Skip to main content
Log in

Adsorption, recovery, and regeneration of Cd by magnetic phosphate nanoparticles

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Adsorption plays an important role in removing cadmium (Cd2+) from water, and magnetic adsorbents are increasingly being used due to their ease of separation and recovery. Magnetic Fe3O4–coated hydroxyapatite (HAP) nanoparticles (nHAP-Fe3O4) were developed by co-precipitation and then used for the removal of Cd2+ from water. The properties of these nanoparticles were characterized by transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and magnetization curves. Experiments were conducted to investigate the effects of adsorption and mechanisms. Results illustrated that kinetic data were well fitted by a pseudo-second-order model. The adsorption capacity of nHAP-Fe3O4 was 62.14 mg/g. The mechanisms for the adsorption of Cd2+ on nHAP-Fe3O4 included rapid surface adsorption, intraparticle diffusion, and internal particle bonding, with the ion exchange with Ca2+ and chemical complexation being the most dominant. The regeneration efficiency and recovery rate of nHAP-Fe3O4 eluted by EDTA-Na2 after the fifth cycle were 63.04% and 40.2%, respectively. Results revealed that the feasibility of nHAP-Fe3O4 as an adsorbent of Cd2+ and its environmental friendliness make it an ideal focus for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abollino O, Aceto M, Malandrino M et al (2003) Adsorption of heavy metals on Na-montmorillonite. Effect of pH and organic substances. Water Res 37(7):1619–1627

    Article  CAS  Google Scholar 

  • Adebisi GA, Chowdhury ZZ, Alaba PA (2017) Equilibrium, kinetic, and thermodynamic studies of lead ion and zinc ion adsorption from aqueous solution onto activated carbon prepared from palm oil mill effluent. J Clean Prod 148:958–968

    Article  CAS  Google Scholar 

  • Ahmad ZU, Lian Q, Zappi ME et al (2018) Adsorptive removal of resorcinol on a novel ordered mesoporous carbon (OMC) employing COK-19 silica scaffold: kinetics and equilibrium study. J Environ Sci 75(1):307–317

    Google Scholar 

  • Ahmad ZU, Yao LG, Wang J et al (2019) Neodymium embedded ordered mesoporous carbon (OMC) for enhanced adsorption of Sunset Yellow: characterizations, adsorption study and adsorption mechanism. Chem Eng J 359:814–826

    Article  CAS  Google Scholar 

  • Ajmal M, Rao RAK, Anwar S et al (2003) Adsorption studies on rice husk: removal and recovery of Cd(II) from wastewater. Bioresour Technol 86(2):147–149

    Article  CAS  Google Scholar 

  • Bachoua H, Renaudin G, Badraoui B et al (2016) Preparation and characterization of functionalized hybrid hydroxyapatite from phosphorite and its potential application to Pb2+ remediation. J Sol-Gel Sci Technol 78(3):621–631

    Article  CAS  Google Scholar 

  • Basualto C, González P, Briso A et al (2017) Synthesis and use of nanomagnetic MnO2 adsorbent for removing Pb(II) and Cd(II) ions from acid aqueous solutions. Desalin Water Treat 70:175–182

    Article  CAS  Google Scholar 

  • Beesley L, Marmiroli M (2011) The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar. Environ Pollut 159(2):474–480

    Article  CAS  Google Scholar 

  • Chand P, Pakade YB (2015) Synthesis and characterization of hydroxyapatite nanoparticles impregnated on apple pomace to enhanced adsorption of Pb(II), Cd(II), and Ni(II) ions from aqueous solution. Environ Sci Pollut Res Int 22(14):10919–10929

    Article  CAS  Google Scholar 

  • Chen M, Wu P, Yu L et al (2017) FeOOH-loaded MnO2 nano-composite: an efficient emergency material for thallium pollution incident. J Environ Manag 192:31–38

    Article  CAS  Google Scholar 

  • Cheng C, Wang J, Yang X et al (2014) Adsorption of Ni(II) and Cd(II) from water by novel chelating sponge and the effect of Alkali-Earth metal ions on the adsorption. J Hazard Mater 264(2):332–341

