Skip to main content
Log in

Mediative mechanism of bicarbonate on anaerobic propionate degradation revealed by microbial community and thermodynamics

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Syntrophic acetogenesis of volatile fatty acids (VFAs) such as propionate and butyrate is considered as the rate-limiting step of anaerobic digestion. Though being extensively researched, the mechanism is not well understood as the main constraint on developing effective solutions to the practical problem. In the present research work, the mediation of methanogenic propionate degradation by exogenous bicarbonate was evaluated, while the mechanism was revealed by microbial community and thermodynamics. It was found that the exogenous bicarbonate not more than 0.10 mol/L acted as a mediative role to enrich syntrophic acetogenic bacteria and decrease the actual Gibbs free energy change (ΔG) of syntrophic acetogenesis reaction, resulted in the increased degradation rate and methane production rate of propionate. The remarkably increased ΔG of methanogenic propionate degradation by the exogenous bicarbonate more than 0.15 mol/L decreased the degradation rate and methane production rate of propionate, though the ΔG of syntrophic acetogenesis reaction was also decreased by the exogenous bicarbonate. This research work provided a control strategy to enhance syntrophic acetogenesis, as well as the methanogenic VFAs degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amani T, Nosrati M, Mousavi S (2011) Using enriched cultures for elevation of anaerobic syntrophic interactions between acetogens and methanogens in a high-load continuous digester. Bioresour Technol 102:3716–3723

    Article  CAS  Google Scholar 

  • Apha A (1995) Standard methods for the examination of water and wastewater. American Public Health Association/American Water Works Association/Water Environment Federation, Washington DC

    Google Scholar 

  • Ban Q, Li J, Zhang L, Jha AK, Nies L (2013) Linking performance with microbial community characteristics in an anaerobic baffled reactor. Appl Biochem Biotechnol 169:1822–1836

    Article  CAS  Google Scholar 

  • Ban Q, Zhang L, Li J (2014) Shift of propionate-oxidizing bacteria with HRT decrease in an UASB reactor containing propionate as a sole carbon source. Appl Biochem Biotechnol:1–13

  • Chen S, Liu X, Dong X (2005) Syntrophobacter sulfatireducens sp. nov., a novel syntrophic, propionate-oxidizing bacterium isolated from UASB reactors. Int J Syst Evol Microbiol 55:1319–1324

    Article  CAS  Google Scholar 

  • Cheng L, Qiu T-L, Li X, Wang W-D, Deng Y, Yin X-B, Zhang H (2008) Isolation and characterization of Methanoculleus receptaculi sp. nov. from Shengli oil field. China FEMS Microbiol lett 285(1):65–71. https://doi.org/10.1111/j.1574-6968.2008.01212.x

    Article  CAS  Google Scholar 

  • De Bok FAM, Plugge CM, Stams AJM (2004) Interspecies electron transfer in methanogenic propionate degrading consortia. Water Res 38(6):1368–1375. https://doi.org/10.1016/j.watres.2003.11.028

    Article  Google Scholar 

  • Dong X, Plugge CM, Stams AJ (1994) Anaerobic degradation of propionate by a mesophilic acetogenic bacterium in coculture and triculture with different methanogens. Appl Environ Microbiol 60(8):2834–2838

    CAS  Google Scholar 

  • Gallert C, Winter J (2008) Propionic acid accumulation and degradation during restart of a full-scale anaerobic biowaste digester. Bioresour Technol 99(1):170–178. https://doi.org/10.1016/j.biortech.2006.11.014

    Article  CAS  Google Scholar 

  • Harmsen HJM, Van Kuijk BLM, Plugge CM, Akkermans ADL, De Vos WM, Stams AJM (1998) Syntrophobacter fumaroxidans sp. nov., a syntrophic propionate-degrading sulfate-reducing bacterium. Int J Syst Bacteriol 48(4):1383–1387. https://doi.org/10.1099/00207713-48-4-1383

    Article  CAS  Google Scholar 

  • Hori T, Haruta S, Ueno Y, Ishii M, Igarashi Y (2006) Dynamic transition of a methanogenic population in response to the concentration of volatile fatty acids in a thermophilic anaerobic digester. Appl Environ Microbiol 72(2):1623–1630. https://doi.org/10.1128/AEM.72.2.1623-1630.2006

