Skip to main content
Log in

An overview of municipal solid waste management and landfill leachate treatment: Malaysia and Asian perspectives

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Currently, generation of solid waste per capita in Malaysia is about 1.1 kg/day. Over 26,500 t of solid waste is disposed almost solely through 166 operating landfills in the country every day. Despite the availability of other disposal methods, landfill is the most widely accepted and prevalent method for municipal solid waste (MSW) disposal in developing countries, including Malaysia. This is mainly ascribed to its inherent forte in terms cost saving and simpler operational mechanism. However, there is a downside. Environmental pollution caused by the landfill leachate has been one of the typical dilemmas of landfilling method. Leachate is the liquid produced when water percolates through solid waste and contains dissolved or suspended materials from various disposed materials and biodecomposition processes. It is often a high-strength wastewater with extreme pH, chemical oxygen demand (COD), biochemical oxygen demand (BOD), inorganic salts and toxicity. Its composition differs over the time and space within a particular landfill, influenced by a broad spectrum of factors, namely waste composition, landfilling practice (solid waste contouring and compacting), local climatic conditions, landfill’s physico-chemical conditions, biogeochemistry and landfill age. This paper summarises an overview of landfill operation and leachate treatment availability reported in literature: a broad spectrum of landfill management opportunity, leachate parameter discussions and the way forward of landfill leachate treatment applicability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abbas AA, Jingsong G, Ping LZ, Ya PY, Al-Rekabi WS (2009) Review on Landfill Leachate Treatments. J Appl Sci Res 5(5):534–545

    CAS  Google Scholar 

  • Agamuthu P (2010) Implications of SWM legislations in Malaysia. Institute for Global Environmental Strategies (IGES), Hayama

    Google Scholar 

  • Agamuthu P (2011) 3R policy implementation in Malaysia: strategic gap analysis & recommendations. Institute for Global Environmental Strategies (IGES), Hayama

    Google Scholar 

  • Agamuthu P & Fauziah SH (2008) Solid waste landfilling: Environmental factors and health. In Proceedings of the EU-Asia Solid Waste Management Conference, Malaysia, 28-29th October 2008. Ipoh, Perak, Malaysia.

  • Agarwal SP, Anwer MK, Khanna R, Ali A, Sultana Y (2010) Humic acid from Shilajit—a physico-chemical and spectroscopic characterization. J Serb Chem Soc 75:413–422

    Article  CAS  Google Scholar 

  • Ahn DH, Yun-Chul C, Won-Seok C (2002) Use of coagulation and zeolite to enhance the biological treatment efficiency of high ammonia leachate. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances & Environmental Engineering 37(2):163–173. https://doi.org/10.1081/ESE-120002580

  • AIT/UNEP (2010) Municipal waste management report: Status-quo and issues in Southeast and East Asian countries. Asian Institute of Technology (AIT)/United Nations Environmental Programme (UNEP), Kenya

  • Al-Hamadani YA, Yusoff MS, Umar M, Bashir MJ, Adlan MN (2011) Application of psyllium husk as coagulant and coagulant aid in semi-aerobic landfill leachate treatment. J Hazard mater 190(1):582–587

    Article  CAS  Google Scholar 

  • Alvarez-Vazquez H, Jefferson B, and Judd SJ (2004) Membrane bioreactors vs conventional biological treatment of landfill leachate: a brief review. J Chem Technol Biotechnol 79(10):1043–1049

  • Amokrane A, Comel C, Veron J (1997) Landfill leachates pretreatment by coagulation-flocculation. Water Res 31:2775–2782

    Article  CAS  Google Scholar 

  • Anfruns A, Gabarró J, Gonzalez-Olmos R, Puig S, Balaguer MD, Colprim J (2013) Coupling anammox and advanced oxidation-based technologies for mature landfill leachate treatment. J Hazard Mater 258:27–34

    Article  CAS  Google Scholar 

  • Anglada Á, Urtiaga A, Ortiz I, Mantzavinos D, Diamadopoulos E (2011) Boron-doped diamond anodic treatment of landfill leachate: evaluation of operating variables and formation of oxidation by-products. Water Res 45(2):828–838

    Article  CAS  Google Scholar 

  • Annadurai G, Sung S, Lee D-J (2004) Simultaneous removal of turbidity and humic acid from high turbidity stormwater. Adv Environ Res 8:713–725

    Article  CAS  Google Scholar 

  • Aydın F, Kuleyin A (2011) The effect of modification and initial concentration on ammonia removal from leachate by zeolite. World Acad Sci Eng Technol Int J Environ Chem Ecol Geol Geophys Eng 5:336–339

