Skip to main content

Advertisement

Log in

Airborne trace elements near a petrochemical industrial complex in Thailand assessed by the lichen Parmotrema tinctorum (Despr. ex Nyl.) Hale

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Several trace elements discharged by the petrochemical industry are toxic to humans and the ecosystem. In this study, we assessed airborne trace elements in the vicinity of the Map Ta Phut petrochemical industrial complex in Thailand by transplanting the lichen Parmotrema tinctorum to eight industrial, two rural, and one clean air sites between October 2013 and June 2014. After 242 days, the concentrations of As, Cd, Co, Cr, Cu, Hg, Mo, Ni, Pb, Sb, Ti, V, and Zn in lichens at most industrial sites were higher than those at the rural and the control sites; in particular, As, Cu, Mo, Sb, V, and Zn were significantly higher than at the control site (p < 0.05). Contamination factors (CFs) indicated that Cd, Cu, Mo, and Sb, which have severe health impacts, heavily contaminated at most industrial sites. Principal component analysis (PCA) showed that most elements were associated with industry, with lesser contributions from traffic and agriculture. Based on the pollution load indexes (PLIs), two industrial sites were highly polluted, five were moderately polluted, and one had a low pollution level, whereas the pollution load at the rural sites was comparable to background levels. This study reinforces the utility of lichens as cost-effective biomonitors of airborne elements, suitable for use in developing countries, where adequate numbers of air monitoring instruments are unavailable due to financial, technical, and policy constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adriano DC (2001) Molybdenum. In: Adriano DC (ed) Trace elements in terrestrial environments: biogeochemistry, bioavailability, and risks of metals, 2nd edn. Springer Verlag, NY, pp 587–624

    Chapter  Google Scholar 

  • Achotegui-Castells A, Sardans J, Ribas À, Peñuelas J (2013) Identifying the origin of atmospheric inputs of trace elements in the Prades Mountains (Catalonia) with bryophytes, lichens, and soil monitoring. Environ Monit Assess 185:615–629

    Article  CAS  Google Scholar 

  • Adamo P, Giordano S, Vingiani S, Castaldo Cobianchi R, Violante P (2003) Trace element accumulation by moss and lichen exposed in bags in the city of Naples (Italy). Environ Pollut 122:91–103

    Article  CAS  Google Scholar 

  • ATSDR (1992) Toxicological profile for antimony and compounds. Atlanta, GA: Agency for Toxic Substances and Disease Registry (ATSDR)

  • ATSDR (2004a) Toxicological profile for cobalt. Atlanta, GA: Agency for Toxic Substances and Disease Registry (ATSDR)

  • ATSDR (2004b) Toxicological profile for copper. Atlanta, GA: Agency for Toxic Substances and Disease Registry (ATSDR)

  • ATSDR (2014) Summary data for 2013 priority list of hazardous substances. Atlanta, GA: Agency for Toxic Substances and Disease Registry (ATSDR)

  • Bajpai R, Shukla V, Upreti DK, Semwal M (2014) Selection of suitable lichen bioindicator species for monitoring climatic variability in the Himalaya. Environ Sci Pollut Res 21:11380–11394

    Article  CAS  Google Scholar 

  • Bargagli R, Mikhailova I (2002) Accumulation of inorganic contaminations. In: Nimis PL, Scheidegger C, Wolseley PA (eds) Monitoring with lichens—monitoring lichens. Kluwer Academic, Dordrecht, pp 65–84

    Chapter  Google Scholar 

  • Bari A, Rosso A, Minciardi M, Troiani F, Piervittori R (2001) Analysis of heavy metals in atmospheric particulates in relation to their bioaccumulation in explanted Pseudevernia furfuracea thalli. Environ Monit Assess 69:205–220

    Article  CAS  Google Scholar 

  • Bergamaschi L, Rizzio E, Giaveri G, Profumo A, Loppi S, Gallorini M (2004) Determination of baseline element composition of lichens using samples from high elevations. Chemosphere 55:933–939

    Article  CAS  Google Scholar 

  • Boamponsem LK, Adam JI, Dampare SB, Nyarko BJB, Essumang DK (2010) Assessment of atmospheric heavy metal deposition in the Tarkwa gold mining area of Ghana using epiphytic lichens. Nucl Instrum Methods Phys Res B 268:1492–1501