    Article  CAS  Google Scholar 

  • Imachi H, Sakai S, Ohashi A, Harada H, Hanada S, Kamagata Y, Sekiguchi Y (2007) Pelotomaculum propionicicum sp. nov., an anaerobic, mesophilic, obligately syntrophic, propionate-oxidizing bacterium. Int J Syst Evol Microbiol 57(7):1487–1492. https://doi.org/10.1099/ijs.0.64925-0

    Article  Google Scholar 

  • Imachi H, Sakai S, Sekiguchi Y, Hanada S, Kamagata Y, Ohashi A, Harada H (2008) Methanolinea tarda gen. nov., sp. nov., a methane-producing archaeon isolated from a methanogenic digester sludge. Int J Syst Evol Microbiol 58(1):294–301. https://doi.org/10.1099/ijs.0.65394-0

    Article  CAS  Google Scholar 

  • Işık M, Sponza DT (2005) Effects of alkalinity and co-substrate on the performance of an upflow anaerobic sludge blanket (UASB) reactor through decolorization of Congo Red azo dye. Bioresour Technol 96(5):633–643. https://doi.org/10.1016/j.biortech.2004.06.004

    Article  Google Scholar 

  • Kasali GB, Senior E, Watson-Craik IA (1989) Sodium bicarbonate effects on the anaerobic digestion of refuse. J Chem Technol Biotechnol 45:279–289

    Article  CAS  Google Scholar 

  • Kato S, Kosaka T, Watanabe K (2009) Substrate-dependent transcriptomic shifts in Pelotomaculum thermopropionicum grown in syntrophic co-culture with Methanothermobacter thermautotrophicus. Microb Biotechnol 2(5):575–584. https://doi.org/10.1111/j.1751-7915.2009.00102.x

    Article  CAS  Google Scholar 

  • Kida K, Morimura S, Sonoda Y (1993) Accumulation of propionic acid during anaerobic treatment of distillery wastewater from barley-< i> Shochu</i> making. J Ferment Bioeng 75(3):213–216. https://doi.org/10.1016/0922-338X(93)90118-R

    Article  CAS  Google Scholar 

  • Kosaka T, Uchiyama T, Ishii SI, Enoki M, Imachi H, Kamagata Y, Ohashi A, Harada H, Ikenaga H, Watanabe K (2006) Reconstruction and regulation of the central catabolic pathway in the thermophilic propionate-oxidizing syntroph Pelotomaculum thermopropionicum. J Bacteriol 188(1):202–210. https://doi.org/10.1128/JB.188.1.202-210.2006

    Article  CAS  Google Scholar 

  • Li J, Ban Q, Zhang L, Jha A (2012) Syntrophic propionate degradation in anaerobic digestion: a review. Int J Agric Biol 14:843–850

    CAS  Google Scholar 

  • Lin Y, Lü F, Shao L, He P (2013) Influence of bicarbonate buffer on the methanogenetic pathway during thermophilic anaerobic digestion. Bioresour Technol 137:245–253. https://doi.org/10.1016/j.biortech.2013.03.093

    Article  CAS  Google Scholar 

  • Liu Y, Balkwill DL, Aldrich HC, Drake GR, Boone DR (1999) Characterization of the anaerobic propionate-degrading syntrophs Smithella propionica gen. nov., sp. nov. and Syntrophobacter wolinii. Int J Syst Bacteriol 49(2):545–556. https://doi.org/10.1099/00207713-49-2-545

    Article  CAS  Google Scholar 

  • Liu C, Li J, Zhang Y, Philip A, Shi E, Chi X, Meng J (2015) Influence of glucose fermentation on CO2 assimilation to acetate in homoacetogen Blautia coccoides GA-1. J Ind Microbiol Biotechnol 42(9):1217–1224. https://doi.org/10.1007/s10295-015-1646-1