    Article  CAS  Google Scholar 

  • Dey P, Gola D, Mishra A et al (2016) Comparative performance evaluation of multi-metal resistant fungal strains for simultaneous removal of multiple hazardous metals. J Hazard Mater 318:679–685

    Article  CAS  Google Scholar 

  • Farokhi M, Parvareh A, Moraveji MK (2018) Performance of ceria/iron oxide nano-composites based on chitosan as an effective adsorbent for removal of Cr(VI) and Co(II) ions from aqueous systems. Environ Sci Pollut Res 25:27059–27073

    Article  CAS  Google Scholar 

  • Guivar JAR, Sanches EA, Bruns F et al (2016) Vacancy ordered γ-Fe2O3 nanoparticles functionalized with nanohydroxyapatite: XRD, FTIR, TEM, XPS and Mössbauer studies. Appl Surf Sci 389:721–734

    Article  CAS  Google Scholar 

  • Guo J, Han Y, Mao Y et al (2017) Influence of alginate fixation on the adsorption capacity of hydroxyapatite nanocrystals to Cu2+ ions. Colloids Surf A Physicochem Eng Asp 529:801–807

    Article  CAS  Google Scholar 

  • Guo L, Li Z, Xu L et al (2018) The dynamics and adsorption of Cd (II) onto hydroxyapatite attapulgite composites from aqueous solution. J Sol-Gel Sci Technol 87:269–284

    Article  CAS  Google Scholar 

  • Heitmann AP, Silva GC, Paiva PRP et al (2014) Synthesis and characterization of a magnetic nanostructured composite containing manganese oxide for removal of Cd(II) from aqueous medium. Ceramica 60(355):429–435

  • Igberase E, Osifo P, Ofomaja A (2017) The adsorption of Pb, Zn, Cu, Ni, and Cd by modified ligand in a single component aqueous solution: equilibrium, kinetic, thermodynamic, and desorption studies. Int J Anal Chem 2017:1–15

    Article  CAS  Google Scholar 

  • Karami H (2013) Heavy metal removal from water by magnetite nanorods. Chem Eng J 219(3):209–216

    Article  CAS  Google Scholar 

  • Ke S, Cheng XY, Zhang JY et al (2015) Estimation of the benchmark dose of urinary cadmium as the reference level for renal dysfunction: a large sample study in five cadmium polluted areas in China. BMC Public Health 15(1):656

    Article  CAS  Google Scholar 

  • Khraisheh MAM, Al-Degs YS, Mcminn WAM (2004) Remediation of wastewater containing heavy metals using raw and modified diatomite. Chem Eng J 99(2):177–184

    Article  CAS  Google Scholar 

  • Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40(9):1361–1403

  • Lee SY, Choi HJ (2018) Persimmon leaf bio-waste for adsorptive removal of heavy metals from aqueous solution. J Environ Manag 209:382–392

    Article  CAS  Google Scholar 

  • Lei L, Wang F, Lv Y et al (2018) Halloysite nanotubes and Fe3O4 nanoparticles enhanced adsorption removal of heavy metal using electrospun membranes. Appl Clay Sci 161:225–234

    Article  CAS  Google Scholar 

  • Liang Y, Cao X, Zhao L et al (2014) Biochar- and phosphate-induced immobilization of heavy metals in contaminated soil and water: implication on simultaneous remediation of contaminated soil and groundwater. Environ Sci Pollut Res Int 21(6):4665–4674

    Article  CAS  Google Scholar 

  • Liang J, Liu M, Zhang Y (2016) Cd(II) removal on surface-modified activated carbon: equilibrium, kinetics and mechanism. Water Sci Technol 74(8):1800–1808

    Article  CAS  Google Scholar 

  • Ling LL, Liu WJ, Zhang S et al (2017) Magnesium oxide embedded nitrogen self-doped biochar composites: fast and high-efficiency adsorption of heavy metals in an aqueous solution. Environ Sci Technol 51(17):10081–10089

    Article  CAS  Google Scholar 

  • Liu JF, Zhao ZS, Jiang GB (2015) Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water. Environ Sci Technol 42(18):6949–6954

