Skip to main content
Log in

Enzyme-based solutions for textile processing and dye contaminant biodegradation—a review

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The textile industry, as recognized conformist and stake industry in the world’s economy, is facing serious environmental challenges. In numerous industries, in practice, various chemical-based processes from initial sizing to final washing are fascinating harsh environment concerns. Some of these chemicals are corrosive to equipment and cause serious damage itself. Therefore, in the twenty-first century, chemical and allied industries quest a paradigm transition from traditional chemical-based concepts to a greener, sustainable, and environmentally friendlier catalytic alternative, both at the laboratory and industrial scales. Bio-based catalysis offers numerous benefits in the context of biotechnological industry and environmental applications. In recent years, bio-based processing has received particular interest among the scientist for inter- and multi-disciplinary investigations in the areas of natural and engineering sciences for the application in biotechnology sector at large and textile industries in particular. Different enzymatic processes such as chemical substitution have been developed or in the process of development for various textile wet processes. In this context, the present review article summarizes current developments and highlights those areas where environment-friendly enzymatic textile processing might play an increasingly important role in the textile industry. In the first part of the review, a special focus has been given to a comparative discussion of the chemical-based “classical/conventional” treatments and the modern enzyme-based treatment processes. Some relevant information is also reported to identify the major research gaps to be worked out in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abadulla E, Tzanov T, Costa S, Robra KH, Cavaco-Paulo A, Gübitz GM (2000) Decolorization and detoxification of textile dyes with a laccase from Trametes hirsuta. Appl Environ Microbiol 66(8):3357–3362

    Article  CAS  Google Scholar 

  • Achwal WB (1992) Enzymetic removal of cotton pectin. Colourage 39:35–35

    Google Scholar 

  • Agrawal PB, Nierstrasz VA & Warmoeskerken, M.M.C.G. (2004) Enhanced bioscouring performance. In: Proceedings of the 4th Autex Conference, Roubaix, France, 22–24 June, 165–173.

  • Aguiar A, de Souza-Cruz PB, Ferraz A (2006) Oxalic acid, Fe 3+-reduction activity and oxidative enzymes detected in culture extracts recovered from Pinus taeda wood chips biotreated by Ceriporiopsis subvermispora. Enzym Microb Technol 38(7):873–878

    Article  CAS  Google Scholar 

  • Alam MZ, Mansor MF, Jalal KCA (2009) Optimization of decolorization of methylene blue by lignin peroxidase enzyme produced from sewage sludge with Phanerocheate chrysosporium. J Hazard Mater 162(2):708–715

    Article  CAS  Google Scholar 

  • Aly AS, Moustafa AB, Hebeish A (2004) Bio-technological treatment of cellulosic textiles. J Clean Prod 12(7):697–705

    Article  Google Scholar 

  • Anish R, Rahman MS, Rao M (2007) Application of cellulases from an alkalothermophilic Thermomonospora sp. in biopolishing of denims. Biotechnol Bioeng 96(1):48–56

    Article  CAS  Google Scholar 

  • Araujo R, Casal M, Cavaco-Paulo A (2008) Application of enzymes for textile fibres processing. Biocatalysis Biotransformation 26(5):332–349

    Article  CAS  Google Scholar 

  • Asgher M, Iqbal HMN (2011) Characterization of a novel manganese peroxidase purified from solid state culture of Trametes versicolor IBL-04. Bioresources 6(4):4317–4330

    Google Scholar 

  • Asgher M, Iqbal HMN (2013) Enhanced catalytic features of sol–gel immobilized MnP isolated from solid state culture of Pleurotus ostreatus IBL-02. Chin Chem Lett 24(4):344–346

    Article  CAS  Google Scholar 

  • Asgher M, Asad MJ, Bhatti HN, Legge RL (2007) Hyperactivation and thermostabilization of Phanerochaete chrysosporium lignin peroxidase by immobilization in xerogels. World J Microbiol Biotechnol 23(4):525–531

