Skip to main content

Advertisement

Log in

A review on removal of siloxanes from biogas: with a special focus on volatile methylsiloxanes

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The occurrence of siloxanes is a major barrier to use of biogas as renewable energy source, and removal of siloxanes from biogas before combustion is needed. The siloxane can be transformed into silicon dioxide (SiO2) through the combustion process in engine, which will be deposited on the spark plug, cylinder, and impeller to form the silica layer, causing the wear and damage of the engine parts, and shorten the life of the engine and affect the utilization efficiency of the biogas. This paper reviewed some methods and technologies for siloxanes removal from biogas. There are three commercial available technologies to remove siloxanes: adsorption, absorption, and cryocondensation. Other newer technologies with better prospects for development also have made a research progress, including membrane, catalysts, biotrickling filters. This work introduces the source and characterization of siloxanes in biogas, reviews the scientific progress of siloxanes removal, and discusses the development direction and further research of removal siloxanes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abatzoglou N, Boivin S (2010) A review of biogas purification processes. Biofuels Bioprod Biorefin 3:42–71

    Article  CAS  Google Scholar 

  • Accettola F, Guebitz GM, Schoeftner R (2008) Siloxane removal from biogas by biofiltration: biodegradation studies. Clean Technol Environ 10:211–218

    Article  CAS  Google Scholar 

  • Ackley MW, Rege SU, Saxena H (2003) Application of natural zeolites in the purification and separation of gases. Micropor Mesopor Mat 61:25–42

    Article  CAS  Google Scholar 

  • Agency UKE (2004) Guidance for monitoring trace components in landfill gas. The Agency of London Presse, London

    Google Scholar 

  • Ajhar M, Bannwarth S, Stollenwerk KH, Spalding G, Yüce S, Wessling M, Melin T (2012) Siloxane removal using silicone—rubber membranes. Sep Purif Technol 89:234–244

    Article  CAS  Google Scholar 

  • Ajhar M, Melin T (2006) Siloxane removal with gas permeation membranes. Desalination 200:234–235

    Article  CAS  Google Scholar 

  • Ajhar M, Travesset M, Yüce S, Melin T (2010) Siloxane removal from landfill and digester gas—a technology overview. Bioresour Technol 101:2913–2923

    Article  CAS  Google Scholar 

  • Alba CC, Miguel A, Manuel SP, Maria J, Rafael GO (2014) Biogas upgrading: optimal activated carbon properties for siloxane removal. Environ Sci Technol 48:7187

    Article  CAS  Google Scholar 

  • Almenglo F, Ramírez M, Gómez JM, Cantero D, Gamisans X, Dorado AD (2016) Modeling and control strategies for anoxic biotrickling filtration in biogas purification. J Chem Technol Biot 91:1782–1793

    Article  CAS  Google Scholar 

  • Angelidaki I, Treu L, Tsapekos P, Luo G, Campanaro S, Wenzel H, Kougias PG (2018) Biogas upgrading and utilization: current status and perspectives. Biotechnol Adv 36:452–466

    Article  CAS  Google Scholar 

  • Appels L, Baeyens J, Dewil R (2008) Siloxane removal from biosolids by peroxidation. Energ Convers Manage 49:2859–2864

    Article  CAS  Google Scholar 

  • Arespacochaga ND, Valderrama C, Raichmontiu J, Crest M, Mehta S, Cortina JL (2015) Understanding the effects of the origin, occurrence, monitoring, control, fate and removal of siloxanes on the energetic valorization of sewage biogas - a review. Renew Sust Energ Rev 52:366–381

    Article  CAS  Google Scholar 

  • Arnold M (2009) Reduction and monitoring of biogas trace compounds. https://www.vtt.fi/inf/pdf/tiedotteet/2009/T2496.pdf

  • Barton TJ et al (1999) Tailored porous materials. Office of Scientific & Technical Information Technical Reports 11:2633–2656

    CAS  Google Scholar 

  • Bensaid S, Russo N, Fino D (2010) Power and hydrogen co-generation from biogas. Energ Fuel 24:4743–4747

    Article  CAS  Google Scholar 

  • Björklund J, Geber U, Rydberg T (2001) Emergy analysis of municipal wastewater treatment and generation of electricity by digestion of sewage sludge. ResourConserv Recy 31:293–316

    Article  Google Scholar 

  • Bletsou AA, Asimakopoulos AG, Stasinakis AS, Thomaidis NS, Kannan K (2013) Mass loading and fate of linear and cyclic siloxanes in a wastewater treatment plant in Greece. Environ Sci Technol 47:1824–1832

