Skip to main content
Log in

Hydrothermal synthesis of a magnetic adsorbent from wasted iron mud for effective removal of heavy metals from smelting wastewater

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

A magnetic adsorbent (MA) was synthesized from wasted iron mud of a groundwater treatment plant using a novel one-step hydrothermal method. The results showed that Fe content of MA was 41.8 wt%, 2.5 times higher than that of iron mud, which was caused by hydrothermal dissolution of non-ferrous impurities under alkaline condition, such as quartz and albite, regardless of addition of ascorbic acid or not. Ferrihydrite was 92.7% in dry iron mud before adding ascorbic acid and gradually decreased to 58.1% by increasing the molar ratio of ascorbic acid to Fe following hydrothermal treatment. The strongest saturation magnetization of 16.29 emu/g was observed in the prepared MA-4 when the ascorbic acid to Fe molar ratio was 1. The highest surface site concentration of 1.31 mmol/g was observed in MA-2 when the ratio was 0.02. The mechanism of hydrothermal conversion of wasted iron mud to MA was reductive dissolution of ferrihydrite to form siderite, which was then reoxidized to maghemite. When 12.5 g/L of MA-2 was applied to treat smelting wastewater, over 99% removal of Cu2+, Zn2+, Pb2+, and Cd2+ was achieved. The major mechanisms of Cu2+ and Zn2+ adsorption by the adsorbent were cationic exchange.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Agbenin JO, Olojo LA (2004) Competitive adsorption of copper and zinc by a Bt horizon of a savanna Alfisol as affected by pH and selective removal of hydrous oxides and organic matter. Geoderma 119:85–95

    Article  CAS  Google Scholar 

  • Ahmad R, Kumar R, Haseeb S (2012) Adsorption of Cu2+ from aqueous solution onto iron oxide coated eggshell powder: evaluation of equilibrium, isotherms, kinetics, and regeneration capacity. Arab J Chem 5:353–359

    Article  CAS  Google Scholar 

  • Akinwekomi V, Maree JP, Zvinowanda C, Masindi V (2017) Synthesis of magnetite from iron-rich mine water using sodium carbonate. J Environ Chem Eng 5:2699–2707

    Article  CAS  Google Scholar 

  • Alzaydien AS (2015) Adsorption behavior of methyl orange onto wheat bran: role of surface and pH. Orient J Chem 31:643–651

    Article  CAS  Google Scholar 

  • Chang Z, Yu Z, Zeng G, Huang B, Dong H, Huang J, Yang Z, Wei J, Liang H, Qi Z (2016) Phase transformation of crystalline iron oxides and their adsorption abilities for Pb and Cd. Chem Eng J 284:247–259

    Article  CAS  Google Scholar 

  • Chen H, Zhao Y, Wang A (2007) Removal of Cu(II) from aqueous solution by adsorption onto acid-activated palygorskite. J Hazard Mater 149:346–354

    Article  CAS  Google Scholar 

  • Costa R, Moura F, Oliveira P (2010) Controlled reduction of red mud waste to produce active systems for environmental applications: heterogeneous Fenton reaction and reduction of Cr(VI). Chemosphere 78:1116–1120

    Article  CAS  Google Scholar 

  • Creutz C (1981) Complexities of ascorbate as a reducing agent. Inorg Chem 20(12):4449–4452

    Article  CAS  Google Scholar 

  • Debnath S, Hausner DB, Strongin DR, Kubicki J (2010) Reductive dissolution of ferrihydrite by ascorbic acid and the inhibiting effect of phospholipid. J Colloid Interface Sci 341:215–223

    Article  CAS  Google Scholar 

  • Delalio A, Bajger Z, Balaz P, Castro F (1999) A new treatment process to recover magnetite, zinc and lead from iron and steelmaking dusts and sludges. ECSC Steel Research & Development on Environmental Issues. Universidade do Minho, TecMinho, Bilbao

    Google Scholar 

  • Dixit S, Hering JG (2003) Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: implications for arsenic mobility. Environ Sci Technol 37:4182–4189

    Article  CAS  Google Scholar 

  • Elwakeel KZ, Al-Bogami AS, Elgarahy AM (2017a) Efficient retention of chromate from industrial wastewater onto a green magnetic polymer based on shrimp peels. J Polym Environ:1–12

  • Elwakeel KZ, Daher AM, El-Fatah AILA, Monem HAE, Khalil MMH (2017b) Biosorption of lanthanum from aqueous solutions using magnetic alginate beads. J Disper Sci Technol 38:145–151

    Article  CAS  Google Scholar 

  • Estes SL, Arai Y, Becker U, Fernando S, Yuan K, Ewing RC, Zhang J, Shibata T, Powell BA (2013) A self-consistent model describing the thermodynamics of Eu(III) adsorption onto hematite. Geochim Cosmochim Acta 122:430–447