    Article  CAS  Google Scholar 

  • Asgher M, Kausar S, Bhatti HN, Shah SAH, Ali M (2008a) Optimization of medium for decolorization of Solar golden yellow R direct textile dye by Schizophyllum commune IBL-06. Int Biodeterior Biodegrad 61(2):189–193

    Article  CAS  Google Scholar 

  • Asgher M, Bhatti HN, Ashraf M, Legge RL (2008b) Recent developments in biodegradation of industrial pollutants by white rot fungi and their enzyme system. Biodegradation 19(6):771–783

    Article  CAS  Google Scholar 

  • Asgher M, Ahmed N, Iqbal HMN (2011) Hyperproductivity of extracellular enzymes from indigenous white rot fungi (Phanerochaete chrysosporium) by utilizing agro-wastes. Bioresources 6(4):4454–4467

    CAS  Google Scholar 

  • Asgher M, Iqbal HMN, Asad MJ (2012a) Kinetic characterization of purified laccase produced from Trametes versicolor IBL-04 in solid state bio-processing of corncobs. Bioresources 7(1):1171–1188

    Google Scholar 

  • Asgher M, Iqbal HMN, Irshad M (2012b) Characterization of purified and xerogel immobilized novel lignin peroxidase produced from Trametes versicolor IBL-04 using solid state medium of corncobs. BMC Biotechnol 12(1):46

    Article  CAS  Google Scholar 

  • Asgher M, Irshad M, Iqbal HMN (2012c) Purification and characterization of LiP produced by Schyzophyllum commune IBL-06 using banana stalk in solid state cultures. Bioresources 7(3):4012–4021

    Google Scholar 

  • Asgher M, Kamal S, Iqbal HMN (2012d) Improvement of catalytic efficiency, thermo-stability and dye decolorization capability of Pleurotus ostreatus IBL-02 laccase by hydrophobic sol gel entrapment. Chem Central J 6(1):110

    Article  CAS  Google Scholar 

  • Asgher M, Yasmeen Q, Iqbal HMN (2013a) Enhanced decolorization of Solar brilliant red 80 textile dye by an indigenous white rot fungus Schizophyllum commune IBL-06. Saudi J Biol Sci 20(4):347–352

    Article  CAS  Google Scholar 

  • Asgher M, Aslam B, Iqbal HMN (2013b) Novel catalytic and effluent decolorization functionalities of sol-gel immobilized Pleurotus ostreatus IBL-02 manganese peroxidase produced from bio-processing of wheat straw. Chin J Catal 34(9):1756–1761

    Article  CAS  Google Scholar 

  • Asgher M, Irshad M, Iqbal HMN (2013c) Purification and characterization of novel manganese peroxidase from Schizophyllum commune IBL-06. Int J Agric Biol 15:749

    CAS  Google Scholar 

  • Asgher M, Shahid M, Kamal S, Iqbal HMN (2014) Recent trends and valorization of immobilization strategies and ligninolytic enzymes by industrial biotechnology. J Mol Catal B Enzym 101:56–66

    Article  CAS  Google Scholar 

  • Asgher M, Bilal M, Bhatti HN (2016a) Improved catalytic and dye decolorization properties of chitosan beads immobilized manganese peroxidase from Ganoderma lucidum IBL-05. J Biochem Biotechnol Biomater 1:76–89

    Google Scholar 

  • Asgher M, Shah SAH, Iqbal HMN (2016b) Statistical correlation between ligninolytic enzymes secretion and Remazol Brilliant Yellow-3GL dye degradation potential of Trametes versicolor IBL-04. Water Environ Res 88(4):338–345

    Article  CAS  Google Scholar 

  • Azevedo H, Pereira Ramos L, Cavaco-Paulo A (2001) Desorption of cellulases from cotton powder. Biotechnol Lett 23(17):1445–1448

    Article  CAS  Google Scholar 

  • Barclay S, Buckley C (2000) Waste minimisation guide for the textile industry: a step towards cleaner production, vol. I. South Africa: The South African Water Research Commission, The Pollution Research Group; January 2000.

