Skip to main content

Advertisement

Log in

Extensive review of shale gas environmental impacts from scientific literature (2010–2015)

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Extensive reviews and meta-analyses are essential to summarize emerging developments in a specific field and offering information on the current trends in the scientific literature. Shale gas exploration and exploitation has been extensively debated in literature, but a comprehensive review of recent studies on the environmental impacts has yet to be carried out. Therefore, the goal of this article is to systematically examine scientific articles published between 2010 and 2015 and identify recent advances and existing data gaps. The examined articles were classified into six main categories (water resources, atmospheric emissions, land use, induced seismicity, occupational and public health and safety, and other impacts). These categories are analyzed separately to identify specific challenges, possibly existing consensus and data gaps yet remained in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdalla CW, Drohan JR (2010) Marcellus education fact sheet: water withdrawals for development of Marcellus shale gas in Pennsylvania. Penn State Extension, USA

    Google Scholar 

  • Adair SK, Pearson BR, Monast J, Vengosh A, Jackson RB (2012) Considering shale gas extraction in North Carolina: lessons from other states. Duke Environmental Law and Policy Forum 22:257–301

    Google Scholar 

  • Ahmadi M, John K (2015) Statistical evaluation of the impact of shale gas activities on ozone pollution in North Texas. Sci Total Environ 536:457–467. doi:10.1016/j.scitotenv.2015.06.114

    Article  CAS  Google Scholar 

  • Akob DM, Cozzarelli IM, Dunlap DS, Rowan EL, Lorah MM (2015) Organic and inorganic composition and microbiology of produced waters from Pennsylvania shale gas wells. Appl Geochem 60:116–125. doi:10.1016/j.apgeochem.2015.04.011

    Article  CAS  Google Scholar 

  • Akyon B, Stachler E, Wei N, Bibby K (2015) Microbial mats as a biological treatment approach for saline wastewaters: the case of produced water from hydraulic fracturing. Environ Sci Technol 49:6172–6180. doi:10.1021/es505142t

    Article  CAS  Google Scholar 

  • Alawattegama SK, Kondratyuk T, Krynock R, Bricker M, Rutter JK, Bain DJ, Stolz JF (2015) Well water contamination in a rural community in southwestern Pennsylvania near unconventional shale gas extraction. J Environ Sci Health A Tox Hazard Subst Environ Eng 50:516–528. doi:10.1080/10934529.2015.992684

    Article  CAS  Google Scholar 

  • Allen DT et al (2013) Measurements of methane emissions at natural gas production sites in the United States. Proc Natl Acad Sci U S A 110:17768–17773. doi:10.1073/pnas.1304880110

    Article  Google Scholar 

  • Alley B, Beebe A, Rodgers J, Castle JW (2011) Chemical and physical characterization of produced waters from conventional and unconventional fossil fuel resources. Chemosphere 85:74–82. doi:10.1016/j.chemosphere.2011.05.043

    Article  CAS  Google Scholar 

  • Bai B, Carlson K, Prior A, Douglas C (2015) Sources of variability in flowback and produced water volumes from shale oil and gas wells. J Unconv Oil Gas Resour 12:1–5. doi:10.1016/j.juogr.2015.07.001

    Article  Google Scholar 

  • Baranzelli C, Vandecasteele I, Ribeiro Barranco R, Mari i Rivero I, Pelletier N, Batelaan O, Lavalle C (2015) Scenarios for shale gas development and their related land use impacts in the Baltic Basin. Northern Poland Energy Policy 84:80–95. doi:10.1016/j.enpol.2015.04.032

    Article  Google Scholar 

  • Barbot E, Vidic NS, Gregory KB, Vidic RD (2013) Spatial and temporal correlation of water quality parameters of produced waters from Devonian-age shale following hydraulic fracturing. Environ Sci Technol 47:2562–2569. doi:10.1021/es304638h

    Article  CAS  Google Scholar 

  • Bogacki M, MacUda J (2014) The influence of shale rock fracturing equipment operation on atmospheric air quality. Arch Min Sci 59:897–912. doi:10.2478/amsc-2014-0062

    Article  CAS  Google Scholar 

  • Bowen ZH et al (2015) Assessment of surface water chloride and conductivity trends in areas of unconventional oil and gas development—why existing national data sets cannot tell us what we would like to know. Water Resour Res 51:704–715. doi:10.1002/2014WR016382

    Article  Google Scholar 

  • Brantley SL et al (2014) Water resource impacts during unconventional shale gas development: the Pennsylvania experience. Int J Coal Geol 126:140–156. doi:10.1016/j.coal.2013.12.017