    Article  CAS  Google Scholar 

  • Boulinguiez B, Le CP (2009) Biogas pre-upgrading by adsorption of trace compounds onto granular activated carbons and an activated carbon fiber-cloth. Water SciTechnol 59:935–944

    CAS  Google Scholar 

  • Companioni-Damas EY, Santos FJ, Galceran MT (2014) Linear and cyclic methylsiloxanes in air by concurrent solvent recondensation-large volume injection-gas chromatography-mass spectrometry. Talanta 118:245–252

    Article  CAS  Google Scholar 

  • Clark C, Zytner RG, McBean E (2012) Analyzing volatile organic siloxanes in landfill biogas. Can J Civil Eng 39:667–673

    Article  CAS  Google Scholar 

  • Dewil R, Appels L, Baeyens J (2006) Energy use of biogas hampered by the presence of siloxanes. EnergConvers Manage 47:1711–1722

    Article  CAS  Google Scholar 

  • Elwell AC, Elsayed NH, Kuhn JN, Joseph B (2018) Design and analysis of siloxanes removal by adsorption from landfill gas for waste-to-energy processes. Waste Manag 73:189–196

    Article  CAS  Google Scholar 

  • Finocchio E, Garuti G, Baldi M, Busca G (2008) Decomposition of hexamethylcyclotrisiloxane over solid oxides. Chemosphere 72:1659–1663

    Article  CAS  Google Scholar 

  • Finocchio E, Montanari T, Garuti G, Pistarino C, Federici F, Cugino M, Busca G (2009) Purification of biogases from siloxanes by adsorption: on the regenerability of activated carbon sorbents. Energ Fuel 23:4156–4159

    Article  CAS  Google Scholar 

  • Gao R, Cheng S, Li Z (2017) Research progress of siloxane removal from biogas. Int J Agr Biol Eng 10:30–39

    Google Scholar 

  • Grando RL, Antune AMDS, Fonseca FVD, Sánchez A, Barrena R, Font X (2017) Technology overview of biogas production in anaerobic digestion plants: a European evaluation of research and development. Renew Sust Energ Rev 80:44–53

    Article  Google Scholar 

  • Griessbach EFC, Lehmann RG (1999) Degradation of polydimethylsiloxane fluids in the environment—a review. Chemosphere 38:1461–1468

    Article  CAS  Google Scholar 

  • Haga K, Adachi S, Shiratori Y, Itoh K, Sasaki K (2008) Poisoning of SOFC anodes by various fuel impurities. Solid State Ionics 179:1427–1431

    Article  CAS  Google Scholar 

  • Hagmann M, Hesse E, Hentschel P, Bauer T (2001) Purification of biogas-removal of volatile silicones. In:ProceedingsSardinia. Eighth international waste managementand landfill symposiuml

  • Hepburn AC (2014) Removal of siloxanes from biogas. Cranfield University, School of Energy, Envrionment and Agrifood Cranfield Water Science Institute. https://dspace.lib.cranfield.ac.uk/bitstream/handle/1826/9282/Hepburn_Caroline_Thesis_2014.pdf;jsessionid=0398063AC8D223382DAF19DAEB1EF299?sequence=1

  • Hepburn CA, Martin BD, Simms N, McAdam EJ (2014) Characterization of full-scale carbon contactors for siloxane removal from biogas using online Fourier transform infrared spectroscopy. Environ Technol 36:178

    Article  CAS  Google Scholar 

  • Higgins VL (2007) Siloxane removal process: US20060225571. US

  • Huguen P, Saux GL, Beil M, Cagnon F, Greninger A, Wellinger A, Bravin F (2010) Perspectives for a european standard on biomethane: a biogasmax proposal

  • Huppmann R, Lohoff HW, Schröder HF (1996) Cyclic siloxanes in the biological waste water treatment process—determination, quantification and possibilities of elimination. Fresenius Journal of Analytical Chemistry 354:66–71

    Article  CAS  Google Scholar 

  • Kuhn JN, Elwell AC, Elsayed NH, Joseph B (2017) Requirements, techniques, and costs for contaminant removal from landfill gas. Waste Manag 63:246–256

    Article  CAS  Google Scholar 

  • Läntelä J, Rasi S, Lehtinen J, Rintala J (2012) Landfill gas upgrading with pilot-scale water scrubber: performance assessment with absorption water recycling. Appl Energ 92:307–314