  • Barrasa JM, Martínez AT, Martínez MJ (2009) Isolation and selection of novel basidiomycetes for decolorization of recalcitrant dyes. Folia Microbiol 54(1):59–66

    Article  CAS  Google Scholar 

  • Bilal M, Asgher M (2015) Sandal reactive dyes decolorization and cytotoxicity reduction using manganese peroxidase immobilized onto polyvinyl alcohol-alginate beads. Chem Central J 9(1):47

    Article  CAS  Google Scholar 

  • Bilal M, Iqbal M, Hu H, Zhang X (2016a) Mutagenicity, cytotoxicity and phytotoxicity evaluation of biodegraded textile effluent by fungal ligninolytic enzymes. Water Sci Technol 73(10):2332–2344

    Article  CAS  Google Scholar 

  • Bilal M, Asgher M, Shahid M, Bhatti HN (2016b) Characteristic features and dye degrading capability of agar–agar gel immobilized manganese peroxidase. Int J Biol Macromol 86:728–740

    Article  CAS  Google Scholar 

  • Bilal M, Iqbal HMN, Shah SZH, Hu H, Wang W, Zhang X (2016c) Horseradish peroxidase-assisted approach to decolorize and detoxify dye pollutants in a packed bed bioreactor. J Environ Manag 183:836–842

    Article  CAS  Google Scholar 

  • Bilal M, Asgher M, Iqbal HMN (2016d) Polyacrylamide gel-entrapped fungal manganese peroxidase from Ganoderma lucidum IBL-05 with enhanced catalytic, stability, and reusability characteristics. Protein Pept Lett 23(9):812–818

    Article  CAS  Google Scholar 

  • Bilal M, Asgher M, Iqbal HMN, Hu H, Zhang X (2016e) Gelatin-immobilized manganese peroxidase with novel catalytic characteristics and its industrial exploitation for fruit juice clarification purposes. Catal Lett 146(11):2221–2228

    Article  CAS  Google Scholar 

  • Bilal M, Asgher M, Parra-Saldivar R, Hu H, Wang W, Zhang X, Iqbal HMN (2017a) Immobilized ligninolytic enzymes: an innovative and environmental responsive technology to tackle dye-based industrial pollutants—a review. Sci Total Environ 576:646–659

    Article  CAS  Google Scholar 

  • Bilal M, Iqbal HMN, Hu H, Wang W, Zhang X (2017b) Enhanced bio-catalytic performance and dye degradation potential of chitosan-encapsulated horseradish peroxidase in a packed bed reactor system. Sci Total Environ 575:1352–1360

    Article  CAS  Google Scholar 

  • Bilal M, Iqbal HMN, Hu H, Wang W, Zhang X (2017c) Development of horseradish peroxidase-based cross-linked enzyme aggregates and their environmental exploitation for bioremediation purposes. J Environ Manag 188:137–143

    Article  CAS  Google Scholar 

  • Bilal, M., Asgher, M., Iqbal, H. M. N., Hu, H., & Zhang, X. (2017d). Bio-based degradation of emerging endocrine-disrupting and dye-based pollutants using cross-linked enzyme aggregates. Environmental Science and Pollution Research, 1–7.

  • Blanchard EJ, Graves EE, Batiste SL (2000) Enzymatic hydrolysis of modified cotton. Textile Chemist & Colorist & American Dyestuff Reporter 32(5):37–41

    CAS  Google Scholar 

  • Buchert J, Pere J, Puolakka A, Nousiainen P (2000) Scouring of cotton with pectinases, proteases, and lipases. Textile Chemist & Colorist & American Dyestuff Reporter 32(5):48–52

    CAS  Google Scholar 

  • Burkinshaw SM, Bahojb-Allafan B (2003a) The development of a metal-free, tannic acid-based after treatment for nylon 6, 6 dyed with acid dyes—part 1: initial studies. Dyes Pigments 58(3):205–218

    Article  CAS  Google Scholar 

  • Burkinshaw SM, Bahojb-Allafan B (2003b) The development of a metal-free, tannic acid-based aftertreatment for nylon 6, 6 dyed with acid dyes—part 2: further studies. Dyes Pigments 59(1):71–97