    Article  CAS  Google Scholar 

  • Bunch AG et al (2014) Evaluation of impact of shale gas operations in the Barnett Shale region on volatile organic compounds in air and potential human health risks. Sci Total Environ 468–469:832–842. doi:10.1016/j.scitotenv.2013.08.080

    Article  CAS  Google Scholar 

  • Burnham A, Han J, Clark CE, Wang M, Dunn JB, Palou-Rivera I (2012) Life-cycle greenhouse gas emissions of shale gas. Natural Gas, Coal, Petroleum Environ Sci Technol 46:619–627. doi:10.1021/es201942m

    Article  CAS  Google Scholar 

  • Caffagni E, Eaton D, Van der Baan M, Jones JP (2014) Regional seismicity: a potential pitfall for identification of long-period long-duration events. Geophysics 80:A1–A5. doi:10.1190/GEO2014-0382.1

    Article  Google Scholar 

  • Cathles Iii LM, Brown L, Taam M, Hunter A (2012) A commentary on “The greenhouse-gas footprint of natural gas in shale formations” by R.W. Howarth, R. Santoro, and Anthony Ingraffea. Clim Chang 113:525–535. doi:10.1007/s10584-011-0333-0

    Article  CAS  Google Scholar 

  • Centner TJ, Petetin L (2015) Permitting program with best management practices for shale gas wells to safeguard public health. J Environ Manag 163:174–183. doi:10.1016/j.jenvman.2015.08.019

    Article  CAS  Google Scholar 

  • Chang Y, Huang R, Masanet E (2014) The energy, water, and air pollution implications of tapping China’s shale gas reserves. Resour Conserv Recycl 91:100–108. doi:10.1016/j.resconrec.2014.07.015

    Article  Google Scholar 

  • Chang Y, Huang R, Ries RJ, Masanet E (2015) Life-cycle comparison of greenhouse gas emissions and water consumption for coal and shale gas fired power generation in China. Energy 86:335–343. doi:10.1016/j.energy.2015.04.034

    Article  CAS  Google Scholar 

  • Clark CEH, Robert M, Harto CB (2013) Life cycle water consumption for shale gas and conventional natural gas. Environ Sci Technol 47:11829–11836. doi:10.1021/es4013855

    Article  CAS  Google Scholar 

  • Clarke H, Eisner L, Styles P, Turner P (2014) Felt seismicity associated with shale gas hydraulic fracturing: the first documented example in Europe. Geophys Res Lett 41:8308–8314. doi:10.1002/2014GL062047

    Article  Google Scholar 

  • Colborn T, Schultz K, Herrick L, Kwiatkowski C (2014) An exploratory study of air quality near natural gas operations. Hum Ecol Risk Assess 20:86–105. doi:10.1080/10807039.2012.749447

    Article  CAS  Google Scholar 

  • Davies R, Foulger G, Bindley A, Styles P (2013) Induced seismicity and hydraulic fracturing for the recovery of hydrocarbons. Mar Pet Geol 45:171–185. doi:10.1016/j.marpetgeo.2013.03.016

    Article  Google Scholar 

  • Drohan PJ, Brittingham M, Bishop J, Yoder K (2012) Early trends in land cover change and forest fragmentation due to shale-gas development in Pennsylvania: a potential outcome for the north-central Appalachians. Environ Manag 49:1061–1075. doi:10.1007/s00267-012-9841-6

    Article  CAS  Google Scholar 

  • EASAC EASAC (2014) Shale gas extraction: issues of particular relevance to the European Union. Germany

  • Edwards PM et al (2014) High winter ozone pollution from carbonyl photolysis in an oil and gas basin. Nature 514:351–354. doi:10.1038/nature13767

    Article  CAS  Google Scholar 

  • Edwards RWJ, Celia MA, Bandilla KW, Doster F, Kanno CM (2015) A model to estimate carbon dioxide injectivity and storage capacity for geological sequestration in shale gas wells. Environ Sci Technol 49:9222–9229. doi:10.1021/acs.est.5b01982

    Article  CAS  Google Scholar 

  • Elsner M, Hoelzer K (2016) Quantitative survey and structural classification of hydraulic fracturing chemicals reported in unconventional gas production. Environ Sci Technol 50:3290–3314. doi:10.1021/acs.est.5b02818