    Article  CAS  Google Scholar 

  • Ford RG (2002) Rates of hydrous ferric oxide crystallization and the influence on coprecipitated arsenate. Environ Sci Technol 36:2459–2463

    Article  CAS  Google Scholar 

  • Ghosh SK, Gould ES (1989) Electron transfer. 97. The iron-catalyzed reduction of peroxide-bound chromium(IV) with ascorbic acid. Inorg Chem 28:1538–1542

    Article  CAS  Google Scholar 

  • Gu X, Evans LJ (2007) Modelling the adsorption of Cd(II), Cu(II), Ni(II), Pb(II), and Zn(II) onto Fithian illite. J Colloid Interface Sci 307:317–325

    Article  CAS  Google Scholar 

  • Han SW, Kim DK, Hwang IG, Bae JH (2002) Development of pellet-type adsorbents for removal of heavy metal ions from aqueous solutions using red mud. J Ind Eng Chem 8:120–125

    CAS  Google Scholar 

  • Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465

    Article  CAS  Google Scholar 

  • Hokkanen S, Repo E, Suopajärvi T, Liimatainen H, Niinimaa J, Sillanpää M (2014) Adsorption of Ni(II), Cu(II) and Cd(II) from aqueous solutions by amino modified nanostructured microfibrillated cellulose. Cellulose 21:1471–1487

    Article  CAS  Google Scholar 

  • Hui LI, Xiao DL, Hua HE, Lin R, Zuo PL (2013) Adsorption behavior and adsorption mechanism of Cu(II) ions on amino-functionalized magnetic nanoparticles. Trans Nonferrous Metals Soc China 23:2657–2665

    Article  CAS  Google Scholar 

  • Iakovleva E, Sillanpää M (2013) The use of low-cost adsorbents for wastewater purification in mining industries. Environ Sci Pollut Res 20:7878–7899

    Article  CAS  Google Scholar 

  • Jianmin Z (1994) Ferrihydrite: surface structure and its effects on phase transformation. Clay Clay Miner 42:737–746

    Article  Google Scholar 

  • Juang RS, Shao HJ (2002) Effect of pH on competitive adsorption of Cu(II), Ni(II), and Zn(II) from water onto chitosan beads. Adsorption 8:71–78

    Article  CAS  Google Scholar 

  • Kabwadzacorner P, Munthali MW, Johan E, Matsue N (2014) Comparative study of copper adsorptivity and selectivity toward zeolites. Am J Anal Chem 5:395–405

    Article  CAS  Google Scholar 

  • Landtwing MR, Pettke T, Halter WE, Heinrich CA, Redmond PB, Einaudi MT, Kunze K (2005) Copper deposition during quartz dissolution by cooling magmatic–hydrothermal fluids: the Bingham porphyry. Earth Planet Sci Lett 235:229–243

    Article  CAS  Google Scholar 

  • Lee CH, Ambrosia MS (2013) Kinetics and thermodynamic properties related to the adsorption of copper and zinc onto zeolite synthesized from coal fly ash. J Environ Sci Inter 22:1327–1335

    Article  Google Scholar 

  • Li J, Hu J, Sheng G, Zhao G, Huang Q (2009) Effect of pH, ionic strength, foreign ions and temperature on the adsorption of Cu(II) from aqueous solution to GMZ bentonite. Colloids Surf A Physicochem Eng Asp 349:195–201

    Article  CAS  Google Scholar 

  • Li Y, Yue Q, Gao B (2010) Adsorption kinetics and desorption of Cu(II) and Zn(II) from aqueous solution onto humic acid. J Hazard Mater 178:455–461

    Article  CAS  Google Scholar 

  • Li J, Zhang S, Chen C, Zhao G, Yang X, Li J, Wang X (2012) Removal of Cu(II) and fulvic acid by graphene oxide nanosheets decorated with Fe3O4 nanoparticles. ACS Appl Mater Interfaces 4:4991–5000

    Article  CAS  Google Scholar 

  • Li S, Wang W, Liu Y, W-x Z (2014) Zero-valent iron nanoparticles (nZVI) for the treatment of smelting wastewater: a pilot-scale demonstration. Chem Eng J 254:115–123

    Article  CAS  Google Scholar 

  • Li X, Liu N, Qi T, Wang Y, Zhou Q, Peng Z, Liu G (2015) Conversion of ferric oxide to magnetite by hydrothermal reduction in Bayer digestion process. Trans Nonferrous Metals Soc China 25:3467–3474

    Article  CAS  Google Scholar 

  • Liu Y, Zhao B, Tang Y, Wan P, Chen Y, Lv Z (2014) Recycling of iron from red mud by magnetic separation after co-roasting with pyrite. Thermochim Acta 588:11–15

