Skip to main content
Log in

Superb removal capacity of hierarchically porous magnesium oxide for phosphate and methyl orange

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Here, we successfully developed a template-free way to fabricate hierarchically porous magnesium oxide (MgO) and carefully investigated the adsorption behavior for phosphate and methyl orange (MO). The average pore size and the percentage porosity decreased with the increase in the feeding ratio of Mg2+/NH3. Among the three samples, MgO-25 shows the highest surface area of 63 m2 g−1 determined by the mercury intrusion method, and MgO-50 exhibits the highest BET surface area of 121 m2 g−1. For all the MgO samples, the adsorption process follows the pseudo second-order and Langmuir isotherm for phosphate, while pseudo second-order and the Freundlich isotherm for MO. Among the investigated samples, MgO-25 shows the most maximum removal capacity of 478.5 mg g−1 for phosphate and the highest removal capacity of 4483.9 mg g−1 for MO. This study compromises a low-cost and convenient dual function material for excellent water remediation of multiple industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmed S, Guo Y, Huang R, Li D, Tang P, Feng Y (2017) Hexamethylene tetramine-assisted hydrothermal synthesis of porous magnesium oxide for high-efficiency removal of phosphate in aqueous solution. J Environ Chem Eng 5(5):4649–4655

    Article  CAS  Google Scholar 

  • Bain S-W, Ma Z, Cui Z-M, Zhang L-S, Niu F, Song W-G (2008) Synthesis of micrometer-sized nanostructured magnesium oxide and its high catalytic activity in the Claisen-Schmidt condensation reaction. J Phys Chem C 112(30):11340–11344

    Article  CAS  Google Scholar 

  • Balducci G, Bravo Diaz L, Gregory DH (2017) Recent progress in the synthesis of nanostructured magnesium hydroxide. CrystEngComm 19(41):6067–6084

    Article  CAS  Google Scholar 

  • Cao CY, Qu J, Wei F, Liu H, Song W-G (2012) Superb adsorption capacity and mechanism of flowerlike magnesium oxide nanostructures for lead and cadmium ions. ACS Appl Mater Interfaces 4(8):4283–4287

    Article  CAS  Google Scholar 

  • Chen M, Huo C, Li Y, Wang J (2016a) Selective adsorption and efficient removal of phosphate from aqueous medium with graphene-lanthanum composite. ACS Sustain Chem Eng 4(3):1296–1302

    Article  CAS  Google Scholar 

  • Chen Y, Fan J, Gong H, Zou F, Guo Y, Luo H (2016b) Synthesis, characterization and formation mechanism of Ta-W nanocrystalline composite powders fabricated by nano-in situ composite method. RSC Adv 6(107):106011–106018

    Article  CAS  Google Scholar 

  • Dada AO, Olalekan AP, Olatunya AM, Dada O (2012) Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk. J Appl Chem 3(1):38–45

    Google Scholar 

  • Gong R, Ye J, Dai W, Yan X, Hu J, Hu X, Li S, Huang H (2013) Adsorptive removal of methyl orange and methylene blue from aqueous solution with finger-citron-residue-based activated carbon. Ind Eng Chem Res 52(39):14297–14303

    Article  CAS  Google Scholar 

  • Guo L (2007) Doing battle with the green monster of Taihu Lake. Science 317(5842):1166–1166

    Article  CAS  Google Scholar 

  • Haldorai Y, Shim JJ (2014) An efficient removal of methyl orange dye from aqueous solution by adsorption onto chitosan/MgO composite: a novel reusable adsorbent. Appl Surf Sci 292:447–453

    Article  CAS  Google Scholar 

  • He Y, Lin H, Dong Y, Wang L (2017) Preferable adsorption of phosphate using lanthanum-incorporated porous zeolite: characteristics and mechanism. Appl Surf Sci 426:995–1004

    Article  CAS  Google Scholar 

  • Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34(5):451–465

    Article  CAS  Google Scholar 

  • Huang Y, Yang J-K, Keller AA (2014) Removal of arsenic and phosphate from aqueous solution by metal (hydr-)oxide coated sand. ACS Sustain Chem Eng 2(5):1128–1138

    Article  CAS  Google Scholar 

  • Huang R, Wu M, Zhang T, Li D, Tang P, Feng Y (2017) Template-free synthesis of large-pore-size porous magnesium silicate hierarchical nanostructures for high-efficiency removal of heavy metal ions. ACS Sustain Chem Eng 5(3):2774–2780

