Skip to main content

Advertisement

Log in

Processed milk waste recycling via thermal pretreatment and lactic acid bacteria fermentation

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Processed milk waste (MW) presents a serious problem within the dairy industries due to its high polluting load. Its chemical oxygen demand (COD) can reach values as high as 80,000 mg O2 L−1. This study proposes to reduce the organic load of those wastes using thermal coagulation and recover residual valuable components via fermentation. Thermal process results showed that the COD removal rates exceeded 40% when samples were treated at temperature above 60 °C to reach 72% at 100 °C. Clarified supernatants resulting from thermal treatment of the samples at the temperatures of 60 (MW60), 80 (MW80), and 100 °C (MW100) were fermented using lactic acid bacteria strains without pH control. Lactic strains recorded important final cell yields (5–7 g L−1). Growth mediums prepared using the thermally treated MW produced 73% of the bacterial biomass recorded with a conventional culture medium. At the end of fermentation, mediums were found exhausted from several valuable components. Industrial scale implementation of the proposed process for the recycling of industrial MWs is described and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • AFNOR (1971) Lait. Détermination de la teneur en lactose NF V 04–213

  • AFNOR (1980) Lait. Détermination de la matière sèche. NF VO4 207. Recueil de normes françaises. Laits et produits laitiers. Méthodes d’analyse, AFNOR. Normalisation française, Paris, pp 33–34

  • AFNOR (2001) Lait - Détermination de la teneur en matière grasse - Méthode gravimétrique (méthode de référence). NF EN ISO 1211, pp 21

  • Aller K, Adamberg K, Timarova V, Seiman A, Feštšenko D, Vilu R (2014) Nutritional requirements and media development for Lactococcus lactis IL1403. Appl Microbiol Biotechnol 98(13):5871–5881

  • Alonso S, Herrero M, Rendueles M, Diaz M (2010) Residual yoghurt whey for lactic acid production. Biomass Bioenergy 34(7):931–938

    Article  CAS  Google Scholar 

  • APII (2014) Les Industries Agroalimentaires en Tunisie. Agency for the Promotion of Industry and Innovation, Report

  • Archibald F (1983) Lactobacillus plantarum, an organism not requiring iron. FEMS Microbiol Lett 19(1):29–32

    Article  CAS  Google Scholar 

  • Bering S, Sjoltov L, Wrisberg SS, Berggren A, Alenfall J, Jensen M, Hojgaard L, Tetens I, Bukhave K (2007) Viable, lyophilized lactobacilli do not increase iron absorption from a lactic acid-fermented meal in healthy young women, and no iron absorption occurs in the distal intestine. Br J Nutr 98(5):991–997

    Article  CAS  Google Scholar 

  • Cock LS, de Stouvenel AR (2006) Lactic acid production by a strain of Lactococcus lactis subs lactis isolated from sugar cane plants. Electron J Biotechnol 9(1):40–45

    Article  CAS  Google Scholar 

  • De Wit JN (2001) Lecturer’s handbook on whey products, 1st edn. EuropeanWhey Products Association, Brussels, Belgium

    Google Scholar 

  • Fauquant J, Vieco E, Brule G, Maubois JL (1985) Clarification des lactosérums doux par agrégation thermocalcique de la matière grasse résiduelle. Lait 65(647–648):1–20

    Article  CAS  Google Scholar 

  • Fu W, Mathews AP (1999) Lactic acid production from lactose by Lactobacillus plantarum: kinetic model and effects of pH, substrate, and oxygen. Biochem Eng J 3(3):163–170

    Article  CAS  Google Scholar 

  • Garrett JM, Stairs RA, Annett RG (1988) Thermal denaturation and coagulation of whey proteins: effect of sugars. J Dairy Sci 71(1):10–16

    Article  CAS  Google Scholar 

  • Ghaffar T, Irshad M, Anwar Z, Aqil T, Zulifqar Z, Tariq A, Kamran M, Ehsan N, Mehmood S (2014) Recent trends in lactic acid biotechnology: a brief review on production to purification. J Rad Res Appl Sci 7(2):222–229

    CAS  Google Scholar 

  • Ghaly AE, Kamal MA (2004) Submerged yeast fermentation of acid cheese whey for protein production and pollution potential reduction. Water Res 38(3):631–644

    Article  CAS  Google Scholar 

  • González MI, Alvarez S, Riera FA, Álvarez R (2008) Lactic acid recovery from whey ultrafiltrate fermentation broths and artificial solutions by nanofiltration. Desalination 228(1):84–96

    Article  Google Scholar 

  • Group WB (1999) Dairy industry. Pollution prevention and abatement handbook, Report. World Bank Publications, Washington, pp 295–297