    Article  CAS  Google Scholar 

  • Liu J, Yu Y, Zhu S, Yang J, Song J, Fan W, Yu H, Bian D, Huo M (2018) Synthesis and characterization of a magnetic adsorbent from negatively-valued iron mud for methylene blue adsorption. PLoS One 13:e0191229

    Article  CAS  Google Scholar 

  • López E, Soto B, Arias M, Núñez A, Rubinos D, Barral MT (1998) Adsorbent properties of red mud and its use for wastewater treatment. Water Res 32:1314–1322

  • Lu C, Liu C, Rao GP (2008) Comparisons of sorbent cost for the removal of Ni 2+ from aqueous solution by carbon nanotubes and granular activated carbon. J Hazard Mater 151:239–246

    Article  CAS  Google Scholar 

  • Lucovsky G, Phillips JC (2010) Nano-regime length scales extracted from the first sharp diffraction peak in non-crystalline SiO2 and related materials: device applications. Nanoscale Res Lett 5:550–558

    Article  CAS  Google Scholar 

  • Man Y, Feng J (2016) Effect of gas composition on reduction behavior in red mud and iron ore pellets. Powder Technol 301:674–678

    Article  CAS  Google Scholar 

  • Meng Y, Chen D, Sun Y, Jiao D, Zeng D, Liu Z (2015) Adsorption of Cu2+ ions using chitosan-modified magnetic Mn ferrite nanoparticles synthesized by microwave-assisted hydrothermal method. Appl Surf Sci 324:745–750

    Article  CAS  Google Scholar 

  • Nadaroglu H, Kalkan E, Demir N (2010) Removal of copper from aqueous solution using red mud. Desalination 251:90–95

  • Ngatenah SNI, Kutty SRM, Isa MH (2010) Optimization of heavy metal removal from aqueous solution using groundwater treatment plant sludge (GWTPS), International Conference on Environment 2010 (ICENV 2010), Penang, Malaysia

  • Osman SBS, Iqbal F (2014) Possible stabilization of sludge from groundwater treatment plant using electrokinetic method. Appl Mech Mater 567:110–115

    Article  CAS  Google Scholar 

  • Pan Y, Zhu R, Liu Q, Guo B (1999) Magnetic susceptibility variation and AMS exchange related to thermal treatment of siderite. Chin Sci Bull 44:1135–1139

    Article  CAS  Google Scholar 

  • Phuengprasop T, Sittiwong J, Unob F (2011) Removal of heavy metal ions by iron oxide coated sewage sludge. J Hazard Mater 186:502–507

  • Pinto PS, Lanza GD, Souza MN, Ardisson JD, Lago RM (2018) Surface restructuring of red mud to produce FeO × (OH) y sites and mesopores for the efficient complexation/adsorption of β-lactam antibiotics. Environ Sci Pollut Res 25:6762–6771

    Article  CAS  Google Scholar 

  • Raval NP, Shah PU, Shah NK (2016) Adsorptive amputation of hazardous azo dye Congo red from wastewater: a critical review. Environ Sci Pollut Res 23:14810–14853

    Article  CAS  Google Scholar 

  • Sahu RC, Patel R, Ray BC (2011) Adsorption of Zn(II) on activated red mud: Neutralized by CO2. Desalination 266:93–97

  • Schimanke G, Martin M (2000) In situ XRD study of the phase transition of nanocrystalline maghemite (γ-Fe2O3) to hematite (α-Fe2O3). Solid State Ionics 136-137:1235–1240

    Article  CAS  Google Scholar 

  • Shi L, Peng X, Luan Z, Wei N, Wang Q, Zhao Y (2009) Use of activated red mud to remove phosphate and heavy metals from the effluent of biologically treated swine wastewater. Acta Sci Circumst 29:2282–2288

    CAS  Google Scholar 

  • Simpson GL, Ortwerth BJ (2000) The non-oxidative degradation of ascorbic acid at physiological conditions. Biochim Biophys Acta (BBA) Mol Basis Dis 1501:12–24

    Article  CAS  Google Scholar 

  • Sushil S, Alabdulrahman AM, Balakrishnan M, Batra VS, Blackley RA, Clapp J, Hargreaves JS, Monaghan A, Pulford ID, Rico JL (2010) Carbon deposition and phase transformations in red mud on exposure to methane. J Hazard Mater 180:409–418

    Article  CAS  Google Scholar 

  • Swaddle TW, Oltmann P (1980) Kinetics of the magnetite-maghemite-hematite transformation, with special reference to hydrothermal systems. Can J Chem 58:1763–1772

    Article  CAS  Google Scholar 

  • Tang Y, Martin ST (2011) Siderite dissolution in the presence of chromate. Geochim Cosmochim Acta 75:4951–4962