    Google Scholar 

  • Aziz HA, Yusoff MS, Adlan MN, Adnan NH, Alias S (2004) Physico-chemical removal of iron from semi-aerobic landfill leachate by limestone filter. Waste Manag 24:353–358

    Article  CAS  Google Scholar 

  • Aziz HA, Alias S, Assari F, Adlan MN (2007) The use of alum, ferric chloride and ferrous sulphate as coagulants in removing suspended solids, colour and COD from semi-aerobic landfill leachate at controlled pH. Waste Manag Res 25:556–565

    Article  CAS  Google Scholar 

  • Backhaus T, Faust M (2012) Predictive environmental risk assessment of chemical mixtures: a conceptual framework. Environ Sci Technol 46:2564–2573

    Article  CAS  Google Scholar 

  • Bank W (2011) Malaysia economic monitor. 1—smart cities. World Bank. R, Bangkok

    Google Scholar 

  • Bashir MJ, Aziz HA, Yusoff MS, Adlan MN (2010) Application of response surface methodology (RSM) for optimization of ammoniacal nitrogen removal from semi-aerobic landfill leachate using ion exchange resin. Desalination 254:154–161

    Article  CAS  Google Scholar 

  • Bong, C.P.C., Ho, W.S., Hashim, H., Lim, J.S., Ho, C.S., Tan, W.S.P. and Lee, C.T., 2016. Review on the renewable energy and solid waste management policies towards biogas development in Malaysia. Renewable and Sustainable Energy Reviews 70(July 2015):988–998. https://doi.org/10.1016/j.rser.2016.12.004

  • Çeçen F, Aktas Ö (2004) Aerobic co-treatment of landfill leachate with domestic wastewater. Environ Eng Sci 21:303–312

    Article  CAS  Google Scholar 

  • Chen, J, Wang, W, Wu, F, You, C, Liu, T, Dong, X, He, J & Zheng, H (2012) Hydrogen sulfide alleviates aluminum toxicity in barley seedlings. Plant and Soil. Advance online publication. https://doi.org/10.1007/s11104-012-1275-7

  • Ching, S.L., Yusoff, M.S., Aziz, H.A. and Umar, M., 2011. Influence of impregnation ratio on coffee ground activated carbon as landfill leachate adsorbent for removal of total iron and orthophosphate. Desalination, 279(1), pp.225–234

  • Chong TL, Matsufuji Y, Hassan MN (2005) Implementation of the semi-aerobic landfill system (Fukuoka method) in developing countries: a Malaysia cost analysis. Waste Manag 25:702–711

    Article  Google Scholar 

  • Christensen TH, Kjeldsen P, Albrechtsen H Jr, Heron G, Nielsen PH, Bjerg PL, Holm PE (1994) Attenuation of landfill leachate pollutants in aquifers. Crit Rev Environ Sci Technol 24:119–202

    Article  CAS  Google Scholar 

  • Chu L, Cheung K, Wong M (1994) Variations in the chemical properties of landfill leachate. Environ Manag 18:105–117

    Article  Google Scholar 

  • Comstock SE, Boyer TH, Graf KC, Townsend TG (2010) Effect of landfill characteristics on leachate organic matter properties and coagulation treatability. Chemosphere 81:976–983

    Article  CAS  Google Scholar 

  • Cortez S, Teixeira P, Oliveira R, Mota M (2011) Evaluation of Fenton and ozone-based advanced oxidation processes as mature landfill leachate pre-treatments. J Environ Manag 92(3):749–755

    Article  CAS  Google Scholar 

  • De Velásquez MTO, Cruz-Rivera R, Rojas-Valencia N, Monje-Ramírez I, Sánchez-Gómez J (2003) Serial water balance method for predicting leachate generation in landfills. Waste Manag Res 21:127–136

    Article  Google Scholar 

  • DOLG (2006) The technical guideline for sanitary landfill: Design and operation. Malaysia: Department of Local Government, Ministry of Housing and Local Government

  • Donevska K, Jovanovski M, Jovanovski J (2010) Comparative analyses of landfill leachate generation. BALWOIS Ohrid, Republic of Macedonia

    Google Scholar 

  • DOS (2011) Yearbook of statistics Malaysia 2010, Department of Statistics (DOS), Malaysia

  • Ehrig H, Robinson H (2010) Landfilling: Leachate treatment. In: Christensen T (ed) Solid Waste Technology and Management, 1 & 2. Blackwell Publishing Ltd./Wiley, United Kingdom, pp 858–897.

