Skip to main content
Log in

Multivariate analysis and geochemical approach for assessment of metal pollution state in sediment cores

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Vertical distribution of metals (Cu, Zn, Cr, Fe, Mn, Pb, Ni, Cd, and Li) in four sediment core samples (C1, C2, C3, and C4) from Anzali international wetland located southwest of the Caspian Sea was examined. Background concentration of each metal was calculated according to different statistical approaches. The results of multivariate statistical analysis showed that Fe and Mn might have significant role in the fate of Ni and Zn in sediment core samples. Different sediment quality indexes were utilized to assess metal pollution in sediment cores. Moreover, a new sediment quality index named aggregative toxicity index (ATI) based on sediment quality guidelines (SQGs) was developed to assess the degree of metal toxicity in an aggregative manner. The increasing pattern of metal pollution and their toxicity degree in upper layers of core samples indicated increasing effects of anthropogenic sources in the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alve E, Lepland A, Magnusson J, Backer-Owe K (2009) Monitoring strategies for re-establishment of ecological reference conditions: possibilities and limitations. Mar Poll Bull 59:297–310. doi:10.1016/j.marpolbul.2009.08.011

    Article  CAS  Google Scholar 

  • Ayyamperumal T, Jonathan MP, Srinivasalu S, Armstrong-Altrin JS, Ram-Mohan V (2006) Assessment of acid leachable trace metals in sediment cores from river Uppanar, Cuddalore, southeast coast of India. Environ Pollut 143:34–45. doi:10.1016/j.envpol.2005.11.019

    Article  CAS  Google Scholar 

  • Badr NBE, El-Fiky AA, Mostafa AR, Al-Mur BA (2009) Metal pollution records in core sediments of some Red Sea coastal areas, Kingdom of Saudi Arabia. Environ Monit Assess 155:509–526. doi:10.1007/s10661-008-0452-x

    Article  CAS  Google Scholar 

  • Callaway JS, DeLaune RD, Patrick HW Jr (1998) Heavy metal chronologies in selected coastal wetlands from northern Europe. Mar Poll Bull 36:82–96. doi:10.1016/S0025-326X(98)90039-X

    Article  CAS  Google Scholar 

  • Calmano W, Hong J, Förstner U (1993) Binding and mobilization of heavy metals in contaminated sediments affected by pH and redox potential. Water Sci Technol 28:223–235. doi:10.15480/882.450

    CAS  Google Scholar 

  • Choi KY, Kim SH, Hong GH, Chon HT (2012) Distributions of heavy metals in the sediments of south Korean harbors. Environ Geochem Health 34:71–82. doi:10.1007/s10653-011-9413-3

    Article  CAS  Google Scholar 

  • Esmaeilzadeh M, Karbassi A, Moattar F (2016) Heavy metals in sediments and their bioaccumulation in Phragmites australis in the Anzali wetland of Iran. Chin J Oceanol Limnol 34(4):810–820. doi:10.1007/s00343-016-5128-8

    Article  CAS  Google Scholar 

  • Fernandes LL, Nayak GN (2012) Geochemical assessment in a creek environment in Mumbai, west coast of India. Environ Forensic 13:45–54. doi:10.1080/15275922.2011.643340

    Article  CAS  Google Scholar 

  • Froelich PN, Klinkhammer GP, Bender ML, Luedtke NA, Heath GR, Cullen D, Dauphin P, Hammond D, Hartman B, Maynard V (1979) Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochim Cosmochim Acta 43:1075–1090. doi:10.1016/0016-7037(79)90095-4

    Article  CAS  Google Scholar 

  • Gaillard JF, Pauwells H, Michard G (1989) Chemical diagenesis of coastal marine sediments. Oceanol Acta 12:175–187

    CAS  Google Scholar 

  • Hakanson L (1980) Ecological risk index for aquatic pollution control, a sedimentological approach. Water Res 14:975–1001. doi:10.1016/0043-1354(80)90143-8

    Article  Google Scholar 

  • Hargalani FZ, Karbassi A, Monavari SM, Azar PA (2014) A novel pollution index based on the bioavailability of elements: a study on Anzali wetland bed sediments. Environ Monit Assess 186(4):2329–2348. doi:10.1007/s10661-013-3541-4

    Article  Google Scholar 

  • Heiri O, Lotter AF, Lemcke G (2001) Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J Paleolimnol 25:101–110. doi:10.1023/A:1008119611481

    Article  Google Scholar 

  • Jafari N, Terivedy RK (2009) Ecological integrity of wetlands, their functions and sustainable use with a case study of Anjali wetland, Iran. Ecol Environ Conserv 15:191–199

    Google Scholar 

  • Jamshidi-Zanjani A, Saeedi M (2013) Metal pollution assessment and multivariate analysis in sediment of Anzali international wetland. Environ Earth Sci 70:1791–1808. doi:10.1007/s12665-013-2267-5