    Article  CAS  Google Scholar 

  • Ethridge S, Bredfeldt T, Sheedy K, Shirley S, Lopez G, Honeycutt M (2015) The Barnett Shale: from problem formulation to risk management. J Unconv Oil Gas Resour 11:95–110. doi:10.1016/j.juogr.2015.06.001

    Article  Google Scholar 

  • Evans JS, Kiesecker JM (2014) Shale gas, wind and water: assessing the potential cumulative impacts of energy development on ecosystem services within the Marcellus play. PLoS One 9. doi:10.1371/journal.pone.0089210

    Article  Google Scholar 

  • Ferrer I, Thurman EM (2015) Analysis of hydraulic fracturing additives by LC/Q-TOF-MS. Anal Bioanal Chem 407:6417–6428. doi:10.1007/s00216-015-8780-5

    Article  CAS  Google Scholar 

  • Frohlich C, Hayward C, Stump B, Potter E (2011) The Dallas-Fort Worth earthquake sequence: October 2008 through May 2009. Bull Seismol Soc Am 101:327–340. doi:10.1785/0120100131

    Article  Google Scholar 

  • Gallegos TJ, Varela BA, Haines SS, Engle MA (2015) Hydraulic fracturing water use variability in the United States and potential environmental implications. Water Resour Res 51:5839–5845. doi:10.1002/2015WR017278

    Article  CAS  Google Scholar 

  • Garner J, Cairns J, Read D (2015) NORM in the East Midlands’ oil and gas producing region of the UK. J Environ Radioact 150:49–56. doi:10.1016/j.jenvrad.2015.07.016

    Article  CAS  Google Scholar 

  • Getzinger GJ et al (2015) Natural gas residual fluids: sources, endpoints, and organic chemical composition after centralized waste treatment in Pennsylvania. Environ Sci Technol 49:8347–8355. doi:10.1021/acs.est.5b00471

    Article  CAS  Google Scholar 

  • Goetz JD et al (2015) Atmospheric emission characterization of Marcellus Shale natural gas development sites. Environ Sci Technol 49:7012–7020. doi:10.1021/acs.est.5b00452

    Article  CAS  Google Scholar 

  • Gómez VR, Fernández LV, Javier F, Naranjo F (2015) Sustainable alternatives for water management related to shale gas activities in the European context. Madrid

  • Goodwin RW (2014) Environmental perspective update: hydraulic fracturing. Pollut Eng 46:34–38

    Google Scholar 

  • Graham J et al (2015) Increased traffic accident rates associated with shale gas drilling in Pennsylvania. Accid Anal Prev 74:203–209. doi:10.1016/j.aap.2014.11.003

    Article  Google Scholar 

  • Gregory KB, Vidic RD, Dzombak DA (2011) Water management challenges associated with the production of shale gas by hydraulic fracturing. Elements 7:181–186. doi:10.2113/gselements.7.3.181

    Article  Google Scholar 

  • GWPC GWPC (2009) Modern shale gas development in the United States. A Primer U.S. Department of Energy Office of Fossil Energy National Energy Technology Laboratory, USA

    Google Scholar 

  • Haghshenas A, Nasr-El-Din HA (2014) Effect of dissolved solids on reuse of produced water at high temperature in hydraulic fracturing jobs. J Nat Gas Sci Eng 21:316–325. doi:10.1016/j.jngse.2014.08.013

    Article  CAS  Google Scholar 

  • Haluszczak LO, Rose AW, Kump LR (2013) Geochemical evaluation of flowback brine from Marcellus gas wells in Pennsylvania. USA Appl Geochem 28:55–61. doi:10.1016/j.apgeochem.2012.10.002

    Article  CAS  Google Scholar 

  • He C, Wang X, Liu W, Barbot E, Vidic RD (2014) Microfiltration in recycling of Marcellus Shale flowback water: solids removal and potential fouling of polymeric microfiltration membranes. J Membr Sci 462:88–95. doi:10.1016/j.memsci.2014.03.035

    Article  CAS  Google Scholar 

  • Heath GA, O’ Donoughue P, Arent DJ, Bazilian M (2014) Harmonization of initial estimates of shale gas life cycle greenhouse gas emissions for electric power generation. Proc Natl Acad Sci U S A 111:E3167–E3176. doi:10.1073/pnas.1309334111

    Article  CAS  Google Scholar 

  • Heilweil VM, Grieve PL, Hynek SA, Brantley SL, Solomon DK, Risser DW (2015) Stream measurements locate thermogenic methane fluxes in groundwater discharge in an area of shale-gas development. Environ Sci Technol 49:4057–4065. doi:10.1021/es503882b