  • Elagroudy SA, Abdel-Razik MH, Abd El-Azeem MM, Ghobrial FH, Warith MA (2009) Effect of waste composition and load application on the biodegradation of municipal solid waste in bioreactor landfills. Prac Period Hazard Toxic Radioact Waste Manag 13:165–173

    Article  CAS  Google Scholar 

  • El-Fadel M, Bou-Zeid E, Chahine W, Alayli B (2002) Temporal variation of leachate quality from pre-sorted and baled municipal solid waste with high organic and moisture content. Waste Manag 22:269–282

    Article  CAS  Google Scholar 

  • Emenike CU, Fauziah SH, Agamuthu P (2012) Characterization and toxicological evaluation of leachate from closed sanitary landfill. Waste Manag Res 30:888–897

    Article  CAS  Google Scholar 

  • Environment Agency (2007) Guidance for the treatment of landfill leachate. Sector Guidance Note IPPC S5.03, IPPC (International Pollution Prevention and Control). Environment Agency, United Kingdom from http://www.environmentagency.gov.uk/static/documents/Business/part_1_leachate_sgn_1738612.pdf

    Google Scholar 

  • Environment Agency (2008) Environmental risk assessment: Part 2-Assessment of point source releases and cost-benefit analysis. Environment Agency, Bristol, United Kingdom

    Google Scholar 

  • Environmental Quality (Control of Pollution from Solid Waste Transfer Station and Landfill) Regulations 2009. Malaysia

  • EPA (2000) Landfill manuals and landfill site design. Environmental Protection Agency, Wexford

    Google Scholar 

  • EPU (2006) Tenth Malaysia Plan 2011-2015. Putrajaya, Malaysia: Economic Planning Unit (EPU)

  • European Commission Waste Landfill Directive (1999) http://eur-lex.europa.eu/legalcontent/EN/TXT/?uri=celex%3A31999L0031

  • European Commission (2010). Being wise with waste: the EU’s approach to waste management. Luxembourg: European Union (EU). https://doi.org/10.2779/93543

  • Fan HJ, Shu HY, Yang HS, Chen WC (2006) Characteristics of landfill leachates in central Taiwan. Science of the Total Environment 361(1-3):25–37. https://doi.org/10.1016/j.scitotenv.2005.09.033

  • Fazeli A, Bakhtvar F, Jahanshaloo L, Sidik NAC, Bayat AE (2016) Malaysia's stand on municipal solid waste conversion to energy: a review. Renew Sust Energ Rev 58:1007–1016

    Article  Google Scholar 

  • Fenn DG, Hanley KJ, De Geare TV (1975) Use of the water balance method for predicting leachate generation from solid waste disposal sites, EPA/530/SW-168. U.S. Environmental Protection Agency, Washington, D.C

    Google Scholar 

  • Foo K, Hameed B (2009) An overview of landfill leachate treatment via activated carbon adsorption process. J Hazard Mater 171:54–60

    Article  CAS  Google Scholar 

  • Fouad HA, El-Hefny RM, Ali MN, Ahmed MEY (2016) Optimization of SBR system for sanitary landfill leachate treatment in Egypt. Journal of Applied Sciences Research 12:56–62

    Google Scholar 

  • Ghafari S, Aziz HA, Isa MH, Zinatizadeh AA (2009) Application of response surface methodology (RSM) to optimize coagulation–flocculation treatment of leachate using poly-aluminum chloride (PAC) and alum. J Hazard Mater 163(2):650–656

    Article  CAS  Google Scholar 

  • Goh BL (2007) Malaysia. In environmental management centre. In: Mumbai I (ed) Solid waste management: Issues and challenges in Asia. Asian Productivity Organization (APO), Tokyo, Japan, pp 118–141

  • González C, Buenrostro O, Marquez L, Hernández C, Moreno E, Robles F (2011) Effect of solid wastes composition and confinement time on methane production in a dump. J Environ Prot 2:1310

    Article  CAS  Google Scholar 

  • Guo J-S, Abbas AA, Chen Y-P, Liu Z-P, Fang F, Chen P (2010) Treatment of landfill leachate using a combined stripping Fenton, SBR, and coagulation process. J Hazard Mater 178:699–705

    Article  CAS  Google Scholar 

  • Hanira NM, Hasfalina CM, Sani A, Rashid M (2017) Pre-treatment ammonia removal of scheduled waste leachate with hydrated lime and caustic soda. J Teknol 79(1):107–118

    Google Scholar 

  • Hannan MA, Al Mamun MA, Hussain A, Basri H, Begum RA (2015) A review on technologies and their usage in solid waste monitoring and management systems: issues and challenges. Waste Manag 43:509–523