    Article  CAS  Google Scholar 

  • Boonpragob K, Nash TH III (1990) Seasonal variation of elemental status in the lichen Ramalina menziesii Tayl. from two sites in southern California: evidence for dry deposition accumulation. Environ Exp Bot 30:415–428

    Article  CAS  Google Scholar 

  • Boyer RR (2010) Attributes, characteristics, and applications of titanium and its alloys. JOM 62:21–24

    Article  CAS  Google Scholar 

  • Branquinho C, Gaio-Oliveira G, Augusto S, Pinho P, Máguas C, Correia O (2008) Biomonitoring spatial and temporal impact of atmospheric dust from a cement industry. Environ Pollut 151:292–299

    Article  CAS  Google Scholar 

  • Brown DH, Brown RM (1991) Mineral cycling and lichens: the physiological basis. Lichenologist 23:293–307

    Article  Google Scholar 

  • Brunialti G, Frati L (2007) Biomonitoring of nine elements by the lichen Xanthoria parietina in Adriatic Italy: a retrospective study over a 7-year time span. Sci Total Environ 387:289–300

    Article  CAS  Google Scholar 

  • Canha N, Almeida SM, Freitas MC, Wolterbeek HT (2014) Indoor and outdoor biomonitoring using lichens at urban and rural primary schools. J Toxicol Environ Health A 77:900–915

    Article  CAS  Google Scholar 

  • Conti ME, Pino A, Botrè F, Bocca B, Alimonti A (2009) Lichen Usnea barbata as biomonitor of airborne elements deposition in the Province of Tierra del Fuego (southern Patagonia, Argentina). Ecotox Environ Safe 72:1082–1089

    Article  CAS  Google Scholar 

  • Corapi A, Gallo L, Nicolardi V, Lucadamo L, Loppi S (2014) Temporal trends of element concentrations and ecophysiological parameters in the lichen Pseudevernia furfuracea transplanted in and around an industrial area of S Italy. Environ Monit Assess 186:3149–3164

    Article  CAS  Google Scholar 

  • Darnajoux R, Lutzoni F, Miadlikowska J, Bellenger J-P (2015) Determination of elemental baseline using peltigeralean lichens from northeastern Canada (Québec): initial data collection for long term monitoring of the impact of global climate change on boreal and subarctic area in Canada. Sci Total Environ 533:1–7

    Article  CAS  Google Scholar 

  • Demiray AD, Yolcubal I, Akyol NH, Çobanoğlu G (2012) Biomonitoring of airborne metals using the lichen Xanthoria parietina in Kocaeli Province, Turkey. Ecol Indic 18:632–643

    Article  CAS  Google Scholar 

  • Dohi T, Ohmura Y, Kashiwadani H, Fujiwara K, Sakamoto Y, Iijima K (2015) Radiocaesium activity concentrations in parmelioid lichens within a 60 km radius of the Fukushima Dai-ichi Nuclear Power Plant. J Environ Radioact 146:125–133

    Article  CAS  Google Scholar 

  • Frati L, Brunialti G, Loppi S (2005) Problems related to lichen transplants to monitor trace element deposition in repeated surveys: a case study from central Italy. J Atmos Chem 52:221–230

    Article  CAS  Google Scholar 

  • Ferreira AB, Saiki M, Santos JO, Ribeiro AP, Saldiva PHN (2012) Elemental composition evaluation in lichens collected in the industrial city of São Mateus Sul, Paraná, Brazil. J Radioanal Nucl Chem 291:71–76

    Article  CAS  Google Scholar 

  • Garty J, Garty-Spitz RL (2015) Lichens and particulate matter: inter-relations and biomonitoring with lichens. In: Upreti DK, Divakar PK, Shukla V, Bajpai R (eds) Recent advances in lichenology: modern methods and approaches in biomonitoring and bioprospection, vol 1. Springer, New Delhi, pp 47–85

    Google Scholar 

  • Giordano S, Adamo P, Spagnuolo V, Tretiach M, Bargagli R (2013) Accumulation of airborne trace elements in mosses, lichens and synthetic materials exposed at urban monitoring stations: towards a harmonisation of the moss-bag technique. Chemosphere 90:292–299

    Article  CAS  Google Scholar 

  • Godinho RM, Wolterbeek HT, Verburg T, Freitas MC (2008) Bioaccumulation behaviour of transplants of the lichen Flavoparmelia caperata in relation to total deposition at a polluted location in Portugal. Environ Pollut 151:318–325