    Article  CAS  Google Scholar 

  • Burkinshaw SM, Bahojb-Allafan B (2004) The development of a metal-free, tannic acid-based after treatment for nylon 6, 6 dyed with acid dyes—part 3: different enzymes. Dyes Pigments 60(2):91–102

    Article  CAS  Google Scholar 

  • Buschle-Diller G, El Mogahzy Y, Inglesby MK, Zeronian SH (1998) Effects of scouring with enzymes, organic solvents, and caustic soda on the properties of hydrogen peroxide bleached cotton yarn. Text Res J 68(12):920–929

    Article  CAS  Google Scholar 

  • Buschle-Diller G, Yang XD, Yamamoto R (2001) Enzymatic bleaching of cotton fabric with glucose oxidase. Text Res J 71(5):388–394

    Article  CAS  Google Scholar 

  • Carrillo F, Colom X, López-Mesas M, Lis MJ, González F, Valldeperas J (2003) Cellulase processing of lyocell and viscose type fibres: kinetics parameters. Process Biochem 39(2):257–261

    Article  CAS  Google Scholar 

  • Cavaco-Paulo A, Gubitz GM (2003) Textile processing with enzymes. Woodhead Publishing Ltd in association with The Textile Institute, Cambridge

    Book  Google Scholar 

  • Chatha SAS (2011) Evaluation of microbial stripping of dyed cotton fabric (Doctoral dissertation, University of Agriculture, Faisalabad).

  • Chatha SA, Ai S, Asgher M, & Bhatti HN (2011) Investigation of the potential of microbial stripping of dyed cotton fabric using white rot fungi. Textile Research Journal, 0040517511411973.

  • Chatha SAS, Asgher M, Ali S, Hussain AI (2012) Biological color stripping: a novel technology for removal of dye from cellulose fibers. Carbohydr Polym 87(2):1476–1481

    Article  CAS  Google Scholar 

  • Chatha, S. A. S., Mallhi, A., I Hussain, A., Asgher, M., & Singh Nigam, P. (2014). A biological approach for color-stripping of cotton fabric dyed with CI reactive black 5 using fungal enzymes from solid state fermentation. Current Biotechnology, 3(2), 166–173.

  • Cheng XB, Rong JIA, Ping-Sheng LI, Qin ZHU, Shi-Qian TU, Wen-Zhong TANG (2007) Studies on the properties and co-immobilization of manganese peroxidase. Chin J Biotechnol 23(1):90–96

    Article  CAS  Google Scholar 

  • Christian V, Shrivastava R, Shukla D, Modi H, Rajiv B, Vyas M (2005) Mediator role of veratryl alcohol in the lignin peroxidase-catalyzed oxidative decolorization of Remazol Brilliant Blue R. Enzyme Microbial Technol 36:426–431

    Article  CAS  Google Scholar 

  • Çınar Ö, Yaşar S, Kertmen M, Demiröz K, Yigit NÖ, Kitis M (2008) Effect of cycle time on biodegradation of azo dye in sequencing batch reactor. Process Saf Environ Prot 86(6):455–460

    Article  CAS  Google Scholar 

  • Costa SA, Tzanov T, Paar A, Gudelj M, Gübitz GM, Cavaco-Paulo A (2001) Immobilization of catalases from Bacillus SF on alumina for the treatment of textile bleaching effluents. Enzym Microb Technol 28(9):815–819

    Article  CAS  Google Scholar 

  • Daneshvar N, Ashassi-Sorkhabi H, Tizpar A (2003) Decolorization of orange II by electrocoagulation method. Sep Purif Technol 31(2):153–162

    Article  CAS  Google Scholar 

  • Environmental Directorate OECD (2004) Emission scenario document on textile industry (OECD Series on Emission Scenario Documents No. 7). Paris.

  • Etters JN, Husain PA, Lange NK (1999) Alkaline pectinase: an eco-friendly approach to cotton preparation. Textile Asia 5:83–85

    Google Scholar 

  • European Commission (2003) Integrated pollution prevention and control (IPPC) reference document on best available techniques for the textiles industry. July 2003.