    Article  CAS  Google Scholar 

  • Hezri A (2010) Toward 3R-based waste management: policy change in Japan, Malaysia and the Philippines. 3R Policies for Southeast and East Asia Jakarta: ERIA:274–290

  • Huo SL, Xi BD, Yu HC, Liu HL (2009) Dissolved organic matter in leachate from different treatment processes. Water Environ J 23:15–22

    Article  CAS  Google Scholar 

  • Idris A, Inanc B, Hassan MN (2004) Overview of waste disposal and landfills/dumps in Asian countries. J Mater Cycles Waste Manag 6:104–110

    Article  Google Scholar 

  • IGES, UNCRD & UNEP (2009) National 3R strategy development - A progress report on seven countries in Asia from 2005 to 2009. United Nations Centre for Regional Development, United Nations Environmental Programme/Regional Resource Centre in Asia and the Pacific, Institute for Global Environmental Strategies, Thailand Retrieved 18th March, 2012, from http://enviroscope.iges.or.jp/modules/envirolib/upload/2637/attach/national_3r_strategy_development(fullversion).pdf

    Google Scholar 

  • Imura H, Yedla S, Shirakawa H, Memon MA (2005) Urban environmental issues and trends in Asia—an overview. Int Rev Environ Strateg 5:357

    Google Scholar 

  • Jemec A, Tišler T, Žgajnar-Gotvajn A (2012) Assessment of landfill leachate toxicity reduction after biological treatment. Arch Environ Contam Toxicol 62:210–221

    Article  CAS  Google Scholar 

  • Johnson RA (1986) SOILINEr model—documentation and user’s guide. EPA-530-SW-86-006A

  • Jokela JP, Kettunen RH, Rintala JA (2002) Methane and leachate pollutant emission potential from various fractions of municipal solid waste (MSW): effects of source separation and aerobic treatment. Waste Manag Res 20:424–433

    Article  CAS  Google Scholar 

  • Kadir SASA, Yin CY, Sulaiman MR, Chen X, El-Harbawi M (2013) Incineration of municipal solid waste in Malaysia: salient issues, policies and waste-to-energy initiatives. Renew Sust Energ Rev 24:181–186

    Article  Google Scholar 

  • Kamaruddin MA, Yusoff MS, Aziz HA, Basri NK (2013) Removal of COD, ammoniacal nitrogen and colour from stabilized landfill leachate by anaerobic organism. Appl Water Sci 3(2):359–366

    Article  CAS  Google Scholar 

  • Kamaruddin MA, Yusoff MS, Aziz HA, Hung YT (2015) Sustainable treatment of landfill leachate. Appl Water Sci 5(2):113–126

    Article  CAS  Google Scholar 

  • Kang K-H, Shin HS, Park H (2002) Characterization of humic substances present in landfill leachates with different landfill ages and its implications. Water Res 36:4023–4032

    Article  CAS  Google Scholar 

  • Karaca F, Özkaya B (2006) NN-LEAP: A neural network-based model for controlling leachate flow-rate in a municipal solid waste landfill site. Environ Modell Soft 21:1190–1197

    Article  Google Scholar 

  • Katsumata H, Sada M, Kaneco S, Suzuki T, Ohta K, Yobiko Y (2008) Humic acid degradation in aqueous solution by the photo-Fenton process. Chem Eng J 137:225–230

    Article  CAS  Google Scholar 

  • Kashiwadai S, Osaki K, Yasuhara A, Ono Y (2005) Toxicity studies of landfill leachates using Japanese medaka (Oryzias latipes). Australasian Journal of Ecotoxicology 11:59–71 from http://www.ecotox.org.au/aje/archives/vol11p59.pdf

    Google Scholar 

  • Khanbilvardi RM, Ahmed S, Gleason PJ (1995) Flow investigation for landfill leachate (FILL). J Environ Eng 121:45–57

    Article  CAS  Google Scholar 

  • Khattabi H, Aleya L, Mania J (2002) Changes in the quality of landfill leachates from recent and aged municipal solid waste. Waste Manag Res 20:357–364

    Article  CAS  Google Scholar 

  • Kiepper B (2010) Understanding laboratory wastewater tests: I. Organics (BOD, COD, TOC, O&G). The University of Georgia College of Agricultural and Environmental Sciences, Athens

    Google Scholar 

  • Kirmizakis P, Tsamoutsoglou C, Kayan B, Kalderis D (2014) Subcritical water treatment of landfill leachate: application of response surface methodology. J Environ Manag 146:9–15