    Google Scholar 

  • Gustavsson J, Cederberg C, Sonesson U, van Otterdijk R, Meybeck A (2011) Global Food Losses And Food Waste. FAO

  • Jensen PR, Hammer K (1993) Minimal requirements for exponential growth of Lactococcus lactis. Appl Environ Microbiol 59(12):4363–4366

    CAS  Google Scholar 

  • Kantor LS, Lipton K, Manchester A, Oliveira V (1997) Estimating and Addressing America’s Food Losses. Food Review

  • Kasmi M (2016) Biological processes as promoting way for both treatment and valorization of dairy industry effluents: a review. Waste Biomass Valor. doi:10.1007/s12649-016-9795-9797

    Google Scholar 

  • Kasmi M, Hamdi M, Trabelsi I (2016) Eco-friendly process combining physical-chemical and biological technics for the fermented dairy products waste pretreatment and reuse. Water Sci Technol:1–9. doi:10.2166/wst.2016.477

  • Kim WS, Ren J, Dunn NW (1999) Differentiation of Lactococcus lactis subspecies lactis and subspecies cremoris strains by their adaptive response to stresses. FEMS Microbiol Lett 171(1):57–65

    Article  CAS  Google Scholar 

  • Kosseva MR (2011) Management and processing of food wastes. In: Moo-Young M (ed) Comprehensive Biotechnology, Environmental Biotechnology and Safety, Elsevier

  • Law AJR, Leaver J (2000) Effect of pH on the thermal denaturation of whey proteins in milk. J Agr Food Chem 48(3):672–679

    Article  CAS  Google Scholar 

  • Litchfield JH (2009) Lactic acid, microbially produced. Applied Microbiology: Industrial, Elsivier Inc., pp 362–372. Available from https://imtech.wikispaces.com/file/view/Lactic+Acid,+Microbially+Produced,.pdf

  • Lore T, Omore A, Staal S (2005) Types, levels and causes of post-harvest milk and dairy losses in sub-Saharan Africa and the Near East: Phase one synthesis report. International Livestock Research Institute, Nairobi, Kenya

  • Lucey LA, Horne DS (2009) Milk salts: technological significance. In: McSweeney PLH, Fox PF (eds) Advanced dairy chemistry: lactose, water, salts and minor constituents, vol 3. Springer ScienceþBusiness Media, Cork, pp 350–389

  • MacLeod RA, Snell EE (1947) Some mineral requirements of the lactic acid bacteria. J Biol Chem 170(1):351–365

    CAS  Google Scholar 

  • Mäyra-Mäkinen A, Bigret M (2004) Industrial use and production of lactic acid bacteria. In: Salminen S, von Wright A, Ouwehand A. (eds) Lactic acid bacteria: microbiological and functional aspects, 3rd ed. CRC Press, Boca Raton London New York, pp 175–198

  • MedTest. 2012. Industrie du lait et des produits laitiers (CLC) :Secteur Alimentaire en Tunisie. UNIDO. Report

  • Moulin G, Ratomahenina R, Galzy P, Boze M (1976) Sélection de levure en vue de la culture sur lactosérum. Lait 56(553–554):135–142

    Article  CAS  Google Scholar 

  • Newstead DF, Sanderson WB, Conaghan EF (1977) Effects of whey protein concentrations and heat treatment on the heat stability of concentrated and unconcentrated milk. New Zeal J Dairy Sci 12:29–36

    CAS  Google Scholar 

  • Oldfield DJ, Singh H, Taylor MW, Pearce KN (2000) Heat-induced interactions of β-lactoglobulin and α-lactalbumin with the casein micelle in pH-adjusted skim milk. Int Dairy J 10(8):509–518

    Article  CAS  Google Scholar 

  • Payne-Botha S, Bigwood EJ (1959) Amino-acid content of raw and heat-sterilized cow’s milk. Br J Nutr 13:385–389

    Article  CAS  Google Scholar 

  • Pieterse B, Leer RJ, Schuren FH, van der Werf MJ (2005) Unravelling the multiple effects of lactic acid stress on Lactobacillus plantarum by transcription profiling. Microbiol 151(12):3881–3894

    Article  CAS  Google Scholar 

  • Porubcan RS, Sellars RL (1979) Lactic starter culture concentrates. In: Peppler HT (ed) Microbiology. Van Nostrand Reinhold, Princeton, NJ, p 59

    Google Scholar 

  • Prazeres AR, Carvalho F, Rivas J (2012) Cheese whey management: a review. J Environ Manag 110:48–68