    Article  CAS  Google Scholar 

  • Hickenbottom KL, Hancock NT, Hutchings NR, Appleton EW, Beaudry EG, Xu P, Cath TY (2013) Forward osmosis treatment of drilling mud and fracturing wastewater from oil and gas operations. Desalination 312:60–66. doi:10.1016/j.desal.2012.05.037

    Article  CAS  Google Scholar 

  • Hildenbrand ZL et al (2015) A comprehensive analysis of groundwater quality in the Barnett Shale region. Environ Sci Technol 49:8254–8262. doi:10.1021/acs.est.5b01526

    Article  CAS  Google Scholar 

  • Holland AA (2013) Earthquakes triggered by hydraulic fracturing in south-central Oklahoma. Bull Seismol Soc Am 103:1784–1792. doi:10.1785/0120120109

    Article  Google Scholar 

  • Howarth RW (2014) A bridge to nowhere: methane emissions and the greenhouse gas footprint of natural gas. Energy Sci Eng 2:47–60. doi:10.1002/ese3.35

    Article  CAS  Google Scholar 

  • Howarth RW, Santoro R, Ingraffea A (2011) Methane and the greenhouse-gas footprint of natural gas from shale formations. 106

    Article  CAS  Google Scholar 

  • Howarth RW, Santoro R, Ingraffea A (2012) Venting and leaking of methane from shale gas development: response to Cathles et al. Clim Chang 113:537–549. doi:10.1007/s10584-012-0401-0

    Article  CAS  Google Scholar 

  • IPCC IPoCC (2014) Land use, land-use change and forestry. IPCC >http://www.ipcc.ch/ipccreports/sres/land_use/index.php?idp=160

  • Jackson RB et al (2013) Increased stray gas abundance in a subset of drinking water wells near Marcellus shale gas extraction. Proc Natl Acad Sci U S A 110:11250–11255. doi:10.1073/pnas.1221635110

    Article  Google Scholar 

  • Jackson RB, Lowry ER, Pickle A, Kang M, DiGiulio D, Zhao K (2015) The depths of hydraulic fracturing and accompanying water use across the United States. Environ Sci Technol 49:8969–8976. doi:10.1021/acs.est.5b01228

    Article  CAS  Google Scholar 

  • Jaramillo P, Griffin WM, Matthews HS (2007) Comparative life-cycle air emissions of coal, domestic natural gas, LNG, and SNG for electricity generation. Environ Sci Technol 41:6290–6296. doi:10.1021/es063031o

    Article  CAS  Google Scholar 

  • Jiang M, Michael Griffin W, Hendrickson C, Jaramillo P, Vanbriesen J, Venkatesh A (2011) Life cycle greenhouse gas emissions of Marcellus shale gas. Environ Res Lett 6. doi:10.1088/1748-9326/6/3/034014

    Article  Google Scholar 

  • Johnson C, Boersma T (2013) Energy (in) security in Poland the case of shale gas. Energ Policy 53:389–399. doi:10.1016/j.enpol.2012.10.068

    Article  Google Scholar 

  • Kassotis CD, Tillitt DE, Davis JW, Hormann AM, Nagel SC (2014) Estrogen and androgen receptor activities of hydraulic fracturing chemicals and surface and ground water in a drilling-dense region. Endocrinology 155:897–907. doi:10.1210/en.2013-1697

    Article  CAS  Google Scholar 

  • Kavalov B, Pelletier N (2012) Shale gas for Europe—main environmental and social considerations: a literature review. European Union, Luxembourg

    Google Scholar 

  • Kekacs D, Drollette BD, Brooker M, Plata DL, Mouser PJ (2015) Aerobic biodegradation of organic compounds in hydraulic fracturing fluids. Biodegradation 26:271–287. doi:10.1007/s10532-015-9733-6

    Article  CAS  Google Scholar 

  • Kiviat E (2013)Risks to biodiversity from hydraulic fracturing for natural gas in the Marcellus and Utica Shales. 1286. doi:10.1111/nyas.12146

    Article  Google Scholar 

  • Kolesar Kohl CA, Capo RC, Stewart BW, Wall AJ, Schroeder KT, Hammack RW, Guthrie GD (2014) Strontium isotopes test long-term zonal isolation of injected and Marcellus formation water after hydraulic fracturing. Environ Sci Technol 48:9867–9873. doi:10.1021/es501099k