    Article  CAS  Google Scholar 

  • Kjeldsen P, Barlaz MA, Rooker AP, Baun A, Ledin A, Christensen TH (2002) Present and long-term composition of MSW landfill leachate: a review. Crit Rev Environ Sci Technol 32:297–336

    Article  CAS  Google Scholar 

  • Komilis D, Ham R, Stegmann R (1999) The effect of municipal solid waste pretreatment on landfill behavior: a literature review. Waste Manag Res 17:10–19

    Article  CAS  Google Scholar 

  • Kühle-Weidemeier M (2003). Present and future landfill policy in Germany. In Seminar on research, practical experience and views of modern landfills in Germany, University of Jyvaskyla, Finland. Germany: Wasteconsult International. Retrieved 15th June, 2012, from http://www.wasteconsult.de/policy.pdf

  • Kurniawan TA, Lo W-H, Chan GY (2006) Physico-chemical treatments for removal of recalcitrant contaminants from landfill leachate. J Hazard Mater 129:80–100

    Article  CAS  Google Scholar 

  • Lim, Y.N., Shaaban, M.G. and Yin, C.Y., 2009. Treatment of landfill leachate using palm shell-activated carbon column: Axial dispersion modeling and treatment profile. Chemical Engineering Journal, 146(1), pp.86-89

  • Lipczynska-Kochany E, Kochany J (2008) Effect of humic substances on the Fenton treatment of wastewater at acidic and neutral pH. Chemosphere 73:745–750

    Article  CAS  Google Scholar 

  • Liu X, Li XM, Yang Q, Yue X, Shen TT, Zheng W, Luo K, Sun YH, Zeng GM (2012) Landfill leachate pretreatment by coagulation–flocculation process using iron-based coagulants: optimization by response surface methodology. Chem Eng J 200:39–51

    Article  CAS  Google Scholar 

  • Manaf LA, Samah MAA, NIM Z (2009) Municipal solid waste management in Malaysia: Practices and challenges. Waste Manag 29:2902–2906

    Article  Google Scholar 

  • Matejczyk M, Płaza GA, Nałęcz-Jawecki G, Ulfig K, Markowska-Szczupak A (2011) Estimation of the environmental risk posed by landfills using chemical, microbiological and ecotoxicological testing of leachates. Chemosphere 82:1017–1023

    Article  CAS  Google Scholar 

  • Matsufuji K (2007) Caution for application of “Fukuoka Method” (Semi-aerobic landfill technology). JICA Training text. Japanese International Cooperation Agency (JICA), Japan from http://www.sprep.org/att/IRC/eCOPIES/global/159.pdf

    Google Scholar 

  • Mcbean EA, Rovers FA, Farquhar GJ (1995) Solid waste landfill engineering and design. Prentice Hall PTR, Upper Saddle River

    Google Scholar 

  • Méndez-Novelo RI, Castillo-Borges ER, Sauri-Riancho MR, Quintal-Franco CA, Giacomán-Vallejos G, Jiménez-Cisneros B (2005) Physico-chemical treatment of Merida landfill leachate for chemical oxygen demand reduction by coagulation. Waste Manag Res 23:560–564

    Article  CAS  Google Scholar 

  • MEP & GAQSIQ (2008) Standard for Pollution Control on the Landfill Site of Municipal Solid Waste (GB 16889-2008) (in Chinese). Ministry of Environmental Protection (MEP) and General Administration of Quality Supervision, Inspection and Quarantine (GAQSIQ), Beijing from http://english.mep.gov.cn/

    Google Scholar 

  • MHLG (2006) Technical Guideline for Sanitary Landfill, Design and Operation, August 2006. Department of Local Government, Ministry of Housing and Local Government (MHLG), Malaysia

    Google Scholar 

  • MHLG (2009) Annual Ministry of Housing and Local Government Report 2008 (in Malay). Ministry of Housing and Local Government (MHLG)., Malaysia http://www.kpkt.gov.my/kpkt/index.php/pages/view/104

    Google Scholar 

  • MHLG (2011) MHLG Statistics 2010. Ministry of Housing and Local Government (MHLG), Malaysia http://www.kpkt.gov.my/kpkt/fileupload/perangkaan_terpilih/pt2010/dis/PROGRAM_PENGURUSAN_SISA_PEPEJAL.pdf

    Google Scholar 

  • MHLG (2012) Solid waste management lab, 26 March - 13 April 2012 (in Malay). Ministry of Housing and Local Government (MHLG), Malaysia from http://www.kpkt.gov.my/kpkt/fileupload/hebahan/lab_sisa_pepejal.pdf

    Google Scholar 

  • Min J-E, Kim M, Kim JY, Park I-S, Park J-W (2010) Leachate modeling for a municipal solid waste landfill for upper expansion. KSCE J Civil Eng 14:473–480