    Article  CAS  Google Scholar 

  • Li Y, Sui K, Liu R, Zhao X, Zhang Y, Liang H, Xia Y (2012) Removal of methyl orange from aqueous solution by calcium alginate/multi-walled carbon nanotubes composite fibers. Energy Procedia 16:863–868

    Article  CAS  Google Scholar 

  • Liu Q, Liu Q, Wu Z, Wu Y, Gao T, Yao J (2017) Efficient removal of methyl orange and alizarin red S from pH-unregulated aqueous solution by the catechol–amine resin composite using hydrocellulose as precursor. ACS Sustain Chem Eng 5(2):1871–1880

    Article  CAS  Google Scholar 

  • Luo X, Wang X, Bao S, Liu X, Zhang W, Fang Z, Tao W (2016) Adsorption of phosphate in water using one-step synthesized zirconium-loaded reduced graphene oxide. Sci Rep 6:39108

    Article  CAS  Google Scholar 

  • Luo X, Liu C, Yuan J, Zhu X, Liu S (2017) Interfacial solid-phase chemical modification with Mannich reaction and Fe(III) chelation for designing lignin-based spherical nanoparticle adsorbents for highly efficient removal of low concentration phosphate from water. ACS Sustain Chem Eng 5(8):6539–6547

    Article  CAS  Google Scholar 

  • Ma J, Yu F, Zhou L, Jin L, Yang M, Luan J, Tang Y, Fan H, Yuan Z, Chen J (2012) Enhanced adsorptive removal of methyl orange and methylene blue from aqueous solution by alkali-activated multiwalled carbon nanotubes. ACS Appl Mater Interfaces 4(11):5749–5760

    Article  CAS  Google Scholar 

  • Mwankemwa BS, Nambala FJ, Kyeyune F, Hlatshwayo TT, Nel JM, Diale M (2017) Influence of ammonia concentration on the microstructure, electrical and raman properties of low temperature chemical bath deposited ZnO nanorods. Mater Sci Semicond Process 71(Supplement C):209–216

    Article  CAS  Google Scholar 

  • Nafsin N, Hasan MM, Dey S, Castro RHR (2016) Effect of ammonia on the agglomeration of zirconia nanoparticles during synthesis, and sintering by spark plasma sintering. Mater. Lett 183(Supplement C):143–146

    CAS  Google Scholar 

  • Nassar MY, Moustafa MM, Taha MM (2016) Hydrothermal tuning of the morphology and particle size of hydrozincite nanoparticles using different counterions to produce nanosized ZnO as an efficient adsorbent for textile dye removal. RSC Adv 6(48):42180–42195

    Article  CAS  Google Scholar 

  • Pan B, Han F, Nie G, Wu B, He K, Lu L (2014) New strategy to enhance phosphate removal from water by hydrous manganese oxide. Environ Sci Technol 48(9):5101–5107

    Article  CAS  Google Scholar 

  • Post JE (1999) Manganese oxide minerals: crystal structures and economic and environmental significance. Proc Natl Acad Sci U S A 96(7):3447–3454

    Article  CAS  Google Scholar 

  • Shi W, Guo F, Wang H, Liu C, Fu Y, Yuan S, Huang H, Liu Y, Kang Z (2018) Carbon dots decorated magnetic ZnFe2O4 nanoparticles with enhanced adsorption capacity for the removal of dye from aqueous solution. Appl Surf Sci 433:790–797

    Article  CAS  Google Scholar 

  • Shyla B, Mahadevaiah, Nagendrappa G (2011) A simple spectrophotometric method for the determination of phosphate in soil, detergents, water, bone and food samples through the formation of phosphomolybdate complex followed by its reduction with thiourea. Spectrochim Acta A Mol Biomol Spectrosc 78(1):497–502

    Article  CAS  Google Scholar 

  • Sing KSW (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl Chem 57:603–619

    Article  CAS  Google Scholar 

  • Tang L, Wang J-J, Wang L, Jia C-T, Lv G-X, Liu N, Wu M-H (2016) Facile synthesis of silver bromide-based nanomaterials and their efficient and rapid selective adsorption mechanisms toward anionic dyes. ACS Sustain Chem Eng 4(9):4617–4625

    Article  CAS  Google Scholar 

  • Tian Y, He W, Zhu X, Yang W, Ren N, Logan BE (2017a) Improved electrocoagulation reactor for rapid removal of phosphate from wastewater. ACS Sustain Chem Eng 5(1):67–71

    Article  CAS  Google Scholar 

  • Tian Y, Li H, Ruan Z, Cui G, Yan S (2017b) Synthesis of NiCo2O4 nanostructures with different morphologies for the removal of methyl orange. Appl Surf Sci 393:434–440

