Skip to main content

Advertisement

Log in

Characterization of phosphate rock and phosphogypsum from Gabes phosphate fertilizer factories (SE Tunisia): high mining potential and implications for environmental protection

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Since the establishment of the coastal industrial complex in Gabes city (Gulf of Gabes, SE Tunisia), hundred million tons of untreated phosphogypsum have been discharged in the open sea causing serious environmental problems. To better understand the dynamic and behavior of phosphate/phosphogypsum contaminants from raw ores to marine environment, a chemical, organic, mineralogical, and morphological characterization of phosphate rock and phosphogypsum was conducted using several sophisticated techniques. The chemical analysis showed that phosphate and phosphogypsum contain high loads of trace elements and that the transfer factors of pollutants varied from 5.83% (U) to 140% (Hg). Estimated annual flows of phosphogypsum contaminants into the marine environment ranged between 0.05 (Re) and 87,249.60 (F) tons. The phosphate rock was found to be formed by carbonate fluorapatite, calcite, dolomite, natural gypsum, quartz, calcite-Mg, apatite, pyrite, fluorite, and sphalerite-Cd and phosphogypsum by synthetic gypsum and sphalerite-Cd. The phosphate was found to be richer in organic compounds compared to phosphogypsum. Based on this work, the Tunisian phosphogypsum has a high mining potential and encourages the development of an economically beneficial and environmentally friendly phosphogypsum-treating industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ajam L, Ben Ouezdou M, Sfar Felfoul H, El Mensi R (2009) Characterization of the Tunisian phosphogypsum and its valorization in clay bricks. Constr Build Mater 23:3240–3247

    Article  Google Scholar 

  • Al-Hwaiti M, Ibrahim KA, Harrara M (2015) Removal of heavy metals from waste phosphogypsum materials using polyethylene glycol and polyvinyl alcohol polymers. Arab J Chem. https://doi.org/10.1016/j.arabjc.2015.08.006

    Article  Google Scholar 

  • Al-Masri MS, Amin Y, Ibrahim S, Al-Bich F (2004) Distribution of some trace metals in Syrian phosphogypsum. Appl Geochem 19:747–753

    Article  CAS  Google Scholar 

  • Ayadi N, Aloulou F, Bouzid J (2014) Assessment of contaminated sediment by phosphate fertilizer industrial waste using pollution indices and statistical techniques in the Gulf of Gabes (Tunisia). Arab J Geosci 8:1755–1767

    Article  CAS  Google Scholar 

  • Ayadi N, Zghal I, Aloulou F, Bouzid J (2015) Impacts of several pollutants on the distribution of recent benthic foraminifera: the southern coast of Gulf of Gabes, Tunisia. Environ Sci Pollut Res 23:6414–6429

    Article  CAS  Google Scholar 

  • Berzina-Cimdina L, Borodajenko N (2012) Research of calcium phosphates using Fourier transform infrared spectroscopy, Infrared Spectroscopy-Materials Science, Engineering and Technology. Prof. Theophanides Theophile (Ed.) 123–148

  • Binnemans K, Pontikes Y, Jones PT, Van Gerven TB (2013) Blanpain, Recovery of rare earths from industrial waste residues: a concise review. 3rd International Slag Valorisation Symposium, Leuven, 193–205

  • Bolìvar JP, Garcia-Tenorio R, Mas JL (1998) Radioactivity of phosphogypsum in the southwest of Spain. Radiat Protect Dosim 76:185–189

    Article  Google Scholar 

  • Bolìvar JP, Garcia-Tenorio R, Mas JL, Vaca F (2002) Radioactive impact in sediments from an estuarine system affected by industrial waste releases. Environ Internat 27:639–645

    Article  Google Scholar 

  • Bolìvar JP, Garcia-Tenorio R, Vaca F (2000) Radioecological study of an estuarine system located in the south of Spain. Wat Res 34:2941–2950

    Article  Google Scholar 

  • Bouhaouss A, Bensaoud A, El Moussaouiti M, Ferhat M (2001) Analyse fine de l'apatite analogue aux biomatériaux par la spectroscopie infrarouge. Phys Chem News 1:125–129

    CAS  Google Scholar 

  • Bourgier V (2007) Influence des ions monohydrogénophosphates et fluorophosphates sur les propriétés des phosphogypses et la réactivité des phosphoplâtres. Thesis, Saint- Etienne

  • Cánovas CR, Pérez-López R, Macías F, Chapron S, Nieto JM, Pellet-Rostaing S (2017) Exploration of fertilizer industry wastes as potential source of critical raw materials. J Clean Prod 143:497–505