    Article  Google Scholar 

  • Moh YC, Manaf LA (2014) Overview of household solid waste recycling policy status and challenges in Malaysia. Resour Conserv Recycl 82:50–61

    Article  Google Scholar 

  • Moreno-Casillas HA, Cocke DL, Gomes JA, Morkovsky P, Parga J, Peterson E (2007) Electrocoagulation mechanism for COD removal. Sep Purif Technol 56:204–211

    Article  CAS  Google Scholar 

  • Nadzri YLI (2007) Solid waste management. Presentation during UNDP Conference on Climate Change Preparedness. National Solid Waste Department, Kuala Lumpur

    Google Scholar 

  • Nadzri Y & Larsen I (2008) Federalising solid waste management in Peninsular Malaysia. International Solid Waste Association (ISWA) World Congress in Singapore, November 2008. Malaysian Government/DANIDA Solid Waste Management Component, from http://www.danidaurban.com/swmc/download/SWMC_TEC_03-123-Federalising%20SWM%20Peninsular%20M'sia.pdf

  • Nanny MA, Ratasuk N (2002) Characterization and comparison of hydrophobic neutral and hydrophobic acid dissolved organic carbon isolated from three municipal landfill leachates. Water Res 36:1572–1584

    Article  CAS  Google Scholar 

  • Newsletter No.76, 2011, 4-5. Japan Society of Material Cycle and Waste Management., from http://jsmcwm.or.jp/international/pdf/News76.pdf

  • Ngo H, Guo W, Xing, W. (2008) Applied technologies in municipal solid waste landfill leachate treatment. Water and wastewater treatment technologies. Encyclopedia of Life Support System (EOLSS). Retrieved 15th March, 2017 from http://www.eolss.net/Sample-Chapters/C07/E6-144-20.pdf

  • Nordberg GF, Fowler BA, Nordberg M, & Friberg L (2007) Handbook on the toxicology of metals. 3rd edn.

  • NSWMD (2011) Summary of solid waste disposal sites in Malaysia (January 2011) (in Malay). National Solid Waste Management Department (NSWMD), Malaysia

    Google Scholar 

  • O'Leary PRT (2002) Landfilling. In: Tchobanoglous G, Kreith F (eds) Handbook of solid waste management, 2nd edn. McGraw-Hill, New York, pp 14.1–14.87

    Google Scholar 

  • Oliver NC (2005) Hazardous waste legislation guide. Ministry of Environment, British Columbia

    Google Scholar 

  • Øygard JK, Gjengedal E, Røyset O (2007) Size charge fractionation of metals in municipal solid waste landfill leachate. Water Res 41:47–54

    Article  CAS  Google Scholar 

  • Pablos MV et al (2011) Correlation between physicochemical and ecotoxicological approaches to estimate landfill leachates toxicity. Waste Manag 31:1841–1847

    Article  CAS  Google Scholar 

  • Periathamby A, Hamid FS, Khidzir K (2009) Evolution of solid waste management in Malaysia: Impacts and implications of the solid waste bill, 2007. Journal of Material Cycles and Waste Management 11(2):96–103. https://doi.org/10.1007/s10163-008-0231-3

    Article  Google Scholar 

  • Reinhart DR, Grosh CJ (1998) Analysis of Florida MSW Landfill Leachate Quality. Florida Center for Solid and Hazardous Waste Management, Florida

    Google Scholar 

  • Renou S, Givaudan J, Poulain S, Dirassouyan F, Moulin P (2008) Landfill leachate treatment: review and opportunity. J Hazard Mater 150:468–493

    Article  CAS  Google Scholar 

  • Rivas FJ, Beltrán F, Gimeno O, Acedo B, Carvalho F (2003) Stabilized leachates: ozone-activated carbon treatment and kinetics. Water Res 37:4823–4834

    Article  CAS  Google Scholar 

  • Rojas MN, Sahagún C (2012) Determining the effects of leachates infiltrating crop areas. Toxicol Environ Chem 94:327–339

    Article  CAS  Google Scholar 

  • Rukapan W (2007) Improvement of leachate management in solid waste disposal facilities: case study in Thailand. Payatas Seminar 2007, UP National Center for Transportation Studies (NCTS). Japan: Tokyo Institute of Technology

  • Samudro G, Mangkoedihardjo S (2010) Review on BOD COD and BOD/COD ratio: a triangle zone for toxic, biodegradable and stable levels. Int J Acad Res 2:235–239