    Article  CAS  Google Scholar 

  • Latta SC, Marshall LC, Frantz MW, Toms JD (2015) Evidence from two shale regions that a riparian songbird accumulates metals associated with hydraulic fracturing. Ecosphere 6 doi:10.1890/ES14-00406.1

    Article  Google Scholar 

  • Laurenzi IJ, Jersey GR (2013) Life cycle greenhouse gas emissions and freshwater consumption of Marcellus shale gas. Environ Sci Technol 47:4896–4903. doi:10.1021/es305162w

    Article  CAS  Google Scholar 

  • Lee WJ, Sohn SY (2014) Patent analysis to identify shale gas development in China and the United States. Energ Policy 74:111–115. doi:10.1016/j.enpol.2014.08.009

    Article  Google Scholar 

  • Lee HJ, Kim HH, Lee H, Lee C (2015) Reaction of aqueous iodide at high concentration with O3 and O3/H2O2 in the presence of natural organic matter: implications for drinking water treatment. Environ Chem Lett 13:453–458. doi:10.1007/s10311-015-0519-1

    Article  CAS  Google Scholar 

  • Lester Y, Ferrer I, Thurman EM, Sitterley KA, Korak JA, Aiken G, Linden KG (2015) Characterization of hydraulic fracturing flowback water in Colorado: implications for water treatment. Sci Total Environ 512-513:637–644. doi:10.1016/j.scitotenv.2015.01.043

    Article  CAS  Google Scholar 

  • Li J, Jovanovic A, Klimek P, Guo X (2015) Bibliometric analysis of fracking scientific literature. Scientometrics 105:1273–1284. doi:10.1007/s11192-015-1739-7

    Article  Google Scholar 

  • Litovitz A, Curtright A, Abramzon S, Burger N, Samaras C (2013) Estimation of regional air-quality damages from Marcellus shale natural gas extraction in Pennsylvania. Environ Res Lett 8. doi:10.1088/1748-9326/8/1/014017

    Article  Google Scholar 

  • Lutz BD, Lewis AN, Doyle MW (2013) Generation, transport, and disposal of wastewater associated with Marcellus shale gas development. Water Resour Res 49:647–656. doi:10.1002/wrcr.20096

    Article  CAS  Google Scholar 

  • Maguire-Boyle SJ, Barron AR (2014) Organic compounds in produced waters from shale gas wells. Environ Sci: Process Impacts 16:2237–2248. doi:10.1039/c4em00376d

    Article  CAS  Google Scholar 

  • Maloney KO, Yoxtheimer DA (2012) Production and disposal of waste materials from gas and oil extraction from the Marcellus shale play in Pennsylvania. Environ Pract 14:278–287. doi:10.1017/S146604661200035X

    Article  Google Scholar 

  • Manda AK, Heath JL, Klein WA, Griffin MT, Montz BE (2014) Evolution of multi-well pad development and influence of well pads on environmental violations and wastewater volumes in the Marcellus shale (USA). J Environ Manag 142:36–45. doi:10.1016/j.jenvman.2014.04.011

    Article  Google Scholar 

  • Mauter M, Palmer V (2014) Expert elicitation of trends in Marcellus oil and gas wastewater management. J Environ Eng 140:B4014004. doi:10.1061/(ASCE)EE.1943-7870.0000811

    Article  CAS  Google Scholar 

  • McCawley M (2015) Air contaminants associated with potential respiratory effects from unconventional resource development activities seminars in respiratory. Crit Care Med 36:379–387. doi:10.1055/s-0035-1549453

    Article  Google Scholar 

  • McGarr A (2014) Maximum magnitude earthquakes induced by fluid injection. J Geophys Res Solid Earth 119:1008–1019. doi:10.1002/2013JB010597

    Article  Google Scholar 

  • Middleton RS et al (2015) Shale gas and non-aqueous fracturing fluids: opportunities and challenges for supercritical CO2. Appl Energy 147:500–509. doi:10.1016/j.apenergy.2015.03.023

    Article  CAS  Google Scholar 

  • Milieu L (2013) Regulatory provisions governing key aspects of unconventional gas extraction in selected Member States, Brussels

  • Molofsky LJ, Connor JA, Farhat SK, Wylie AS Jr, Wagner T (2011) Methane in Pennsylvania water wells unrelated to Marcellus shale fracturing. Oil Gas J 109:54–67 +93

    CAS  Google Scholar 

  • Moran M, Cox AB, Wells R, Benichou C, McClung M (2015) Habitat loss and modification due to gas development in the Fayetteville shale. Environ Manag 55:1276–1284. doi:10.1007/s00267-014-0440-6