    Article  CAS  Google Scholar 

  • Contreras M, Pérez-López R, Gázquez MJ, Morales-Flórez V, Santos A, Esquivias L, Bolívar JP (2015) Fractionation and fluxes of metals and radionuclides during the recycling process of phosphogypsum wastes applied to mineral CO2 sequestration. Waste Manag 45:412–419

    Article  CAS  Google Scholar 

  • Cuadri AA, Navarro FJ, García-Morales M, Bolívar JP (2014) Valorization of phosphogypsum waste as asphaltic bitumen modifier. J Hazard Mater 279:11–16

    Article  CAS  Google Scholar 

  • da Conceição FT, Bonotto DM (2006) Radionuclides, heavy metals and fluorine incidence at Tapira phosphate rocks, Brazil, and their industrial (by) products. Environ Pollut 139(2):232–243

    Article  CAS  Google Scholar 

  • Darmoul B, Hadj Ali Salem M, Vitiello PP (1980) Effets des rejets industriels de la région de Gabès (Tunisie) sur le milieu récepteur. Bull Inst Nat Sci Technol Mer Salammbô 7:5–61

    Google Scholar 

  • Degirmenci N, Okucu A, Turabi A (2007) Application of phosphogypsum in soil stabilization. Build Environ 42:3393–3398

    Article  Google Scholar 

  • Dueňas C, Fernández MC, Caňete S, Pérez M (2010) Radiological impacts of natural radioactivity from phosphogypsum piles in Huelva (Spain). Radiat Meas 45:242–246

    Article  CAS  Google Scholar 

  • El Afifi EM, Hilal MA, Attallah MF, El-Reefy SA (2009) Characterization of phosphogypsum wastes associated with phosphoric acid and fertilizers production. J Environ Radioact 100:407–412

    Article  CAS  Google Scholar 

  • EEA (European Environment Agency) (2014) Horizon 2020 Mediterranean report, annex 6: Tunisia, EEA technical report, No 6/2014. 27 p

  • El Kateb A, Stalder C, Neururer C, Pisapia C, Spezzaferri S (2016) Correlation between pollution and decline of Scleractinian Cladocora caespitosa (Linnaeus, 1758) in the Gulf of Gabes. Heliyon 2:e00195

    Article  Google Scholar 

  • El Zrelli R, Courjault-Radé P, Rabaoui L, Castet S, Michel S, Bejaoui N (2015) Heavy metal contamination and ecological risk assessment in the surface sediments of the coastal area surrounding the industrial complex of Gabes city, Gulf of Gabes, SE Tunisia. Mar Poll Bull 101:922–929

    Article  CAS  Google Scholar 

  • El Zrelli R, Courjault-Radé P, Rabaoui L, Daghbouj N, Mansour L, Balti R, Castet S, Attia F, Michel S, Bejaoui N (2017) Biomonitoring of coastal pollution in the Gulf of Gabes (SE, Tunisia): use of Posidonia oceanica seagrass as a bioindicator and its mat as an archive of coastal metallic contamination. Environ Sci Pollut Res 24:22214–22225

    Article  CAS  Google Scholar 

  • El Zrelli R, Rabaoui L, Ben Alaya M, Daghbouj N, Castet S, Besson P, Michel S, Bejaoui N, Courjault-Radé P (2018) Seawater quality assessment and identification of pollution sources along the central coastal area of Gabes Gulf (SE Tunisia): evidence of industrial impact and implications for marine environment protection. Mar Poll Bull 127:445–452

    Article  CAS  Google Scholar 

  • El-Didamony H, Gado HS, Awwad NS, Fawzy MM, Attallah MF (2013) Treatment of phosphogypsum waste produced from phosphate ore processing. J Hazard Mater 244-245:596–602

    Article  CAS  Google Scholar 

  • Frost RL, Cejka J, Ayoko GA, Weier ML (2007) Raman spectroscopic and SEM analysis of sodium-zippeite. J Raman Spectrosc 38:1311–1319

    Article  CAS  Google Scholar 

  • IFIA (International Fertilizer Industry Association) (1998) The fertilizer industry’s manufacturing process and environmental issue. Report 28. UN Publications, Paris, pp 1–73

    Google Scholar 

  • Kacimi L, Simon-Masseron A, Ghomari A, Derriche Z (2006) Reduction of clinkerization temperature by using phosphogypsum. J Hazard Mater 137:129–137