    Article  CAS  Google Scholar 

  • Loureiro Paulo P, Villa G, Bernardus van Lier J, Lettinga G (2003) The anaerobic conversion of methanol under thermophilic conditions: pH and bicarbonate dependence. J Biosci Bioeng 96(3):213–218. https://doi.org/10.1016/S1389-1723(03)80184-6

    Article  Google Scholar 

  • Ma K, Liu X, Dong X (2005) Methanobacterium beijingense sp. nov., a novel methanogen isolated from anaerobic digesters. Int J Syst Evol Microbiol 55(1):325–329. https://doi.org/10.1099/ijs.0.63254-0

    Article  CAS  Google Scholar 

  • Ma K, Liu X, Dong X (2006) Methanosaeta harundinacea sp. nov., a novel acetate-scavenging methanogen isolated from a UASB reactor. Int J Syst Evol Microbiol 56(1):127–131. https://doi.org/10.1099/ijs.0.63887-0

    Article  CAS  Google Scholar 

  • Müller N, Worm P, Schink B, Stams AJ, Plugge CM (2010) Syntrophic butyrate and propionate oxidation processes: from genomes to reaction mechanisms. Environ Microbiol Rep 2(4):489–499. https://doi.org/10.1111/j.1758-2229.2010.00147.x

    Article  Google Scholar 

  • Nazina T et al (2005) Description of “Desulfotomaculum nigrificans subsp. salinus” as a new species, Desulfotomaculum salinum sp. nov. Microbiology 74(5):567–574. https://doi.org/10.1007/s11021-005-0104-x

    Article  CAS  Google Scholar 

  • Nesbø CL et al (2012) Mesotoga prima gen. nov., sp. nov., the first described mesophilic species of the Thermotogales. Extremophiles 16:387–393

    Article  Google Scholar 

  • Patel GB, Sprott GD (1990) Methanosaeta concilii gen. nov., sp. nov.(“Methanothrix concilii”) and Methanosaeta thermoacetophila nom. rev., comb. nov. Int J syst Bacteriol 40:79–82

    Article  Google Scholar 

  • Rajeshwari K, Balakrishnan M, Kansal A, Lata K, Kishore V (2000) State-of-the-art of anaerobic digestion technology for industrial wastewater treatment. Renew Sust Energ Rev 4(2):135–156. https://doi.org/10.1016/S1364-0321(99)00014-3

    Article  CAS  Google Scholar 

  • Schmidt JE, Ahring BK (1993) Effects of hydrogen and formate on the degradation of propionate and butyrate in thermophilic granules from an upflow anaerobic sludge blanket reactor. Appl Environ Microbiol 59(8):2546–2551

    CAS  Google Scholar 

  • Shigematsu T, Era S, Mizuno Y, Ninomiya K, Kamegawa Y, Morimura S, Kida K (2006) Microbial community of a mesophilic propionate-degrading methanogenic consortium in chemostat cultivation analyzed based on 16S rRNA and acetate kinase genes. Appl Microbiol Biotechnol 72(2):401–415. https://doi.org/10.1007/s00253-005-0275-4

    Article  CAS  Google Scholar 

  • Siegrist H, Brunner I, Koch G, Phan LC (1999) Reduction of biomass decay rate under anoxic and anaerobic conditions. Water Sci Technol 39:129–137

    CAS  Google Scholar 

  • Stams AJM, Plugge CM (2009) Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat Rev Microbiol 7(8):568–577. https://doi.org/10.1038/nrmicro2166

    Article  CAS  Google Scholar 

  • Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100

    CAS  Google Scholar 

Download references

Acknowledgements

The authors sincerely express their profound gratitude to these institutions and all individuals who contributed towards the success of this work.

Funding

This research was supported and funded by the National Natural Science Foundation of China (Grant No. 51478141) and Harbin Institute of Technology Environment and Ecology Innovation Special Funds (Grant No. HSCJ201614).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianzheng Li.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Li, J., Liu, F. et al. Mediative mechanism of bicarbonate on anaerobic propionate degradation revealed by microbial community and thermodynamics. Environ Sci Pollut Res 25, 12434–12443 (2018). https://doi.org/10.1007/s11356-018-1430-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-1430-7

Keywords

Navigation