    Article  CAS  Google Scholar 

  • Jamshidi-Zanjani A, Saeedi M, Li LY (2015) A risk assessment index for bioavailability of metals in sediments: Anzali international wetland case study. Environ Earth Sci 73:2115–2126. doi:10.1007/s12665-014-3562-5

    Article  CAS  Google Scholar 

  • Janaki-Raman D, Jonathan MP, Srinivasalu S, Armstrong-Altrin JS, Mohan SP, Ram-Mohan V (2007) Trace metal enrichments in core sediments in Muthupet mangroves, SE coast of India: application of acid leachable technique. Environ Pollut 145:245–257. doi:10.1016/j.envpol.2006.03.012

    Article  CAS  Google Scholar 

  • Japan International Cooperation Agency (JICA) (2005) The study on integrated management for ecosystem conservation of the Anzali wetland in the Islamic Republic of Iran, Final report submit to department of environment

  • Lee SV, Cundy AB (2001) Heavy metal concentration and mixing processes in sediments from the Humber estuary, eastern England. Estuar Coast Shelf Sci 53:619–636. doi:10.1006/ecss.2000.0713

    Article  CAS  Google Scholar 

  • Lepland A, Andersen TJ, Lepland A, Arp HPH, Alve E, Breedveld GD, Rindby A (2010) Sedimentation and chronology of heavy metal pollution in Oslo harbor, Norway. Mar Poll Bull 60:1512–1522. doi:10.1016/j.marpolbul.2010.04.017

    Article  CAS  Google Scholar 

  • Leroy SAG, Lahijani HAK, Djamali M, Naqinezhad A, Moghadam MV, Arpe K, Shah-Hosseini M, Hosseindoust M, Miller CS, Tavakoli V, Habibi P, Naderi Beni M (2011) Late little ice age palaeoenvironmental records from the Anzali and Amirkola lagoons (south Caspian Sea): vegetation and sea level changes. Palaeogeogr Palaeoclimatol Palaeoecol 302:415–434. doi:10.1016/j.palaeo.2011.02.002

    Article  Google Scholar 

  • Liu E, Shen J, Yang L, Zhang E, Meng X, Wang J (2010) Assessment of heavy metal contamination in the sediments of Nansihu Lake catchment, China. Environ Monit Assess 161:217–227. doi:10.1007/s10661-008-0739-y

    Article  CAS  Google Scholar 

  • Long ER, MacDonald DD, Smith SL, Calder FD (1995) Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environ Manag 19:81–97. doi:10.1007/BF02472006

    Article  Google Scholar 

  • Matschullat J, Ottenstein R, Reimann C (2000) Geochemical background—can we calculate it? Environ Geol 39:990–1000

    Article  CAS  Google Scholar 

  • McDonald DD, Ingersoll CG, Berger TA (2000) Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch Environ Contam Toxicol 39:20–31. doi:10.1007/s002440010075

    Article  Google Scholar 

  • Mendil D, Uluozlu OD (2007) Determination of trace metal levels in sediment and five fish species from lakes in Tokat, Turkey. Food Chem 101:739–745. doi:10.1016/j.foodchem.2006.01.050

    Article  CAS  Google Scholar 

  • Mil-Homens M, Branco V, Lopes C, Vale C, Abrantes F, Boer W, Vicente M (2009) Using factor analysis to characterise historical trends of trace metal contamination in a sediment core from the Tagus Prodelta, Portugal. Water Air Soil Pollut 197:277–287. doi:10.1007/s11270-008-9810-0

    Article  CAS  Google Scholar 

  • Naseh MRV, Karbassi A, Ghazaban F, Baghvand A, Mohammadizadeh MJ (2012) Magntic susceptibility as a proxy to heavy metal content in the sediments of Anzali wetland, Iran. Iranian J Environ Health Sci Eng 9(34):1–12. doi:10.1186/1735-2746-9-34

    Google Scholar 

  • Panahandeh M, Mansouri N, Khorasani N, Karbassi A, Riazi B (2014) A study of heavy metals concentration in water, sediments and Cyprinus carpio, Abramis brama, Carassius carassius species from Anzali wetland. Int J Biosci 4(11):51–59. doi:10.12692/ijb/4.11.51-59

    Google Scholar 

  • Prohic E, Kniewald G (1987) Heavy metal distribution in recent sediments of the Krka River estuary—an example of sequential extraction analysis. Mar Chem 22:279–297. doi:10.1016/0304-4203(87)90015-6

    Article  CAS  Google Scholar 

  • Roca N, Pazos MS, Bech J (2012) Background levels of potentially toxic elements in soils: a case study in Catamarca (a semiarid region in Argentina). Catena 92:55–66. doi:10.1016/j.catena.2011.11.009