  • Georgiou D, Aivazidis A, Hatiras J, Gimouhopoulos K (2003) Treatment of cotton textile wastewater using lime and ferrous sulfate. Water Res 37(9):2248–2250

    Article  CAS  Google Scholar 

  • Gogate PR, Pandit AB (2004) A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Adv Environ Res 8(3):501–551

    Article  CAS  Google Scholar 

  • Hartzell MM, Hsieh YL (1998) Enzymatic scouring to improve cotton fabric wettability. Text Res J 68(4):233–241

    Article  CAS  Google Scholar 

  • Hashem M, Refaie R, Hebeish A (2005) Crosslinking of partially carboxymethylated cotton fabric via cationization. J Clean Prod 13:947–954

    Article  Google Scholar 

  • Heine E, Höcker H (1995) Enzyme treatments for wool and cotton. Rev Prog Color Relat Top 25(1):57–70

    Article  CAS  Google Scholar 

  • Hofrichter M (2002) Review: lignin conversion by manganese peroxidase (MnP). Enzym Microb Technol 30(4):454–466

    Article  CAS  Google Scholar 

  • Horvathova V, Janecek S, Sturdik E (2001) Amylolytic enzymes: molecular aspects of their properties. Gen Physiol Biophys 20(1):7–32

    CAS  Google Scholar 

  • Hsieh YL, Cram L (1999) Proteases as scouring agents for cotton. Text Res J 69(8):590–597

    Article  CAS  Google Scholar 

  • Iqbal HMN, Asgher M (2013) Characterization and decolorization applicability of xerogel matrix immobilized manganese peroxidase produced from Trametes versicolor IBL-04. Protein Pept Lett 20(5):591–600

    Article  CAS  Google Scholar 

  • Kapdan IK, Kargi F (2002) Biological decolorization of textile dyestuff containing wastewater by Coriolus versicolor in a rotating biological contactor. Enzym Microb Technol 30(2):195–199

    Article  CAS  Google Scholar 

  • Kim S, Moldes D, Cavaco-Paulo A (2007) Laccases for enzymatic colouration of unbleached cotton. Enzym Microb Technol 40(7):1788–1793

    Article  CAS  Google Scholar 

  • Lenting, H.B.M. (2004) Enzymes in textile production. In Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH, Weinheim, chapter 5.2.5.

  • Lenting HBM, Warmoeskerken MMCG (2001) Guidelines to come to minimized tensile strength loss upon cellulase application. J Biotechnol 89(2):227–232

    Article  CAS  Google Scholar 

  • Lenting HBM, Warmoeskerken MMCG (2004) A fast, continuous enzyme-based pretreatment process concept for cotton containing textiles. Biocatalysis Biotransformation 22(5–6):361–368

    Article  CAS  Google Scholar 

  • Lévêque E, Janeček Š, Haye B, Belarbi A (2000) Thermophilic archaeal amylolytic enzymes. Enzym Microb Technol 26(1):3–14

    Article  Google Scholar 

  • Li, Y., & Hardin, Z. R. (1997). Enzymatic scouring of cotton: effects on structure and properties. Cellulose, 94, 96–0.

  • Libra JA, Borchert M, Banit S (2003) Competition strategies for the decolorization of a textile-reactive dye with the white-rot fungi Trametes versicolor under non-sterile conditions. Biotechnol Bioeng 82(6):736–744

    Article  CAS  Google Scholar 

  • Liu J, Otto E, Lange N, Husain P, Condon B, Lund H (2000) Selecting cellulases for bio-polishing based on enzyme selectivity and process conditions. Textile Chemist & Colorist & American Dyestuff Reporter 32(5):30–36

    CAS  Google Scholar 

  • Lourenco ND, Novais JM, Pinheiro HM (2001) Effect of some operational parameters on textile dye biodegradation in a sequential batch reactor. J Biotechnol 89(2):163–174