    Article  CAS  Google Scholar 

  • Godt J, Scheidig F, Grosse-Siestrup C, Esche V, Brandenburg P, Reich A, Groneberg DA (2006) The toxicity of cadmium and resulting hazards for human health. J Occup Med Toxicol 1:22

    Article  Google Scholar 

  • Grangeon S, Guédron S, Asta J, Sarret G, Charlet L (2012) Lichen and soil as indicators of an atmospheric mercury contamination in the vicinity of a chlor-alkali plant (Grenoble, France). Ecol Indic 13:178–183

    Article  CAS  Google Scholar 

  • Hair JF Jr, Black WC, Babin BJ, Anderson RE (2009) Exploratory factor analysis. In: Hair JF Jr, Black WC, Babin BJ, Anderson RE (eds) Multivariate data analysis. Pearson-Prentice Hall, Upper Saddle River, pp 91–152

    Google Scholar 

  • Jadsri S, Singhasivanon P, Kaewkungwal J, Sithiprasasna R, Siriruttanapruk S, Konchom S (2006) Spatio-temporal effects of estimated pollutants released from an industrial estate on the occurrence of respiratory disease in Maptaphut Municipality, Thailand. Int J Health Geogr 5:48

    Article  Google Scholar 

  • Käffer MI, Lemos AT, Apel MA, Rocha JV, Martins SMA, Vargas VMF (2012) Use of bioindicators to evaluate air quality and genotoxic compounds in an urban environment in southern Brazil. Environ Pollut 163:24–31

    Article  Google Scholar 

  • Kampa M, Castanas E (2008) Human health effects of air pollution. Environ Pollut 151:362–367

    Article  CAS  Google Scholar 

  • Kongtip P, Singkaew P, Yoosook W, Chantanakul S, Sujiratat D (2013) Health effects of people living close to a petrochemical industrial estate in Thailand. J Med Assoc Thail 96:S64–S72

    Google Scholar 

  • Koz B, Celik N, Cevik U (2010) Biomonitoring of heavy metals by epiphytic lichen species in Black Sea region of Turkey. Ecol Indic 10:762–765

    Article  CAS  Google Scholar 

  • Kularatne KIA, de Freitas CR (2013) Epiphytic lichens as biomonitors of airborne heavy metal pollution. Environ Exp Bot 88:24–32

    Article  CAS  Google Scholar 

  • Langkulsen U, Vichit-Vadakan N, Taptagaporn S (2011) Safety and health in the petrochemical industry in Map Ta Phut, Thailand. J Occup Health 53:384–392

  • Leonardo L, Mazzilli BP, Damatto SR, Saiki M, Barros de Oliveira SM (2011) Assessment of atmospheric pollution in the vicinity of a tin and lead industry using lichen species Canoparmelia texana. J Environ Radioactiv 102:906–910

    Article  CAS  Google Scholar 

  • Loppi S, Paoli L (2015) Comparison of the trace element content in transplants of the lichen Evernia prunastri and in bulk atmospheric deposition: a case study from a low polluted environment (C Italy). Biologia 70:460–466

    Article  CAS  Google Scholar 

  • Louwhoff HJJ, Elix JA (2000) The lichens of Rarotonga, Cook Islands, South Pacific Ocean II: Parmeliaceae. Lichenologist 32:49–55

    Article  Google Scholar 

  • Lucadamo L, Corapi A, Loppi S, De Rosa R, Barca D, Vespasiano G, Gallo L (2016) Spatial variation in the accumulation of elements in thalli of the lichen Pseudevernia furfuracea (L.) Zopf transplanted around a biomass power plant in Italy. Arch Environ Contam Toxicol 70:506–521

    Article  CAS  Google Scholar 

  • Malaspina P, Tixi S, Brunialti G et al (2014) Biomonitoring urban air pollution using transplanted lichens: element concentrations across seasons. Environ Sci Pollut Res 21:12836–12842

    Article  CAS  Google Scholar 

  • Mikhailova IN, Sharunova IP (2008) Dynamics of heavy metal accumulation in thalli of the epiphytic lichen Hypogymnia physodes. Russ J Ecol 39:346–352

    Article  CAS  Google Scholar 

  • Nadal M, Mari M, Schuhmacher M, Domingo JL (2009) Multi-compartmental environmental surveillance of a petrochemical area: levels of micropollutants. Environ Int 35:227–235

    Article  CAS  Google Scholar 

  • Nannoni F, Santolini R, Protano G (2015) Heavy element accumulation in Evernia prunastri lichen transplants around a municipal solid waste landfill in central Italy. Waste Manag 43:353–362