    Article  Google Scholar 

  • Mykowska A, Rogala A, Kallas A, Karczewski J, Hupka J (2015) Radioactivity of drilling cuttings from shale resources of the lower Paleozoic Baltic basin. Physicochem Problems Miner Process 51:521–533. doi:10.5277/ppmp150213

    Article  CAS  Google Scholar 

  • Nelson AW, Knight AW, Eitrheim ES, Schultz MK (2015) Monitoring radionuclides in subsurface drinking water sources near unconventional drilling operations: a pilot study. J Environ Radioact 142:24–28. doi:10.1016/j.jenvrad.2015.01.004

    Article  CAS  Google Scholar 

  • Nicot JP, Scanlon BR (2012) Water use for shale-gas production in Texas, U.S. Environ Sci Technol 46:3580–3586. doi:10.1021/es204602t

    Article  CAS  Google Scholar 

  • Nicot JP, Scanlon BR, Reedy RC, Costley RA (2014) Source and fate of hydraulic fracturing water in the Barnett shale: a historical perspective. Environ Sci Technol 48:2464–2471. doi:10.1021/es404050r

    Article  CAS  Google Scholar 

  • Olmstead SM, Muehlenbachs LA, Shih J-S, Chu Z, Krupnick AJ (2013) Shale gas development impacts on surface water quality in Pennsylvania. Proc Natl Acad Sci 110:4962–4967. doi:10.1073/pnas.1213871110

    Article  Google Scholar 

  • Orem W et al (2014) Organic substances in produced and formation water from unconventional natural gas extraction in coal and shale. Int J Coal Geol 126:20–31. doi:10.1016/j.coal.2014.01.003

    Article  CAS  Google Scholar 

  • Osborn SG, Vengosh A, Warner NR, Jackson RB (2011) Methane contamination of drinking water accompanying gas-well drilling and hydraulic fracturing. Proc Natl Acad Sci U S A 108:8172–8176. doi:10.1073/pnas.1100682108

    Article  Google Scholar 

  • OSHA OSHA, NIOSH NIoOSaH (2015) Worker exposure to silica during hydraulic fracturing. DOL, Departament of Labor, USA

    Google Scholar 

  • O, Sullivan F, Paltsev S (2012) Shale gas production: potential versus actual greenhouse gas emissions. Environ Res Lett 7. doi:10.1088/1748-9326/7/4/044030

    Article  Google Scholar 

  • Pacsi AP, Sanders KT, Webber ME, Allen DT (2014) Spatial and temporal impacts on water consumption in Texas from shale gas development and use. ACS Sustain Chem Eng 2:2028–2035. doi:10.1021/sc500236g

    Article  CAS  Google Scholar 

  • Pancras JP, Norris GA, Landis MS, Kovalcik KD, McGee JK, Kamal AS (2015) Application of ICP-OES for evaluating energy extraction and production wastewater discharge impacts on surface waters in western Pennsylvania. Sci Total Environ 529:21–29. doi:10.1016/j.scitotenv.2015.04.011

    Article  CAS  Google Scholar 

  • Paulik LB et al (2015) Impact of natural gas extraction on PAH levels in ambient air. Environ Sci Technol 49:5203–5210. doi:10.1021/es506095e

    Article  CAS  Google Scholar 

  • Peischl J et al (2015) Quantifying atmospheric methane emissions from the Haynesville, Fayetteville, and northeastern Marcellus shale gas production regions. J Geophys Res D: Atmospheres 120:2119–2139. doi:10.1002/2014JD022697

    Article  CAS  Google Scholar 

  • Prpich G, Coulon F, Anthony EJ (2016) Review of the scientific evidence to support environmental risk assessment of shale gas development in the UK. Sci Total Environ 563-564:731–740. doi:10.1016/j.scitotenv.2015.11.026

    Article  CAS  Google Scholar 

  • Racicot A, Babin-Roussel V, Dauphinais JF, Joly JS, Noël P, Lavoie C (2014) A framework to predict the impacts of shale gas infrastructures on the forest fragmentation of an agroforest region. Environ Manag 53:1023–1033. doi:10.1007/s00267-014-0250-x

    Article  Google Scholar 

  • Reap E (2015) The risk of hydraulic fracturing on public health in the UK and the UK’s fracking legislation. Environ Sci Eur 27. doi:10.1186/s12302-015-0059-0

  • Richardson N, Gottlieb M, Krupnick A, Wiseman H (2013) The state of state shale gas regulation. RFF, Resources for the Future, Washington, DC