    Article  CAS  Google Scholar 

  • Lu R, Shen XL, Xia LM (2005) Studies on laccase production by Coriolus versicolor and enzymatic decoloration of dye. Linchan Huaxue Yu Gongye/Chem Ind Forest Prod 25:73–76

    CAS  Google Scholar 

  • Lu L, Zhao M, Wang Y (2007) Immobilization of laccase by alginate–chitosan microcapsules and its use in dye decolorization. World J Microbiol Biotechnol 23(2):159–166

    Article  CAS  Google Scholar 

  • Machius M, Declerck N, Huber R, Wiegand G (1998) Activation of bacillus licheniformis α-amylase through a disorder→ order transition of the substrate-binding site mediated by a calcium–sodium–calcium metal triad. Structure 6(3):281–292

    Article  CAS  Google Scholar 

  • Mäkelä M, Galkin S, Hatakka A, Lundell T (2002) Production of organic acids and oxalate decarboxylase in lignin-degrading white rot fungi. Enzym Microb Technol 30(4):542–549

    Article  Google Scholar 

  • Muruganandham M, Swaminathan M (2004) Photochemical oxidation of reactive azo dye with UV–H2O2 process. Dyes Pigments 62(3):269–275

    Article  CAS  Google Scholar 

  • Murugesan K, Arulmani M, Nam IH, Kim YM, Chang YS, Kalaichelvan PT (2006) Purification and characterization of laccase produced by a white rot fungus Pleurotus sajor-caju under submerged culture condition and its potential in decolorization of azo dyes. Appl Microbiol Biotechnol 72(5):939–946

    Article  CAS  Google Scholar 

  • Noaman U-H, Nasir H (2012) Cleaner production technologies in desizing of cotton fabric. J Text Inst 103(3):304–310

    Google Scholar 

  • NYSDEC (1999) Environmental compliance and pollution prevention guide for the electronics and computer industry. New York State Department of Environmental Conservation (NYSDEC) Pollution Prevention Unit.

  • Oosterhuis F (2006) Substitution of hazardous chemicals: a case study in the framework of the project, assessing innovation dynamics induced by environment policy. Netherlands: Institute for Environmental Studies, Amsterdam

    Google Scholar 

  • Orhon D, Kabdasli I, Germirli Babuna F, Sozen S, Dulkadiroglu H, Dogruel S et al (2003) Wastewater reuse for the minimization of fresh water demand in coastal areas—selected cases from the textile finishing industry. J Environ Sci Health A 38(8):1641–1657

    Article  CAS  Google Scholar 

  • Özbek B, Yüceer S (2001) α-Amylase inactivation during wheat starch hydrolysis process. Process Biochem 37(1):87–95

    Article  Google Scholar 

  • Ozturk E, Yetis U, Dilek FB, Demirer GN (2009) A chemical substitution study for a wet processing textile mill in Turkey. J Clean Prod 17:239–247

    Article  CAS  Google Scholar 

  • Pazarlıoǧlu NK, Sariişik M, Telefoncu A (2005) Laccase: production by Trametes versicolor and application to denim washing. Process Biochem 40(5):1673–1678

    Article  CAS  Google Scholar 

  • Pearce CI, Lloyd JR, Guthrie JT (2003) The removal of colour from textile wastewater using whole bacterial cells: a review. Dyes Pigments 58(3):179–196

    Article  CAS  Google Scholar 

  • Pearce CI, Christie R, Boothman C, von Canstein H, Guthrie JT, Lloyd JR (2006) Reactive azo dye reduction by Shewanella strain J18 143. Biotechnol Bioeng 95(4):692–703

    Article  CAS  Google Scholar 

  • Pointing S (2001) Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol 57(1–2):20–33

    CAS  Google Scholar 

  • Punzi M, Nilsson F, Anbalagan A, Svensson BM, Jönsson K, Mattiasson B, Jonstrup M (2015) Combined anaerobic–ozonation process for treatment of textile wastewater: removal of acute toxicity and mutagenicity. J Hazard Mater 292:52–60

    Article  CAS  Google Scholar 

  • Quaratino D, Federici F, Petruccioli M, Fenice M, D’Annibale A (2007) Production, purification and partial characterisation of a novel laccase from the white-rot fungus Panus tigrinus CBS 577.79. Antonie Van Leeuwenhoek 91(1):57–69