    Article  CAS  Google Scholar 

  • López ME, Rene ER, Veiga MC, Kennes C (2012) Biogas technologies and cleaning techniques. Springer, Dordrecht

  • Lee SH, Cho WI, Song TY, Kim HY, Lee WJ, Lee YC, Back Y (2001) Removal process for octamethylcyclotetrasiloxane from biogas in sewage treatment plant. J Ind Eng Chem 7:276–280

    CAS  Google Scholar 

  • Lehmann RG, Miller JR, Collins HP (1998a) Microbial degradation of dimethylsilanediol in soil. Water Air Soil Poll 106:111–122

    Article  CAS  Google Scholar 

  • Lehmann RG, Miller JR, Xu S, Singh UB, Reece CF (1998b) Degradation of silicone polymer at different soil moistures. Environ Sci Technol 32:1260–1264

    Article  CAS  Google Scholar 

  • Lin X, Shi Y, Cai Y (2013) Occurrence and fate of volatile siloxanes in a municipal Wastewater Treatment Plant of Beijing, China. Water R 47:715–724

  • Madi H, Lanzini A, Diethelm S, Papurello D, van herle J, Lualdi M, Gutzon Larsen J, Santarelli M (2015) Solid oxide fuel cell anode degradation by the effect of siloxanes. J Power Sources 279:460–471

    Article  CAS  Google Scholar 

  • Mariné S, Pedrouzo M, Marcé RM, Fonseca I, Borrull F (2012) Comparison between sampling and analytical methods in characterization of pollutants in biogas. Talanta 100:145–152

    Article  CAS  Google Scholar 

  • Matsui T, Imamura S (2010) Removal of siloxane from digestion gas of sewage sludge. Bioresource Technol 101(Suppl 1):S29

    Article  CAS  Google Scholar 

  • Mckenna J, Mycock JC, Theodore L (1995) Handbook of air pollution control engineering and technology

  • Miguel GS, Lambert SD, Graham NJ (2002) Thermal regeneration of granular activated carbons using inert atmospheric conditions. Environ Technol 23:1337–1346

    Article  Google Scholar 

  • Miltner M, Makaruk A, Harasek M (2017) Review on available biogas upgrading technologies and innovations towards advanced solutions. J Clean Prod

  • Nair N, Vas A, Zhu T, Sun W, Gutierrez J, Chen J, Egolfopoulos F, Tsotsis TT (2013) Effect of siloxanes contained in natural gas on the operation of a residential furnace. Ind Eng Chem Res 52:6253–6261

    Article  CAS  Google Scholar 

  • Ohannessian A, Desjardin V, Chatain V, Germain P (2008) Volatile organic silicon compounds: the most undesirable contaminants in biogases. Water Sci Technol 58:1775–1781

    Article  CAS  Google Scholar 

  • Piechota G, Iglin´Ski B, Buczkowski R (2013) Development of measurement techniques for determination main and hazardous components in biogas utilised for energy purposes. Energ Convers Manage 68:219–226

    Article  CAS  Google Scholar 

  • Pöschl M, Ward S, Owende P (2010) Evaluation of energy efficiency of various biogas production and utilization pathways. Appl Energ 87:3305–3321

    Article  CAS  Google Scholar 

  • Popat SC, Deshusses MA (2008) Biological removal of siloxanes from landfill and digester gases: opportunities and challenges. Environ Sci Technol 42:8510–8515

    Article  CAS  Google Scholar 

  • Rasi S, Läntelä J, Rintala J (2011) Trace compounds affecting biogas energy utilisation—a review. Energ Convers Manage 52:3369–3375

    Article  CAS  Google Scholar 

  • Rasi S, Läntelä J, Veijanen A, Rintala J (2008) Landfill gas upgrading with countercurrent water wash. Waste Manag 28:1528–1534

    Article  CAS  Google Scholar 

  • Rossol D, Schmelz KG, Hohmann R (2003) Siloxane im faulgas

  • Sabourin CL, Carpenter JC, Leib TK, Spivack JL (1996) Biodegradation of dimethylsilanediol in soils. Appl Environ Microb 62:4352–4360

    CAS  Google Scholar 

  • Sangchul N, Namkoong W, Hee KJ, Kyu PJ, Namhoon L (2013) Adsorption characteristics of siloxanes in landfill gas by the adsorption equilibrium test. Waste Manag 33:2091