  • Rodriguez RS, Soeder DJ (2015) Evolving water management practices in shale oil & gas development. J Unconv Oil Gas Resour 10:18–24

    Article  Google Scholar 

  • Rosenman KD (2014) Hydraulic fracturing and the risk of silicosis. Clin Pulm Med 21:167–172. doi:10.1097/CPM.0000000000000046

    Article  Google Scholar 

  • Roy AA, Adams PJ, Robinson AL (2014) Air pollutant emissions from the development, production, and processing of Marcellus shale natural gas. J Air Waste Manage Assoc 64:19–37. doi:10.1080/10962247.2013.826151

    Article  CAS  Google Scholar 

  • Rubinstein JL, Mahani AB (2015) Myths and facts on wastewater injection, hydraulic fracturing, enhanced oil recovery, and induced seismicity. Seismol Res Lett 86:1060–1067. doi:10.1785/0220150067

    Article  Google Scholar 

  • Rutter AP et al (2015) Sources of air pollution in a region of oil and gas exploration downwind of a large city. Atmos Environ 120:89–99. doi:10.1016/j.atmosenv.2015.08.073

    Article  CAS  Google Scholar 

  • Shank MK, Stauffer JR (2015) Land use and surface water withdrawal effects on fish and macroinvertebrate assemblages in the Susquehanna River basin, USA. J Freshw Ecol 30:229–248. doi:10.1080/02705060.2014.959082

    Article  CAS  Google Scholar 

  • Shih JS, Saiers JE, Anisfeld SC, Chu Z, Muehlenbachs LA, Olmstead SM (2015) Characterization and analysis of liquid waste from Marcellus shale gas development. Environ Sci Technol 49:9557–9565. doi:10.1021/acs.est.5b01780

    Article  CAS  Google Scholar 

  • Skalak KJ, Engle MA, Rowan EL, Jolly GD, Conko KM, Benthem AJ, Kraemer TF (2014) Surface disposal of produced waters in western and southwestern Pennsylvania: potential for accumulation of alkali-earth elements in sediments. Int J Coal Geol 126:162–170. doi:10.1016/j.coal.2013.12.001

    Article  CAS  Google Scholar 

  • Song W et al (2015) A multiyear assessment of air quality benefits from China’s emerging shale gas revolution: Urumqi as a case study. Environ Sci Technol 49:2066–2072. doi:10.1021/es5050024

    Article  CAS  Google Scholar 

  • Stamford L, Azapagic A (2014) Life cycle environmental impacts of UK shale gas. Appl Energy 134:506–518. doi:10.1016/j.apenergy.2014.08.063

    Article  CAS  Google Scholar 

  • Stamford L, Azapagic A (2015) Response to the comment by Westaway et al. (applied energy 148 (2015) 489–495) on the paper “Life cycle environmental impacts of UK shale gas” by Stamford and Azapagic (applied energy 134 (2014) 506–518). Appl Energy 155:947–948. doi:10.1016/j.apenergy.2015.05.020

    Article  Google Scholar 

  • Stearman LW, Adams G, Adams R (2014) Ecology of the redfin darter and a potential emerging threat to its habitat. Environ Biol Fish 98:623–635. doi:10.1007/s10641-014-0300-5

    Article  Google Scholar 

  • Steliga T, Kluk D, Jakubowicz P (2015) Analysis of chemical and toxicological properties of fluids for shale hydraulic fracturing and flowback water. Pol J Environ Stud 24:2185–2196. doi:10.15244/pjoes/43501

    Article  CAS  Google Scholar 

  • Stephenson T, Valle JE, Riera-Palou X (2011) Modeling the relative GHG emissions of conventional and shale gas production. Environ Sci Technol 45:10757–10764. doi:10.1021/es2024115

    Article  CAS  Google Scholar 

  • Swarthout RF et al (2015) Impact of Marcellus shale natural gas development in southwest Pennsylvania on volatile organic compound emissions and regional air quality. Environ Sci Technol 49:3175–3184. doi:10.1021/es504315f

    Article  CAS  Google Scholar 

  • Thorn TH (2015) Shale gas environmental issues and challenges. In: Rezaee R (ed) Fundamentals of shale gas reservoirs. Wiley, USA, pp 381–395

    Chapter  Google Scholar 

  • Thurman EM, Ferrer I, Blotevogel J, Borch T (2014) Analysis of hydraulic fracturing flowback and produced waters using accurate mass: Identification of ethoxylated surfactants. Anal Chem 86:9653–9661. doi:10.1021/ac502163k