    Article  CAS  Google Scholar 

  • Ren X (2000) Development of environmental performance indicators for textile process and product. J Clean Prod 8:473–481

    Article  Google Scholar 

  • Rey MW, Ramaiya P, Nelson BA, Brody-Karpin SD, Zaretsky EJ, Tang M, de Leon A, Xiang H, Gusti V, Clausen IG, Olsen PB, Rasmussen MD, Andersen JT, Jørgensen PL, Larsen TS, Sorokin A, Bolotin A, Lapidus A, Galleron N, Ehrlich SD, Berka RM (2004) Complete genome sequence of the industrial bacterium Bacillus licheniformis and comparisons with closely related Bacillus species. Genome Biol 5:R77

    Article  Google Scholar 

  • Robinson T, McMullan G, Marchant R, Nigam P (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol 77(3):247–255

    Article  CAS  Google Scholar 

  • Rössner U (1993) Enzymatic degradation of impurities in cotton. Melliand Textilberichte International Textile Reports 74:E63–E63

    Google Scholar 

  • Rousselle MA, Bertoniere NR, Howley PS, Goynes WR Jr (2002) Effect of whole cellulase on the supramolecular structure of cotton cellulose. Text Res J 72(11):963–972

    Article  CAS  Google Scholar 

  • Saravanan D, Sivasaravanan S, Sudharshan Prabhu M, Vasanthi NS, Senthil Raja K, Das A, Ramachandran T (2012) One-step process for desizing and bleaching of cotton fabrics using the combination of amylase and glucose oxidase enzymes. J Appl Polym Sci 123(4):2445–2450

    Article  CAS  Google Scholar 

  • Sathishkumar P, Kamala-Kannan S, Cho M, Kim JS, Hadibarata T, Salim MR, Oh BT (2014) Laccase immobilization on cellulose nanofiber: the catalytic efficiency and recyclic application for simulated dye effluent treatment. J Mol Catal B Enzym 100:111–120

    Article  CAS  Google Scholar 

  • Selcuk H (2005) Decolorization and detoxification of textile wastewater by ozonation and coagulation processes. Dyes Pigments 64(3):217–222

    Article  CAS  Google Scholar 

  • Shao-Wei D, Da-Nian L (2008) Kinetics of the thermal inactivation of Bacillus subtilis α-amylase and its application on the desizing of cotton fabrics. J Appl Polym Sci 109(6):3733–3738

    Article  CAS  Google Scholar 

  • Shen Z, Wang W, Jia J, Ye J, Feng X, Peng A (2001) Degradation of dye solution by an activated carbon fiber electrode electrolysis system. J Hazard Mater 84(1):107–116

    Article  CAS  Google Scholar 

  • Shukla SR, Sharma U, Kulkarni KS (2000) Enzymes and their use in textile processes. Colourage 47:19–26

    CAS  Google Scholar 

  • Stamenova M, Tzanov T, Betcheva R, Cavaco-Paulo A (2003) Proteases to improve the mechanical characteristics of durable press finished cotton fabrics. Macromol Mater Eng 288(1):71–75

    Article  CAS  Google Scholar 

  • Takagishi T, Yamamoto R, Kikuyama K, Arakawa H (2001) Appliedtechnology—design and application of a continuous bio-scouring machine—a continuous bio-scouring machine, as opposed to an inefficient batch system, can be used to take full advantage of. AATCC Review-American Association of Textile Chemists and Colorists 1(8):32–34

    CAS  Google Scholar 

  • Tan LS, Jain K, Rozaini CA (2010) Adsorption of textile dye from aqueous solution on pretreated mangrove bark, an agricultural waste: equilibrium and kinetic studies. J Appl Sci Environ Sanitation 5(3):283–294

    CAS  Google Scholar 

  • Tsatsaroni E, Liakopoulou-Kyriakides M (1995) Effect of enzymatic treatment on the dyeing of cotton and wool fibres with natural dyes. Dyes Pigments 29(3):203–209