    Article  CAS  Google Scholar 

  • Ng OH, Tan BC, Obbard JP (2005) Lichens as bioindicators of atmospheric heavy metal pollution in Singapore. Environ Monit Assess 123:63–74

    Article  Google Scholar 

  • Nimis PL, Lazzarin G, Lazzarin A, Skert N (2000) Biomonitoring of trace elements with lichens in Veneto (NE Italy). Sci Total Environ 255:97–111

    Article  CAS  Google Scholar 

  • Odiwe A, Adesanwo AJ, Olowoyo J, Raimi I (2014) Assessment of trace metals using lichen transplant from automobile mechanic workshop in Ile-Ife metropolis, Nigeria. Environ Monit Assess 186:2487–2494

    Article  CAS  Google Scholar 

  • Olowoyo J, van Heerden E, Fischer JL (2011) Trace element concentrations from lichen transplants in Pretoria, South Africa. Environ Sci Pollut Res 18:663–668

    Article  CAS  Google Scholar 

  • Paoli L, Corsini A, Bigagli V, Vannini J, Bruscoli C, Loppi S (2012) Long-term biological monitoring of environmental quality around a solid waste landfill assessed with lichens. Environ Pollut 161:70–75

    Article  CAS  Google Scholar 

  • Paoli L, Munzi S, Guttová A, Senko D, Sardella G, Loppi S (2015) Lichens as suitable indicators of the biological effects of atmospheric pollutants around a municipal solid waste incinerator (S Italy). Ecol Indic 52:362–370

    Article  CAS  Google Scholar 

  • Pimpisut D, Jinsart W, Hooper MA (2005) Modeling of the BTX species based on an emission inventory of sources at the Map Ta Phut Industrial Estate in Thailand. Sci Asia 31:103–112

    Article  CAS  Google Scholar 

  • Purvis OW, Williamson BJ, Spiro B, Udachin V, Mikhailova IN, Dolgopolova A (2013) Lichen monitoring as a potential tool in environmental forensics: case study of the Cu smelter and former mining town of Karabash, Russia. Geol Soc Lond, Spec Publ 384:133–146

    Article  CAS  Google Scholar 

  • Rangkadilok N, Siripriwon P, Nookabkaew S, Suriyo T, Satayavivad J (2015) Arsenic, cadmium, and manganese levels in shellfish from Map Ta Phut, an industrial area in Thailand, and the potential toxic effects on human cells. Arch Environ Contam Toxicol 68:169–180

    Article  CAS  Google Scholar 

  • Rojas-Rodríguez AD, Flores-Fajardo O, González FSA, Castillo NNL, Gómez MJC (2012) Chemical treatment to recover molybdenum and vanadium from spent heavy gasoil hydrodesulfurization catalyst. Adv Chem Engineer Sci 2:408–412

    Article  Google Scholar 

  • Rusu AM (2002) Sample preparation of lichens for elemental analysis. In: Nimis PL, Scheidegger C, Wolseley PA (eds) Monitoring with lichens—monitoring lichens. Kluwer Academic, Dordrecht, pp 305–309

    Chapter  Google Scholar 

  • Salo H, Bućko MS, Vaahtovuo E, Limo J, Mäkinen J, Pesonen LJ (2012) Biomonitoring of air pollution in SW Finland by magnetic and chemical measurements of moss bags and lichens. J Geochem Explor 115:69–81

    Article  CAS  Google Scholar 

  • Sangiamdee D (2014) Validation of sample preparation methods for determination of metal accumulation in lichen Parmotrema tinctorum by inductively coupled plasma mass spectrometry (ICP-MS). Master’s Thesis, Ramkhamhaeng University

  • Scerbo R, Ristori T, Possenti L, Lampugnani L, Barale R, Barghigiani C (2002) Lichen (Xanthoria parietina) biomonitoring of trace element contamination and air quality assessment in Pisa Province (Tuscany, Italy). Sci Total Environ 286:27–40

    Article  CAS  Google Scholar 

  • Singkaew P, Kongtip P, Yoosook W, Chantanakul S (2013) Health risk assessment of volatile organic compounds in a high risk group surrounding Map Ta Phut industrial estate, Rayong Province. J Med Assoc Thail 96:S73–S81

    Google Scholar 

  • Sloof JE (1995) Lichens as quantitative biomonitors for atmospheric trace-element deposition, using transplants. Atmos Environ 29:11–20