    Article  CAS  Google Scholar 

  • Randhawa M, Ahmed A, Akram K (2012) Optimization of lactic acid production from cheap raw material: sugarcane molasses. Pak J Bot 44(1):333–338

    Google Scholar 

  • Reiter B, Oram JD (1962) Nutritional studies on cheese starters. J Dairy Res 29:63–77

    CAS  Google Scholar 

  • Rodier J, Legube B, Merlet N, Brunet R (2009) Eaux Résiduaires. In: Rodier J (ed) L'analyse de l'eau: Eaux naturelles, eaux résiduaires, eau de mer, 9th edn. Dunod, Paris

    Google Scholar 

  • Rombaut R, Dewettinck K (2007) Thermocalcic aggregation of milk fat globule membrane fragments from acid buttermilk cheese whey. J Dairy Sci 90(6):2665–2674

    Article  CAS  Google Scholar 

  • Russ W, Meyer-Pittroff R (2004) Utilizing waste products from the food production and processing industries. Crit Rev Food Sci Nutr 44(1):57–62

    Article  Google Scholar 

  • Russell JB, Diez-Gonzalez F (1997) The Effects of Fermentation Acids on Bacterial Growth. In: Poole, RK (ed) Advances in Microbial Physiology, Vol 39, Academic Press, San Diego London Boston New York Sydney Tokyo Toronto, pp 205–234

  • Saguir FM, de Nadra MC (2007) Improvement of a chemically defined medium for the sustained growth of Lactobacillus plantarum: nutritional requirements. Curr Microbiol 54(6):414–418

    Article  CAS  Google Scholar 

  • Samaržija D, Antunac N, Havranek JL (2001) Taxonomy, physiology and growth of Lactococcus lactis: a review. Mljekarstvo 51(1):35–48

    Google Scholar 

  • Scholten RHJ, van der Peet-Schwering CMC, Verstegen MWA, den Hartog LA, Schrama JW, Vesseur PC (1999) Fermented co-products and fermented compound diets for pigs: a review. Anim Feed Sci Technol 82(1–2):1–19

    Article  CAS  Google Scholar 

  • Schreiber R (2001) Heat-induced modifications in casein dispersions affecting their rennetability. Int Dairy J 11(4–7):553–558

    Article  CAS  Google Scholar 

  • Seesuriyachan P, Kuntiya A, Sasaki K, Techapun C (2009) Biocoagulation of dairy wastewater by Lactobacillus casei TISTR 1500 for protein recovery using micro-aerobic sequencing batch reactor (micro-aerobic SBR). Process Biochem 44(4):406–411

    Article  CAS  Google Scholar 

  • Taskila S, Ojamo H (2013) The Current Status and Future Expectations in Industrial Production of Lactic Acid by Lactic Acid Bacteria. In: Kongo, M. (ed), Lactic Acid Bacteria – R&D for Food, Health and Livestock Purposes, InTech, Rijeka, pp 615–632

  • Tocchi C, Federici E, Scargetta S, D’Annibale A, Petruccioli M (2013) Dairy wastewater polluting load and treatment performances of an industrial three-cascade-reactor plant. Process Biochem 48(5–6):941–944

    Article  CAS  Google Scholar 

  • van Niel EWJ, Hahn-Hägerdal B (1999) Nutrient requirements of lactococci in defined growth media. Appl Microbiol Biotechnol 52(5):617–627

    Article  Google Scholar 

  • Vasbinder A (2002) Casein—whey protein interactions in heated milk, Ph.D Thesis, Utrecht University. Netherlands, pp 141

  • Vasbinder A, Alting A, de Kruif K (2003) Quantification of heat-induced casein–whey protein interactions in milk and its relation to gelation kinetics. Colloids Surfaces B Biointerfaces 31(1–4):115–123

    Article  CAS  Google Scholar 

  • Venetsaneas N, Antonopoulou G, Stamatelatou K, Kornaros M, Lyberatos G (2009) Using cheese whey for hydrogen and methane generation in a two-stage continuous process with alternative pH controlling approaches. Bioresour Technol 100(15):3713–3717

    Article  CAS  Google Scholar 

  • Yeung CY, Lee HC, Lin SP, Yang YC, Huang FY, Chuang CK (2005) Negative effect of heat sterilization on the free amino acid concentrations in infant formula. Eur J Clin Nutr 60(1):136–141

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariam Kasmi.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kasmi, M., Hamdi, M. & Trabelsi, I. Processed milk waste recycling via thermal pretreatment and lactic acid bacteria fermentation. Environ Sci Pollut Res 24, 13604–13613 (2017). https://doi.org/10.1007/s11356-017-8932-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-8932-6

Keywords

Navigation