    Article  CAS  Google Scholar 

  • Schweigkofler M, Niessner R (2001) Removal of siloxanes in biogases. J Hazard Mater 83:183–196

    Article  CAS  Google Scholar 

  • Sigot L, Ducom G, Benadda B, Labouré C (2014) Adsorption of octamethylcyclotetrasiloxane on silica gel for biogas purification. Fuel 135:205–209

    Article  CAS  Google Scholar 

  • Soreanu G, Béland M, Falletta P, Edmonson K, Seto P (2008) Laboratory pilot scale study for H2S removal from biogas in an anoxic biotrickling filter. Water Sci Technol 57:201–207

    Article  CAS  Google Scholar 

  • Soreanu G, Béland M, Falletta P, Edmonson K, Svoboda L, Al-Jamal M, Seto P (2011) Approaches concerning siloxane removal from biogas—a review. Can Biosyst Eng 53:8.1–8.18

    Google Scholar 

  • Soreanu G, Falletta P, Béland M, Edmonson K, Seto P (2009) Abiotic and biotic mitigation of volatile methyl siloxanes in anaerobic gas-phase biomatrices. Environ Eng Manag J 8:1235–1240

    Article  CAS  Google Scholar 

  • Souza SNMD, Werncke I, Marques CA, Bariccatti RA, Santos RF, Nogueira CEC, Bassegio D (2013) Electric energy micro-production in a rural property using biogas as primary source. Renew Sust Energ Rev 28:385–391

    Article  Google Scholar 

  • Stoddart J, Zhu M, Staines J, Rothery E, Lewicki R (1999) Experience with halogenated hydrocarbons removal from landfill gas. Proceedings Sardinia 1999. Seventh International Waste Management and Landfill Symposium 2:489–498

    Google Scholar 

  • Surita SC, Tansel B (2014) Emergence and fate of cyclic volatile polydimethylsiloxanes (D4, D5) in municipal waste streams: release mechanisms, partitioning and persistence in air, water, soil and sediments. Sci Total Environ 468-469:46–52

    Article  CAS  Google Scholar 

  • Tansel B, Surita SC (2014) Oxidation of siloxanes during biogas combustion and nanotoxicity of Si-based particles released to the atmosphere. Environ Toxicol Phar 37:166–173

    Article  CAS  Google Scholar 

  • Tower P (2003) New technology for removal of siloxanes in digester gas results in lower maintenance costs and air quality benefits in power generation equipment. Proc Water Environ Fed 2003:440–447

    Article  Google Scholar 

  • Trendewicz AA, Braun RJ (2013) Techno-economic analysis of solid oxide fuel cell-based combined heat and power systems for biogas utilization at wastewater treatment facilities. J Power Sources 233:380–393

    Article  CAS  Google Scholar 

  • Urban W, Lohmann H, Gómez JIS (2009) Catalytically upgraded landfill gas as a cost-effective alternative for fuel cells. J Power Sources 193:359–366

    Article  CAS  Google Scholar 

  • Wasserbauer R, Zadák Z (1990) Growth of Pseudomonas putida and P. fluorescens on silicone oils. Folia Microbiol 35:384–393

    Article  CAS  Google Scholar 

  • Wellinger A, Lindberg A (2001) Biogas upgrading and utilisation-IEA Bioenergy, Task 24-Energy from biological conversion of organic waste

  • Wheless E, Jeffrey P (2004) Siloxanes in landfill and digester gas update

  • Xu L, Shi Y, Cai Y (2013) Occurrence and fate of volatile siloxanes in a municipal wastewater treatment plant of Beijing, China. Water Res 47:715–724

    Article  CAS  Google Scholar 

  • Yang RT (2003) Adsorbents: fundamentals and applications. Belgeler Com 404

  • Zhang P, Zhang G, Wang W (2007) Ultrasonic treatment of biological sludge: floc disintegration, cell lysis and inactivation. Bioresour Technol 98:207–210

    Article  CAS  Google Scholar 

  • Zhong W et al (2016) Modified inverse micelle synthesis for mesoporous alumina with a high D4 siloxane adsorption capacity. Micropor Mesopor Mat 239:328–335

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaxin Zhang.

Additional information

Responsible editor: Tito Roberto Cadaval Jr

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, M., Zhang, Y., Hu, D. et al. A review on removal of siloxanes from biogas: with a special focus on volatile methylsiloxanes. Environ Sci Pollut Res 25, 30847–30862 (2018). https://doi.org/10.1007/s11356-018-3000-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-3000-4

Keywords

Navigation