    Article  CAS  Google Scholar 

  • Søndergaard J (2013) Dispersion and bioaccumulation of elements from an open-pit olivine mine in southwest Greenland assessed using lichens, seaweeds, mussels and fish. Environ Monit Assess 185:7025–7035

    Article  Google Scholar 

  • Sorbo S, Aprile G, Strumia S, Castaldo Cobianchi R, Leone A, Basile A (2008) Trace element accumulation in Pseudevernia furfuracea (L.) Zopf exposed in Italy’s so called Triangle of Death. Sci Total Environ 407:647–654

    Article  CAS  Google Scholar 

  • Sujetoviene G, Sliumpaite I (2013) Response of Evernia prunastri transplanted to an urban area in central Lithuania. Atmos Pollut Res 4:222–228

    Article  CAS  Google Scholar 

  • Sundar S, Chakravarty J (2010) Antimony toxicity. Int J Environ Res Public Health 7:4267–4277

    Article  CAS  Google Scholar 

  • Tanyanont W, Vichit-Vadakan N (2012) Exposure to volatile organic compounds and health risks among residents in an area affected by a petrochemical complex in Rayong, Thailand. Southeast Asian J Trop Med Public Health 43:201–211

    CAS  Google Scholar 

  • Tomlinson DL, Wilson JG, Harris CR, Jeffrey DW (1980) Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgolander Meeresunters 33:566–575

    Article  Google Scholar 

  • Vyskocil A, Viau C (1999) Assessment of molybdenum toxicity in humans. J Appl Toxicol 19:185–192

    Article  CAS  Google Scholar 

  • Wannalux B (2014) The growth and longevity of tropical lichens of Khao Yai National Park. Master’s thesis, Ramkhamhaeng University

  • WHO (2010) Exposure to cadmium: a major public health concern. Geneva, Switzerland: World Health Organization (WHO)

  • Will-Wolf S, Makholm MM, Nelsen MP, Trest MT, Reis AH, Jovan S (2015) Element analysis of two common macrolichens supports bioindication of air pollution and lichen response in rural midwestern U.S.A. Bryologist 118:371–384

    Article  Google Scholar 

  • Wolterbeek B (2002) Biomonitoring of trace element air pollution: principles, possibilities and perspectives. Environ Pollut 120:11–21

    Article  CAS  Google Scholar 

  • Yemets OA, Solhaug KA, Gauslaa Y (2014) Spatial dispersal of airborne pollutants and their effects on growth and viability of lichen transplants along a rural highway in Norway. Lichenologist 46:809–823

    Article  Google Scholar 

  • Zeng X, Liu Y, You S et al (2015) Spatial distribution, health risk assessment and statistical source identification of the trace elements in surface water from the Xiangjiang River, China. Environ Sci Pollut Res 22:9400–9412

    Article  CAS  Google Scholar 

  • Zhang Q, Li Z, Zeng G et al (2009) Assessment of surface water quality using multivariate statistical techniques in red soil hilly region: a case study of Xiangjiang watershed, China. Environ Monit Assess 152:123–131

    Article  CAS  Google Scholar 

  • Zhang ZH, Chai ZF, Mao XY, Chen JB (2002) Biomonitoring trace element atmospheric deposition using lichens in China. Environ Pollut 120:157–161

    Article  CAS  Google Scholar 

  • Zvěřina O, Láska K, Červenka R, Kuta J, Coufalík P, Komárek J (2014) Analysis of mercury and other heavy metals accumulated in lichen Usnea antarctica from James Ross Island, Antarctica. Environ Monit Assess 186:9089–9100

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the Science Achievement Scholarship of Thailand (SAST) for granting a scholarship to C. Boonpeng. We would like to give a very special thanks to all of our colleagues at the Lichen Research Unit, as well as all relevant officers at all study areas for their assistance. We are also thankful to three anonymous reviewers for their valuable suggestions and comments. This work was funded by the National Research Council of Thailand (NRCT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaiwat Boonpeng.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boonpeng, C., Polyiam, W., Sriviboon, C. et al. Airborne trace elements near a petrochemical industrial complex in Thailand assessed by the lichen Parmotrema tinctorum (Despr. ex Nyl.) Hale. Environ Sci Pollut Res 24, 12393–12404 (2017). https://doi.org/10.1007/s11356-017-8893-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-8893-9

Keywords

Navigation