    Article  CAS  Google Scholar 

  • Tang C, Zhu J, Zhou Q, Wei J, Zhu R, He H (2014) Surface heterogeneity of SiO2 polymorphs: an XPS investigation of α-quartz and α-cristobalite. J Phys Chem C 118:26249–26257

    Article  CAS  Google Scholar 

  • Tang C, Zhu J, Li Z, Zhu R, Zhou Q, Wei J, He H, Tao Q (2015) Surface chemistry and reactivity of SiO2 polymorphs: a comparative study on α-quartz and α-cristobalite. Appl Surf Sci 355:1161–1167

    Article  CAS  Google Scholar 

  • Tarso de S. Costa E, Guilherme L, Lopes G, Marques JJ, Curi N (2014) Effect of equilibrium solution ionic strength on the adsorption of Zn, Cu, Cd, Pb, As, and P on aluminum mining by-product. Water Air Soil Poll 225:1–11

  • Top A, Ülkü S (2004) Silver, zinc, and copper exchange in a Na-clinoptilolite and resulting effect on antibacterial activity. Appl Clay Sci 27:13–19

    Article  CAS  Google Scholar 

  • Vempati RK (1989) Influence of structural and adsorbed Si on the transformation of synthetic ferrihydrite1. Clay Clay Miner 37:273–279

    Article  CAS  Google Scholar 

  • Vempati RK, Loeppert RH, Sittertzbhatkar H, Burghardt RC (1990) Infrared vibrations of hematite formed from aqueous- and dry-thermal incubation of Si-containing ferrihydrite. Clay Clay Miner 38:294–298

    Article  CAS  Google Scholar 

  • Vu HP, Moreau JW (2015) Thiocyanate adsorption on ferrihydrite and its fate during ferrihydrite transformation to hematite and goethite. Chemosphere 119:987–993

    Article  CAS  Google Scholar 

  • Wang S, Ang HM, Tadé MO (2008) Novel applications of red mud as coagulant, adsorbent and catalyst for environmentally benign processes. Chemosphere 72:1621–1635

    Article  CAS  Google Scholar 

  • Wang XS, Zhu L, Lu HJ (2011) Surface chemical properties and adsorption of Cu (II) on nanoscale magnetite in aqueous solutions. Desalination 276:154–160

    Article  CAS  Google Scholar 

  • Wang F, Luo L, Yi J, Liu F, Zhang Q, Wei J (2016) Adsorption behavior of red mud ceramsite to Cu2+ from simulated acidic wastewater. Chinese. J Environ Eng 10:2440–2446

    CAS  Google Scholar 

  • Wu Z-C, Wang Z-Z, Liu J, Yin J-H, Kuang S-P (2015) A new porous magnetic chitosan modified by melamine for fast and efficient adsorption of Cu(II) ions. Int J Biol Macromol 81:838–846

    Article  CAS  Google Scholar 

  • Yan L, Huang Y, Cui J, Jing C (2015) Simultaneous As(III) and Cd removal from copper smelting wastewater using granular TiO2 columns. Water Res 68:572–579

    Article  CAS  Google Scholar 

  • Yang W, Wang H, Zhao X (1996) Study on the complexation reaction of ascorbic acid with Fe (II) by thin layer chromatography in situ absorption spectrometry. Chinese. J Anal Chem:828–831

  • Zhang MC, Zhou Q, Zhou Y, Li AM, Shuang CD (2012) Efficient adsorption and desorption of Cu2+ by a novel acid-resistant magnetic weak acid resin. Chin Chem Lett 23:1267–1270

    Article  CAS  Google Scholar 

  • Zhu S, Fang S, Huo M, Yu Y, Chen Y, Yang X, Geng Z, Wang Y, Bian D, Huo H (2015) A novel conversion of the groundwater treatment sludge to magnetic particles for the adsorption of methylene blue. J Hazard Mater 292:173–179

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51578118, 51238001, 51408110, 51678273, 51508079, and 51378098) and the Long-Term Program in “1000 Talent Plan for High-Level Foreign Experts” (Grant No. WQ20142200209).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wu Yang or Dandan Zhou.

Additional information

Responsible editor: Guilherme L. Dotto

Electronic supplementary material

ESM 1

(DOC 65.5 kb)

ESM 2

(DOC 58.5 kb)

ESM 3

(DOC 62 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, S., Dong, G., Yu, Y. et al. Hydrothermal synthesis of a magnetic adsorbent from wasted iron mud for effective removal of heavy metals from smelting wastewater. Environ Sci Pollut Res 25, 22710–22724 (2018). https://doi.org/10.1007/s11356-018-2378-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-2378-3

Keywords

Navigation