    Google Scholar 

  • São Mateus SC, Machado SL, Barbosa MC (2012) An attempt to perform water balance in a Brazilian municipal solid waste landfill. Waste Manag 32:471–481

    Article  CAS  Google Scholar 

  • Schroeder PR, Aziz NM, Lloyd CM, Zappi PA (1994) The hydrologic evaluation of landfill performance (HELP) model: user’s guide for version 3, EPA/600/R-94/168a, September 1994. U.S. Environmental Protection Agency Office of Research and Development, Washington, DC

    Google Scholar 

  • Shariatmadari N, Abdoli M, Ghiasinejad H, Alimohammadi P (2010) Assessment of HELP model performance in arid areas. Case study: landfill test cells in Kahrizak. Res J Environ Sci 4:359–370

    Article  Google Scholar 

  • Singh SK, Townsend TG, Mazyck D, Boyer TH (2012) Equilibrium and intra-particle diffusion of stabilized landfill leachate onto micro-and meso-porous activated carbon. Water Res 46(2):491–499

    Article  CAS  Google Scholar 

  • Slack R, Gronow J, Voulvoulis N (2005) Household hazardous waste in municipal landfills: contaminants in leachate. Sci Total Environ 337:119–137

    Article  CAS  Google Scholar 

  • Solid Waste and Public Cleansing Management Act (2007), Act 672. Government of Malaysia

  • Stegmann R, Heyer KU, Cossu R (2005) Leachate treatment. In Proceedings Sardinia 2005, Tenth International Waste Management and Landfill Symposium, 3-7 October 2005, Italy. Italy: CISA, Environmental Sanitary Engineering Centre, from http://www.image.unipd.it/tetrawama/S2005/leachate_treatment.pdf

  • Sun J, Li X, Feng J, Tian X (2009) Oxone/Co2+ oxidation as an advanced oxidation process: comparison with traditional Fenton oxidation for treatment of landfill leachate. Water Res 43(17):4363–4369

    Article  CAS  Google Scholar 

  • Sunkin M, Ong DM & Wight R (2002) Sourcebook on environmental law

  • Suresh A (2016) Treatment of landfill leachate by membrane bioreactor and electro Fenton process. Int J Eng Sci Res Technol 1(5):689–697

    Google Scholar 

  • Tan ST, Lee CT, Hashim H, Ho WS, Lim JS (2014) Optimal process network for municipal solid waste management in Iskandar Malaysia. J Clean Prod 71:48–58. https://doi.org/10.1016/j.jclepro.2013.12.005

    Article  Google Scholar 

  • Tan ST, Ho WS, Hashim H, Lee CT, Taib MR, Ho CS (2015) Energy, economic and environmental (3E) analysis of waste-to-energy (WTE) strategies for municipal solid waste (MSW) management in Malaysia. Energy Convers Manag 102:111–120

    Article  Google Scholar 

  • Tashiro T (2011) IRBC: the “Fukuoka Method”: semi-aerobic landfill technology—Fukuoka region, Japan. Programme document at International Regions Benchmarking Consortium (IRBC). Metro Vancouver, British Columbia

    Google Scholar 

  • Tatsi A, Zouboulis A (2002) A field investigation of the quantity and quality of leachate from a municipal solid waste landfill in a Mediterranean climate (Thessaloniki, Greece). Adv Environ Res 6:207–219

    Article  CAS  Google Scholar 

  • Tatsi A, Zouboulis A, Matis K, Samaras P (2003) Coagulation–flocculation pretreatment of sanitary landfill leachates. Chemosphere 53:737–744

    Article  CAS  Google Scholar 

  • Tchobanoglous G, Theisen H, Vigil S (1993) Integrated solid waste management: engineering principles and management issues. McGraw-Hill, Inc., New York

    Google Scholar 

  • Teo CBC (2016) Recycling behaviour of malaysian urban households and upcycling prospects

  • Tränkler J, Visvanathan C, Kuruparan P, Tubtimthai O (2005) Influence of tropical seasonal variations on landfill leachate characteristics—results from lysimeter studies. Waste Manag 25:1013–1020

    Article  CAS  Google Scholar 

  • Trebouet D, Schlumpf JP, Jaouen P, Quemeneur F (2001) Stabilized landfill leachate treatment by combined physicochemical-nanofiltration processes. Water Research 35(12):2935–2942. https://doi.org/10.1016/S0043-1354(01)00005-7

    Article  CAS  Google Scholar 

  • Ujang Z (2004) Part 1—conventional landfill design & operation from design to problem solving. Workshop on New Technologies for Cost-effective Landfill Management. UTM, Kuala Lumpur, p 7