    Article  CAS  Google Scholar 

  • Kruger A, Focke WW, Kwela Z, Fowles R (2001) Effect of ionic impurities on the crystallization of gypsum in wet-process phosphoric acid. Ind Eng Chem Res 40:1364–1369

    Article  CAS  Google Scholar 

  • Kuryatnyk T, Angulski da Luz C, Ambroise J, Pera J (2008) Valorization of phosphogypsum as hydraulic binder. J Hazard Mater 160:681–637

    Article  CAS  Google Scholar 

  • Le Bourlegat FM, Saueia CHR, Mazzilli BP, Fávaro DIT (2009) Metals concentration in phosphogypsum and phosphate fertilizers produced in Brazil using INAA. International Nuclear Atlantic Conference, Rio de Janeiro, Brazil

    Google Scholar 

  • London Metal Exchange (2016) Official prices for Metal Global Market https://lme.com/pricing-and-data/lmelive/ (accessed 17.12.16)

  • Luther SM, Dudas MJ, Rutherford PM (1993) Radioactivity and chemical characteristics of Alberta phosphogypsum. Water Air Soil Pollut 69:277–290

    Article  CAS  Google Scholar 

  • Mezghani-Chaari S, Hamza A, Hamza-Chaffai A (2011) Mercury contamination in human hair and some marine species from Sfax coasts of Tunisia: levels and risk assessment. Environ Monit Assess 180:477–487

    Article  CAS  Google Scholar 

  • Mineral Info (2016) Le portail français des ressources minérales non énergétiques http://www.mineralinfo.fr/sites/default/files/upload/documents/etatdesprixdecembre2016-161220.pdf/ (accessed 17.12.16)

  • ONAS (Office National de l’Assainissement) (2014) Étude d’impact environnemental et social du projet d’exécution du système d’évacuation des eaux épurées de la station d’épuration Choutrana vers la mer, 1–250

  • Papastefanou C, Stoulos S, Ioannidou A, Manolopoulou M (2006) The application of phosphogypsum in agriculture and the radiological impact. J Environ Radioact 89:188–198

    Article  CAS  Google Scholar 

  • Parreira AB, Kobayashi ARK, Silvestre OB Jr (2003) Influence of Portland cement type on unconfined compressive strength and linear expansion of cement-stabilized phosphogypsum. J Environ Eng 129:956–960

    Article  CAS  Google Scholar 

  • Pérez-López R, Álvarez-Valero AM, Nieto JM (2007) Changes in mobility of toxic elements during the production of phosphoric acid in the fertilizer industry of Huelva (SW Spain) and environmental impact of phosphogypsum wastes. J Hazard Mater 148:745–750

    Article  CAS  Google Scholar 

  • Pérez-López R, Castillo J, Sarmiento AM, Nieto JM (2011) Assessment of phosphogypsum impact on the salt-marshes of the Tinto River (SW Spain): role of natural attenuation processes. Mar Pollut Bull 62:2787–2796

    Article  CAS  Google Scholar 

  • Pérez-López R, Macìas F, Cánovas CR, Sarmiento AM, Pérez-Moreno SM (2016) Pollutant flows from a phosphogypsum disposal area to an estuarine environment: an insight from geochemical signatures. Sci Total Environ 553:42–51

    Article  CAS  Google Scholar 

  • Pérez-López R, Nieto JM, López-Coto I, Aguado JL, Bolivar JP, Santisteban M (2010) Dynamics of contaminants in phosphogypsum of the fertilizer industry of Huelva (SW Spain): from phosphate rock ore to the environment. Appl Geochem 25:705–715

    Article  CAS  Google Scholar 

  • Rabaoui L, Balti R, El Zrelli R, Tlig-Zouari S (2014) Assessment of heavy metals pollution in the gulf of Gabes (Tunisia) using four mollusk species. Mediterr Mar Sci 15:45–58

    Article  Google Scholar 

  • Rabaoui L, El Zrelli R, Balti R, Mansour L, Courjault-Radé P, Daghbouj N, Tlig-Zouari S (2017) Metal bioaccumulation in two edible cephalopods in the Gulf of Gabes, south-eastern Tunisia: environmental and human health risk assessment. Environ Sci Pollut Res 24:1686–1699

    Article  CAS  Google Scholar 

  • Rabaoui L, El Zrelli R, Ben Mansour M, Balti R, Mansour L, Tlig-Zouari S, Guerfel M (2015) On the relationship between the diversity and structure of benthic macroinvertebrate communities and sediment enrichment with heavy metals in Gabes gulf Tunisia. J Mar Biol Assoc UK 95:233–245