    Article  CAS  Google Scholar 

  • Ma Z, Guan Y, Liu H (2005) Synthesis and characterization of micron-sized monodisperse superparamagnetic polymer particles with amino groups. J Polym Sci A Polym Chem 43(15):3433–3439

    Article  CAS  Google Scholar 

  • Ma H, Pu S, Hou Y et al (2018a) A highly efficient magnetic chitosan “fluid” adsorbent with a high capacity & fast adsorption kinetics for dyeing wastewater purification. Chem Eng J 345:556–565

    Article  CAS  Google Scholar 

  • Ma J, Xue F, Jiang L et al (2018b) Magnetic flocculants synthesized by Fe3O4 coated with cationic polyacrylamide for high turbid water flocculation. Environ Sci Pollut Res 25:25955–25966

    Article  CAS  Google Scholar 

  • Meng J, Cui J, Yu J et al (2018) Preparation of green chelating fibers and adsorption properties for Cd(II) in aqueous solution. J Mater Sci 53(3):1–13

    Article  CAS  Google Scholar 

  • Nabavinia M, Khoshfetrat AB, Naderi-Meshkin H (2019) Nano-hydroxyapatite-alginate-gelatin microcapsule as a potential osteogenic building block for modular bone tissue engineering. Mater Sci Eng C Mater Biol Appl 97:67–77

  • Núñez JD, Benito AM, González R et al (2014) Integration and bioactivity of hydroxyapatite grown on carbon nanotubes and graphene oxide. Carbon 79(1):590–604

    Article  CAS  Google Scholar 

  • Piar C, Pakade YB (2015) Synthesis and characterization of hydroxyapatite nanoparticles impregnated on apple pomace to enhanced adsorption of Pb(II), Cd(II), and Ni(II) ions from aqueous solution. Environ Sci Pollut Res 22(14):10919–10929

    Article  CAS  Google Scholar 

  • Qian M (2007) Advances in new technology for heavy metal wastewater treatment at home and abroad. Chin J Chem Eng 1(7):10–14

    Google Scholar 

  • Rahmanian O, Dinari M, Abdolmaleki MK (2018) Carbon quantum dots/layered double hydroxide hybrid for fast and efficient decontamination of Cd(II): the adsorption kinetics and isotherms. Appl Surf Sci 428:272–279

    Article  CAS  Google Scholar 

  • Schiewer S, Patil SB (2008) Pectin-rich fruit wastes as biosorbents for heavy metal removal: equilibrium and kinetics. Bioresour Technol 99(6):1896–1903

    Article  CAS  Google Scholar 

  • Shan RR, Yan LG, Yang K et al (2015) Adsorption of Cd(II) by Mg-Al-CO3- and magnetic Fe3O4/Mg-Al-CO3-layered double hydroxides: kinetic, isothermal, thermodynamic and mechanistic studies. J Hazard Mater 299(9):42–49

    Article  CAS  Google Scholar 

  • Son EB, Poo KM, Chang JS et al (2018) Heavy metal removal from aqueous solutions using engineered magnetic biochars derived from waste marine macro-algal biomass. Sci Total Environ 615:161–168

    Article  CAS  Google Scholar 

  • Su Y, Adeleye AS, Huang Y et al (2014) Simultaneous removal of cadmium and nitrate in aqueous media by nanoscale zerovalent iron (nZVI) and Au doped nZVI particles. Water Res 63(7):102–111

    Article  CAS  Google Scholar 

  • Tang N, Niu CG, Li XT (2018) Efficient removal of Cd and Pb from aqueous solution with amino- and thiol-functionalized activated carbon isotherm and kinetics modeling. Sci Total Environ 635:1331–1344

    Article  CAS  Google Scholar 

  • Viswanathan N, Meenakshi S (2008) Enhanced fluoride sorption using La(III) incorporated carboxylated chitosan beads. J Colloid Interface Sci 322(2):375–383

    Article  CAS  Google Scholar 

  • Wan S, Bing C, Ahmad ZU et al (2016) Ordered mesoporous carbon preparation by the in situ radical polymerization of acrylamide and its application for resorcinol removal. J Appl Polym Sci 133(19):1–11