    Article  CAS  Google Scholar 

  • Saeedi M, Jamshidi-Zanjani A (2015) Development of a new aggregative index to assess potential effect of metals pollution in aquatic sediments. Ecol Indic 58:235–243. doi:10.1016/j.ecolind.2015.05.047

    Article  Google Scholar 

  • Saeedi M, Hosseinzadeh M, Rajabzadeh M (2011) Competitive heavy metals adsorption on natural bed sediments of Jajrood River, Iran. Environ Earth Sci 62:519–527. doi:10.1007/s12665-010-0544-0

    Article  CAS  Google Scholar 

  • Saeedi M, Li LY, Karbassi AR, Zanjani AJ (2012) Sorbed metals fractionation and risk assessment of release in river sediment and particulate matter. Environ Moni Assess 185:1737–1754. doi:10.1007/s10661-012-2664-3

    Article  Google Scholar 

  • Santschi PH, Hohener P, Benoit G, Bucholtz-ten Brink M (1990) Chemical processes at the sediment water interface. Mar Chem 30:269–315. doi:10.1016/0304-4203(90)90076-O

    Article  CAS  Google Scholar 

  • Shin PKS, Lam WKC (2001) Development of a marine sediment pollution index. Environ Poll 113:281–291. doi:10.1016/S0269-7491(00)00192-5

    Article  CAS  Google Scholar 

  • Spanos T, Simeonov V, Simeonova P, Apostolidou E, Stratis J (2008) Environmetrics to evaluate marine environment quality. Environ Monit Assess 143:215–225. doi:10.1007/s10661-007-9970-1

    Article  CAS  Google Scholar 

  • Streiner DL (1994) Figuring out factors: the use and misuse of factor analysis. Can J Psychiatr 39(3):135–140

    Article  CAS  Google Scholar 

  • Svitoch AA, Yanina TA (2006) Holocene marine sediments on the Iranian coast of the Caspian Sea. Dokl Earth Sci 410:1166–1169. doi:10.1134/S1028334X06070373

    Article  CAS  Google Scholar 

  • Szefer P, Glosby GP, Szefer K, Penopkowiak J, Kallszan R (1996) Heavy metals pollution in surficial sediments from the southern Baltic Sea of Poland. J Environ Sci Health 31:2723–2754. doi:10.1080/10934529609376520

    Google Scholar 

  • Taylor JH, Price NB (1983) The geochemistry of iron and manganese in waters and sediments of Bolstadfjord, S.W. Norway. Estuar Coast Shelf Sci 17:1–19. doi:10.1016/0272-7714(83)90041-0

    Article  Google Scholar 

  • Tobías FJ, Bech J, Sánchez Algarra P (1997) Establishment of the background levels of some trace elements in soils of NE Spain with probability plots. Sci Total Environ 206:255–265. doi:10.1016/S0048-9697(97)80014-9

    Article  Google Scholar 

  • U. S. Environmental Protecting Agency (USEPA) (1996) Test methods for evaluating solid waste SW-846

  • Vaalgamaa S (2004) The effect of urbanization on Laajalahti Bay, Helsinki City, as reflected by sediment geochemistry. Mar Pollut Bull 48:650–662. doi:10.1016/j.marpolbul.2003.10.008

    Article  CAS  Google Scholar 

  • Valette-Silver NJ (1993) The use of sediment cores to reconstruct historical trends in contamination of estuarine and coastal sediments. Estuaries 16:577–588

    Article  CAS  Google Scholar 

  • Varol M (2011) Assessment of heavy metal contamination in sediments of the Tigris River (Turkey) using pollution indices and multivariate statistical techniques. J Hazard Mater 195:355–364. doi:10.1016/j.jhazmat.2011.08.051

    Article  CAS  Google Scholar 

  • Vesali Naseh MR, Karbassi A, Ghazaban F, Baghvand A (2012) Evaluation of heavy metal pollution in Anzali wetland, Guilan, Iran. Iran J Toxicol 5(15):565–576

    Google Scholar 

  • Wu Y, Hou X, Cheng X, Yao S, Xia W, Wang S (2007) Combining geochemical and statistical methods to distinguish anthropogenic source of metals in lacustrine sediment: a case study in Dongjiu Lake, Taihu Lake catchment, China. Environ Geol 52:1467–1474. doi:10.1007/s00254-006-0587-4

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Saeedi.

Additional information

Responsible editor: Philippe Garrigues

Highlights

• A new aggregative toxicity index is developed.

• Human activities and anthropogenic sources affected metal pollution state in Anzali wetland.

• Different background values for individual metal were obtained in different parts of the study area.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamshidi-Zanjani, A., Saeedi, M. Multivariate analysis and geochemical approach for assessment of metal pollution state in sediment cores. Environ Sci Pollut Res 24, 16289–16304 (2017). https://doi.org/10.1007/s11356-017-9248-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9248-2

Keywords

Navigation