    Google Scholar 

  • UNEP (2005) Solid waste management (Volume II: Regional overviews and information sources). CalRecovery, Inc. & UNEP International Environmental Technology Centre (IETC), from http://www.unep.org/ietc/Portals/136/SWM_Vol-II.pdf

  • UNEP (2010) Waste and climate change: Global trends and strategy framework. United Nations Environment Programme, Kenya Retrieved 8th June, 2012, from http://www.unep.or.jp/ietc/Publications/spc/Waste&ClimateChange/Waste&ClimateChange.pdf

    Google Scholar 

  • USEPA (2010) Wastes specificially excluded from RCRA. EPA Hazardous Wastes. US Environmental Protection Agency (USEPA), Washington, D.C from http://www.epa.gov/osw/hazard/wastetypes/wasteid/exclude.htm/

    Google Scholar 

  • Uygur A, Kargı F (2004) Biological nutrient removal from pre-treated landfill leachate in a sequencing batch reactor. J Environ Manag 71:9–14

    Article  Google Scholar 

  • Vesilind PA, Morgan SM, Heine LG (2010) Introduction to environmental engineering—SI version. Cengage Learning, Boston

    Google Scholar 

  • Wang Z-p, Zhang Z, Lin Y-J, Deng N-S, Tao T, Zhuo K (2002) Landfill leachate treatment by a coagulation–photooxidation process. J Hazard Mater 95:153–159

    Article  CAS  Google Scholar 

  • Wang JM, Lu CS, Chen YY, Fan HJ (2015) Landfill leachate treatment with Mn and Ce oxides impregnated GAC–ozone treatment process. Colloids Surf A Physicochem Eng Asp 482:536–543

    Article  CAS  Google Scholar 

  • Water Pollution Control Ordinance (1997) Technical memorandum standards for effluents discharged into drainage and sewerage systems, inland and coastal waters. Water Pollution Control Ordinance, Cap 358 section 21. Hong Kong. Retrieved 18th March, 2012, from http:/www.legislation.gov.hk/blis_pdf.nsf/

  • Widziewicz K, Kalka J, Skonieczna M & Madej P (2012) The comet assay for the evaluation of genotoxic potential of landfill leachate. The Scientific World Journal, 2012, 1-8. https://doi.org/10.1100/2012/435239

  • Williams PT (2013) Waste treatment and disposal. John Wiley & Sons, Hoboken

    Google Scholar 

  • Wiszniowski J, Robert D, Surmacz-Gorska J, Miksch K, Malato S, Weber J-V (2004) Solar photocatalytic degradation of humic acids as a model of organic compounds of landfill leachate in pilot-plant experiments: influence of inorganic salts. Appl Catal B Environ 53:127–137

    Article  CAS  Google Scholar 

  • Worrell WA, Vesilind AP (2011) Solid waste engineering—SI version. Cengage Learning, Boston

    Google Scholar 

  • Wu JJ, Wu C-C, Ma H-W, Chang C-C (2004) Treatment of landfill leachate by ozone-based advanced oxidation processes. Chemosphere 54:997–1003

    Article  CAS  Google Scholar 

  • Wu Y, Zhou S, Qin F, Peng H, Lai Y, Lin Y (2010) Removal of humic substances from landfill leachate by Fenton oxidation and coagulation. Process Saf Environ Prot 88:276–284

    Article  CAS  Google Scholar 

  • Yamada M (2011) Application of the semi-aerobic landfill system to Southeast Asia - A joint study between NIES of Japan, and Kasetsart University and Laem Chabang Municipality of Thailand

  • Yuan W, Zydney AL (1999) Humic acid fouling during microfiltration. J Membr Sci 157:1–12

    Article  CAS  Google Scholar 

  • Zen IS, Noor ZZ, Yusuf RO (2014) The profiles of household solid waste recyclers and non-recyclers in Kuala Lumpur, Malaysia. Habitat International 42:83–89

    Article  Google Scholar 

  • Zouboulis AI, Chai X-L, Katsoyiannis IA (2004) The application of bioflocculant for the removal of humic acids from stabilized landfill leachates. J Environ Manag 70:35–41

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by Solid Waste Management Cluster (SWAM), Grant No.1001/CKT/870023, courtesy from Science and Engineering Research Center (SERC) Universiti Sains Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamad Anuar Kamaruddin.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamaruddin, M.A., Yusoff, M.S., Rui, L.M. et al. An overview of municipal solid waste management and landfill leachate treatment: Malaysia and Asian perspectives. Environ Sci Pollut Res 24, 26988–27020 (2017). https://doi.org/10.1007/s11356-017-0303-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-0303-9

Keywords

Navigation