    Google Scholar 

  • Wei N, Cheng P, Zhou X et al (2017) Three-dimensional porous scaffold by self-assembly of reduced graphene oxide and nano-hydroxyapatite composites for bone tissue engineering. Carbon 116(Complete):325–337

    Google Scholar 

  • Wu J, Huang D, Liu X et al (2018) Remediation of As(III) and Cd(II) co-contamination and its mechanism in aqueous systems by a novel calcium-based magnetic biochar. J Hazard Mater 348:10–19

    Article  CAS  Google Scholar 

  • Yamamura H, Da SV, Plm R et al (2018) Physico-chemical characterization and biocompatibility of hydroxyapatite derived from fish waste. J Mech Behav Biomed Mater 80:137–142

    Article  CAS  Google Scholar 

  • Yang L, Wei Z, Zhong W et al (2016a) Modifying hydroxyapatite nanoparticles with humic acid for highly efficient removal of Cu(II) from aqueous solution. Colloids Surf A Physicochem Eng Asp 490:9–21

    Article  CAS  Google Scholar 

  • Yang L, Zhong W, Cui J et al (2016b) Enhanced removal of Cu(II) ions from aqueous solution by poorly crystalline hydroxyapatite nanoparticles. J Dispers Sci Technol 37:956–968

    Article  CAS  Google Scholar 

  • Yuan F, Gong JL, Zeng GM et al (2010) Adsorption of Cd(II) and Zn(II) from aqueous solutions using magnetic hydroxyapatite nanoparticles as Aadsorbents. Chem Eng J 162(2):487–494

    Article  CAS  Google Scholar 

  • Zendehdel M, Ramezani M, Shoshtariyeganeh B et al (2018) Simultaneous removal of Pb(II), Cd(II) and bacteria from aqueous solution using amino-functionalized Fe3O4/NaP zeolite nanocomposite. Environ Technol 18:1–16

    Article  CAS  Google Scholar 

  • Zhang C, Shan B, Tang W et al (2017) Comparison of cadmium and lead sorption by phyllostachys pubescens biochar produced under a low-oxygen pyrolysis atmosphere. Bioresour Technol 238:352–360

    Article  CAS  Google Scholar 

  • Zhang X, Sun C, Zhang L et al (2018a) Adsorption studies of cadmium onto magnetic Fe3O4@FePO4 and its preconcentration with detection by electrothermal atomic absorption spectrometry. Talanta 181:352–358

    Article  CAS  Google Scholar 

  • Zhang Z, Wang X, Hao W et al (2018b) Removal of Pb(II) from aqueous solution using hydroxyapatite/calcium silicate hydrate (HAP/C-S-H) composite adsorbent prepared by a phosphate recovery process. Chem Eng J 344:53–61

    Article  CAS  Google Scholar 

  • Zheng LC, Dang Z, Yi XY et al (2010) Equilibrium and kinetic studies of adsorption of Cd(II) from aqueous solution using modified corn stalk. J Hazard Mater 176(1-3):650–656

    Article  CAS  Google Scholar 

  • Zhou Q, Liao B, Lin L et al (2017) Adsorption of Cu(II) and Cd(II) from aqueous solutions by ferromanganese binary oxide–biochar composites. Sci Total Environ 615:115–122

    Article  CAS  Google Scholar 

  • Zhou H, Jiang Z, Wei S et al (2018) Adsorption of Cd(II) from aqueous solutions by a novel layered double hydroxide FeMnMg-LDH. Water Air Soil Pollut 229(3):78

    Article  CAS  Google Scholar 

  • Zhuzhou (2007) Preparation and characterization of magnetite Fe3O4 nanopowders. Rare Metal Mater Eng 36(6):238–243

    Google Scholar 

Download references

Funding

This research was supported by the National Key Research and Development Program of China, project NO.2017YFD0801004.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yujiao Li, Zhimin Yang, Yucheng Chen or Lei Huang.

Additional information

Responsible editor: Tito Roberto Cadaval Jr

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Yang, Z., Chen, Y. et al. Adsorption, recovery, and regeneration of Cd by magnetic phosphate nanoparticles. Environ Sci Pollut Res 26, 17321–17332 (2019). https://doi.org/10.1007/s11356-019-05081-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-05081-6

Keywords

Navigation