    Article  CAS  Google Scholar 

  • USEIA USEIA (2013) Technically recoverable shale oil and shale gas resources: an assessment of 137 shale formations in 41 countries outside the United States. USEIA, USA

    Google Scholar 

  • USEIA USEIA (2015) Natural gas. USEIA http://www.eia.gov/naturalgas/data.cfm

  • USEPA USEPA (2010) Potential relationships between hydraulic fracturing and drinking water resources EPA, USA

  • USEPA USEPA (2011) Plan to study the potential impacts of hydraulic fracturing on drinking water resources USEPA, Washington

  • USEPA USEPA (2015a) The hydraulic fracturing water cycle. USEPA http://www.epa.gov/hfstudy/hydraulic-fracturing-water-cycle. 2015

  • USEPA USEPA (2015b) Review of state and industry spill data: characterization of hydraulic fracturing-related spills vol EPA/601/R-14/001.

  • USEPA USEPA (2016) Regulatory actions. EPA https://www3.epa.gov/airquality/oilandgas/actions.html

  • USGPO USGPO (2016) Effluent limitations guidelines and standards for the oil and gas extraction point source category.

  • Walter GR, Benke RR, Pickett DA (2012) Effect of biogas generation on radon emissions from landfills receiving radium-bearing waste from shale gas development. J Air Waste Manage Assoc 62:1040–1049. doi:10.1080/10962247.2012.696084

    Article  CAS  Google Scholar 

  • Wang Q, Li R (2016) Natural gas from shale formation: a research profile. Renew Sust Energ Rev 57:1–6. doi:10.1016/j.rser.2015.12.093

    Article  Google Scholar 

  • Wang J, Ryan D, Anthony EJ (2011) Reducing the greenhouse gas footprint of shale gas. Energ Policy 39:8196–8199. doi:10.1016/j.enpol.2011.10.013

    Article  CAS  Google Scholar 

  • Wang H, Li G, Shen Z (2012) A feasibility analysis on shale gas exploitation with supercritical carbon dioxide. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 34:1426–1435. doi:10.1080/15567036.2010.529570

    Article  CAS  Google Scholar 

  • Warner NR et al (2012) Geochemical evidence for possible natural migration of Marcellus formation brine to shallow aquifers in Pennsylvania. Proc Natl Acad Sci U S A 109:11961–11966. doi:10.1073/pnas.1121181109

    Article  Google Scholar 

  • Warner NR, Christie CA, Jackson RB, Vengosh A (2013a) Impacts of shale gas wastewater disposal on water quality in western Pennsylvania. Environ Sci Technol 47:11849–11857. doi:10.1021/es402165b

    Article  CAS  Google Scholar 

  • Warner NR, Kresse TM, Hays PD, Down A, Karr JD, Jackson RB, Vengosh A (2013b) Geochemical and isotopic variations in shallow groundwater in areas of the Fayetteville shale development, north-central Arkansas. Appl Geochem 35:207–220. doi:10.1016/j.apgeochem.2013.04.013

    Article  CAS  Google Scholar 

  • Westaway R, Younger PL (2014) Quantification of potential macroseismic effects of the induced seismicity that might result from hydraulic fracturing for shale gas exploitation in the UK. Q J Eng Geol Hydrogeol 47:333–350

    Article  CAS  Google Scholar 

  • Westaway R, Younger PL, Cornelius C (2015) Comment on “Life cycle environmental impacts of UK shale gas” by L. Stamford and A. Azapagic. Appl Energy, 134, 506–518, 2014 Applied Energy 148:489-495 doi:10.1016/j.apenergy.2015.03.008

    Article  CAS  Google Scholar 

  • Ziemkiewicz PF, Thomas He Y (2015) Evolution of water chemistry during Marcellus shale gas development: a case study in West Virginia. Chemosphere 134:224–231. doi:10.1016/j.chemosphere.2015.04.040

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors would like to acknowledge IBRASIL (Inclusive and Innovative Brazil project, an Erasmus Mundus Action 2 programme funded by European Commission) for the PhD grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to António Fiúza.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

ESM 1

(DOCX 222 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, D., Jesus, J., Branco, D. et al. Extensive review of shale gas environmental impacts from scientific literature (2010–2015). Environ Sci Pollut Res 24, 14579–14594 (2017). https://doi.org/10.1007/s11356-017-8970-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-8970-0

Keywords

Navigation