, Moraes VT, Espinosa DCR, Tenorio JAS (2011) Recycling of WEEE: characterization of spent printed circuit boards from mobile phones and computers. E-waste Manag 31:2553–2558

    Article  CAS  Google Scholar 

  • Yang T, Xu Z, Wen JK, Yang LM (2009) Factors influencing bioleaching copper from waste printed circuit boards by Acidithiobacillus ferrooxidans. Hydrometallurgy 97:29–32

    Article  CAS  Google Scholar 

  • Yang H, Liu J, Yang J (2011) Leaching copper from shredded particles of waste printed circuit boards. Journal of Hazard Mater 187:393–400

    Article  CAS  Google Scholar 

  • Yang Y, Chen S, Li S, Chen M, Chen H, Liu B (2014) Bioleaching waste printed circuit boards by Acidithiobacillus ferrooxidans and its kinetics aspect. J Biotechnol 173:24–30

    Article  CAS  Google Scholar 

  • Yazici EY, Deveci H (2009) Recovery of metals from e-waste. Madencilik 48(3):3–18

    CAS  Google Scholar 

  • Yuan CY, Zhang HC, McKenna G, Korzeniewski C, Li J (2007) Experimental studies on cryogenic recycling of printed circuit board. Int J Adv Manuf Tech 34:657–666

    Article  Google Scholar 

  • Zhan L, Xu ZM (2008) Application of vacuum metallurgy to separate pure metal from mixed metallic particles of crushed waste printed circuit board scraps. Environ Sci Technol 42:7676–7681

    Article  CAS  Google Scholar 

  • Zhang S, Forssberg E (1997) Mechanical separation oriented characterization of electronic scrap. Resour Conserv Recy 21(4):247–269

    Article  Google Scholar 

  • Zhao G, Zhou H, Wang D, Zha J, Xu Y, Rao K et al (2009) PBBs, PBDEs, and PCBs in foods collected from e-waste disassembly sites and daily intake by local residents. Sci Total Environ 407:2565–2575

    Article  CAS  Google Scholar 

  • Zhou Y, Qiu K (2010) A new technology for recycling materials from waste printed circuit boards. J Hazard Mater 175:823–828

    Article  CAS  Google Scholar 

  • Zhou HB, Zeng WM, Yang ZF, Xie YJ, Qiu GZ (2009) Bioleaching of chalcopyrite concentrate by a moderately thermophilic culture in a stirred tank reactor. Bioresour Technol 100:515–520

    Article  CAS  Google Scholar 

  • Zhu N, Xiang Y, Zhang T, Wu P, Danga Z, Li P, Wu J (2011) Bioleaching of metal concentrates of waste printed circuit boards by mixed culture of acidophilic bacteria. J Hazard Mater 192:614–619

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Fellowship grant to Ms. Anshupriya from Department of Science and Technology, Government of India is sincerely acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subrata Hait.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Philippe Garrigues.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Priya, A., Hait, S. Comparative assessment of metallurgical recovery of metals from electronic waste with special emphasis on bioleaching. Environ Sci Pollut Res 24, 6989–7008 (2017). https://doi.org/10.1007/s11356-016-8313-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-8313-6

Keywords

Navigation