    Article  Google Scholar 

  • Reguigui R, Sfar Felfoul H, Ben Ouezdou M, Clastres P (2005) Radionuclide levels and temporal variation in phosphogypsum. J Radioanal Nucl Chem 264:719–722

    Article  CAS  Google Scholar 

  • Rentería-Villalobos M, Vioque I, Mantero J, Manjón G (2010) Radiological, chemical and morphological characterizations of phosphate rock and phosphogypsum from phosphoric acid factories in SW Spain. J Hazard Mater 181:193–203

    Article  CAS  Google Scholar 

  • Rutherford PM, Dudas MJ, Arocena JM (1995) Radioactivity and elemental composition of phosphogypsum produced from three phosphate rock sources. Waste Manag Res 13:407–423

    Article  CAS  Google Scholar 

  • Rutherford PM, Dudas MJ, Samek RA (1994) Environmental impacts of phosphogypsum. Sci Total Environ 149:1–38

    Article  CAS  Google Scholar 

  • Sassi AB, Sassi S (1999) Le cadmium associé aux dépôts phosphatés en Tunisie Méridionale. J Afri Sci 29:501–5013

    CAS  Google Scholar 

  • Saueia CHR, Mazzilli BP, Le Bourlegat FM, Costa GJL (2013) Distribution of potentially toxic elements in the Brazilian phosphogypsum and phosphate fertilizers. E3S Web of Conferences 1:04005

    Article  CAS  Google Scholar 

  • Silva LFO, de Vallejuelo SFO, Martinez-Arkarazo I, Castro K, Oliveira MLS, Sampaio CH, de Brum IAS, de Leão FB, Taffarel SR, Madariaga JM (2013) Study of environmental pollution and mineralogical characterization of sediment rivers from Brazilian coal mining acid drainage. Sci Total Environ 447:169–178

    Article  CAS  Google Scholar 

  • Stefaniak EA, Alsecz A, Frost R, Máthé Z, Sajó IE, Török S, Worobiec A, Van Grieken R (2009) Combined SEM/EDX and micro-Raman spectroscopy analysis of uranium minerals from a former uranium mine. J Hazard Mater 168:416–423

    Article  CAS  Google Scholar 

  • Taher MA (2007) Influence of thermally treated phosphogypsum on the properties of Portland slag cement. Resour Conserv Recy 52:28–38

    Article  Google Scholar 

  • Tayibi H, Choura M, López FA, Alguacil FJ, López-Delgado A (2009) Environmental impact and management of phosphogypsum. J Environ Manag 90:2377–2386

    Article  CAS  Google Scholar 

  • US Geological Survey (2016) Mineral commodity summaries 2016: U.S. Geol Surv 202. Doi: 10.3133/70140094

  • Valkov AV, Andreev VA, Anufrieva AV, Makaseev YN, Bezrukova SA, Demyanenko NV (2014) Phosphogypsum technology with the extraction of valuable components. Procedia Chemi 11:176–181

    Article  CAS  Google Scholar 

  • Zaouali J (1993) Little Syrte benthic communities, Gulf of Gabes, Tunisia: results of the survey campaign of July 1990. Preliminary study: biocenosis and recent thanatocenosis. Mar Life 3:47–60

    Google Scholar 

  • Zhongfei R, Xing X, Xi W, Baoyu G, Qinyan Y, Wen S, Li Z, Hantao W (2016) FTIR, Raman, and XPS analysis during phosphate, nitrate and Cr(VI) removal by amine cross-linking biosorbent. J Colloid Interface Sci 468:313–323

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is dedicated to the memory of Nader Chkiwa (28/04/1986–08/08/2017), the ex-president of the “Association de la Protection de l’Oasis de Chatt Sidi Abd Essalam,” for providing the phosphate rock and phosphogypsum samples. The authors would like to thank all those who helped in the conduction of laboratory analyses. We are also grateful to the reviewers who contributed to the improvement of the quality of the manuscript through their constructive comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radhouan El Zrelli.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

ESM 1

(DOCX 1076 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Zrelli, R., Rabaoui, L., Daghbouj, N. et al. Characterization of phosphate rock and phosphogypsum from Gabes phosphate fertilizer factories (SE Tunisia): high mining potential and implications for environmental protection. Environ Sci Pollut Res 25, 14690–14702 (2018). https://doi.org/10.1007/s11356-018-1648-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-1648-4

Keywords

Navigation