    Article  CAS  Google Scholar 

  • Venkatesha TG, Viswanatha R, Arthoba Nayaka Y, Chethana BK (2012) Kinetics and thermodynamics of reactive and vat dyes adsorption on MgO nanoparticles. Chem Eng J 198:1–10

    Article  CAS  Google Scholar 

  • Wang T, Xu Y, Su Q, Yang R, Wang L, Liu B, Shen S, Jiang G, Chen W, Wang S (2014) Hierarchical porous nanosheet-assembled MgO microrods with high adsorption capacity. Mater Lett 116:332–336

    Article  CAS  Google Scholar 

  • Wang B, Lu X-Y, Tang Y (2015) Synthesis of snowflake-shaped Co3O4 with a high aspect ratio as a high capacity anode material for lithium ion batteries. J Mater Chem A 3(18):9689–9699

    Article  CAS  Google Scholar 

  • Wang X, Dou L, Li Z, Yang L, Yu J, Ding B (2016) Flexible hierarchical ZrO2 nanoparticle-embedded SiO2 nanofibrous membrane as a versatile tool for efficient removal of phosphate. ACS Appl Mater Interfaces 8(50):34668–34676

    Article  CAS  Google Scholar 

  • Wang N, Feng J, Chen J, Wang J, Yan W (2017) Adsorption mechanism of phosphate by polyaniline/TiO2 composite from wastewater. Chem Eng J 316:33–40

    Article  CAS  Google Scholar 

  • Xie F, Wu F, Liu G, Mu Y, Feng C, Wang H, Giesy JP (2014) Removal of phosphate from eutrophic lakes through adsorption by in situ formation of magnesium hydroxide from diatomite. Environ Sci Technol 48(1):582–590

    Article  CAS  Google Scholar 

  • Yang D, Qiu L, Yang Y (2016) Efficient adsorption of methyl orange using a modified chitosan magnetic composite adsorbent. J Chem Eng Data 61(11):3933–3940

    Article  CAS  Google Scholar 

  • Yang Y, Wang J, Qian X, Shan Y, Zhang H (2018) Aminopropyl-functionalized mesoporous carbon (APTMS-CMK-3) as effective phosphate adsorbent. Appl Surf Sci 427:206–214

    Article  CAS  Google Scholar 

  • Yao Y, Bing H, Feifei X, Xiaofeng C (2011) Equilibrium and kinetic studies of methyl orange adsorption on multiwalled carbon nanotubes. Chem Eng J 170(1):82–89

    Article  CAS  Google Scholar 

  • Yao W, Yu S, Wang J, Zou Y, Lu S, Ai Y, Alharbi NS, Alsaedi A, Hayat T, Wang X (2017) Enhanced removal of methyl orange on calcined glycerol-modified nanocrystallined Mg/Al layered double hydroxides. Chem Eng J 307:476–486

    Article  CAS  Google Scholar 

  • Zhang J, Zhou Q, Ou L (2012) Kinetic, isotherm, and thermodynamic studies of the adsorption of methyl orange from aqueous solution by chitosan/alumina composite. J Chem Eng Data 57(2):412–419

    Article  CAS  Google Scholar 

  • Zhong S, Sha H, He Y, Song G (2014) Hydrothermal synthesis of easy-recycled tobermorite/SiO2/Fe3O4 composites for efficient treatment of phosphorus in wastewater. Desalin Water Treat 52(22–24):4305–4313

    Article  CAS  Google Scholar 

  • Zhou JB, Yang SL, Yu JG (2011) Facile fabrication of mesoporous MgO microspheres and their enhanced adsorption performance for phosphate from aqueous solutions. Colloids Surf A Physicochem Eng Asp 379(1–3):102–108

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by the National Key R&D Program of China (no. 2016YFB0301600), Natural Science Foundation of China (no. 21571015, 21627813), the Fundamental Research Funds for the Central Universities (JD1716), and Program for Changjiang Scholars and Innovative Research Team in University (no. IRT1205). S. Ahmed specially thanks the financial support from Chinese Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongjun Feng.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Responsible editor: Tito Roberto Cadaval Jr

Electronic supplementary material

ESM 1

(DOCX 1558 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, S., Guo, Y., Li, D. et al. Superb removal capacity of hierarchically porous magnesium oxide for phosphate and methyl orange. Environ Sci Pollut Res 25, 24907–24916 (2018). https://doi.org/10.1007/s11356-018-2565-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-2565-2

Keywords

Navigation