    Article  CAS  Google Scholar 

  • Tychanowicz GK, Souza DFD, Souza CG, Kadowaki MK, Peralta RM (2006) Copper improves the production of laccase by the white-rot fungus Pleurotus pulmonarius in solid state fermentation. Braz Arch Biol Technol 49(5):699–704

    Article  CAS  Google Scholar 

  • Tzanov T, Calafell M, Guebitz GM, Cavaco-Paulo A (2001) Bio-preparation of cotton fabrics. Enzym Microb Technol 29(6):357–362

    Article  CAS  Google Scholar 

  • Ullrich R, Dung NL, Hofrichter M (2005) Laccase from the medicinal mushroom Agaricus blazei: production, purification and characterization. Appl Microbiol Biotechnol 67(3):357–363

    Article  CAS  Google Scholar 

  • Ürek RÖ, Pazarlioǧlu NK (2005) Production and stimulation of manganese peroxidase by immobilized Phanerochaete chrysosporium. Process Biochem 40(1):83–87

    Article  CAS  Google Scholar 

  • Vakili M, Rafatullah M, Salamatinia B, Abdullah AZ, Ibrahim MH, Tan KB, Amouzgar P (2014) Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater: a review. Carbohydr Polym 113:115–130

    Article  CAS  Google Scholar 

  • van der Helm, M., van der Heiden, M., Hondmann, D. H., Smits, A., Swarthoff, T., & Verrips, C. T. (2000). U.S. Patent No. 6,107,264. Washington, DC: U.S. Patent and Trademark Office.

  • Vankar PS, Shanker R, Verma A (2007) Enzymatic natural dyeing of cotton and silk fabrics without metal mordants. J Clean Prod 15(15):1441–1450

    Article  Google Scholar 

  • Waddell RB (2002) Applied technology—bioscouring of cotton: commercial applications of alkaline stable pectinase—use of a new enzyme technology for cotton. AATCC Review-American Association of Textile Chemists and Colorists 2(4):28–30

    CAS  Google Scholar 

  • Watanabe K (2001) Microorganisms relevant to bioremediation. Curr Opin Biotechnol 12(3):237–241

    Article  CAS  Google Scholar 

  • Wesenberg D, Kyriakides I, Agathos SN (2003) White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol Adv 22(1):161–187

    Article  CAS  Google Scholar 

  • Yachmenev VG, Bertoniere NR, Blanchard EJ (2002) Intensification of the bio-processing of cotton textiles by combined enzyme/ultrasound treatment. J Chem Technol Biotechnol 77(5):559–567

    Article  CAS  Google Scholar 

  • Yang J, Yang X, Lin Y, Ng TB, Lin J, Ye X (2015) Laccase-catalyzed decolorization of malachite green: performance optimization and degradation mechanism. PLoS One 10(5):e0127714

    Article  CAS  Google Scholar 

  • Zhu Z (2003) Starch mono-phosphorylation for enhancing the stability of starch/PVA blend pastes for warp sizing. Carbohydr Polym 54:115–118

    Article  CAS  Google Scholar 

  • Zucca P, Neves C, Simões MM, Neves MDGP, Cocco G, Sanjust E (2016) Immobilized lignin peroxidase-like metalloporphyrins as reusable catalysts in oxidative bleaching of industrial dyes. Molecules 21(7):964

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support provided by the Higher Education Commission (HEC), Islamabad, Pakistan, is thankfully acknowledged. The literature facilities provided by the Government College University, Faisalabad, Pakistan, the University of Agriculture Faisalabad, Pakistan, and Tecnologico de Monterrey, Mexico, are thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hafiz M. N. Iqbal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Responsible editor: Gerald Thouand

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatha, S.A.S., Asgher, M. & Iqbal, H.M.N. Enzyme-based solutions for textile processing and dye contaminant biodegradation—a review. Environ Sci Pollut Res 24, 14005–14018 (2017). https://doi.org/10.1007/s11356-017-8998-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-8998-1

Keywords

Navigation