Skip to main content

Advertisement

Log in

Solidification/stabilization of municipal solid waste incineration fly ash using uncalcined coal gangue–based alkali-activated cementitious materials

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The proper disposal of municipal solid waste incineration fly ash (MSWI FA) is necessary due to the presence of hazardous metals (Cu2+, Zn2+, Pb2+ and Cd2+). The solidification/stabilization through alkali-activated cementitious materials (having aluminosilicates) is regarded as one of the best methods for its disposal. In this paper, an uncalcined coal gangue–based alkali-activated cementitious material was used to solidify the MSWI FA. The compressive strength of these cementitious materials was evaluated through different contents of alkali activators, SiO2/Na2O molar ratios, liquid/solid ratios and curing temperatures by utilizing a single-factor experiment. The specimens with the highest compressive strength (31.37 MPa) were used for solidification of MSWI FA. The results indicated that compressive strength decreased with the addition of MSWI FA which caused the higher leaching of heavy metals. The solidification efficiencies of Cu2+, Zn2+, Pb2+ and Cd2+ were more than 95%. In addition, leaching concentrations had not surpassed the critical limit up to 20% addition of MSWI FA in solidified samples and representing the potential application of these samples for construction and landfill purposes. Heavy metals in MSWI FA were solidified through physical encapsulation and chemical bonding which was verified by speciation analysis, X-ray diffraction, Fourier transform infrared spectrometry and scanning electron microscopy with energy dispersive spectrometry analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

MSWI FA:

municipal solid waste incineration fly ash

AAM:

alkali-activated cementitious material

FTIR:

Fourier transform infrared spectroscopy

CGS:

MSWI FA-bearing CG-based solidified bodies

XRF:

X-ray fluorescence spectrometry

EDS:

energy dispersive spectrometry

CG:

coal gangue

OPC:

ordinary Portland cement

XRD:

X-ray diffraction

L/S:

liquid-to-solid

SEM:

scanning electron microscopy

References

  • Aredes FGM, Campos TMB, Machado JPB, Sakane KK, Thim GP, Brunelli DD (2015) Effect of cure temperature on the formation of metakaolinite-based geopolymer. Ceram Int 41:7302–7311

    Article  CAS  Google Scholar 

  • Balczar I, Korim T, Kovacs A, Mako E (2016) Mechanochemical and thermal activation of kaolin for manufacturing geopolymer mortars - comparative study. Ceram Int 42:15367–15375

    Article  CAS  Google Scholar 

  • Benito P, Leonelli C, Medri V, Vaccari A (2013) Geopolymers: a new and smart way for a sustainable development Preface. Appl Clay Sci 73:1–1

    Article  CAS  Google Scholar 

  • Bich C, Ambroise J, Pera J (2009) Influence of degree of dehydroxylation on the pozzolanic activity of metakaolin. Appl Clay Sci 44:194–200

    Article  CAS  Google Scholar 

  • Bie RS, Chen P, Song XF, Ji XY (2016) Characteristics of municipal solid waste incineration fly ash with cement solidification treatment. J Energy Inst 89:704–712

    Article  CAS  Google Scholar 

  • Chen L, Wang L, Cho D-W, Tsang DCW, Tong L, Zhou Y, Yang J, Hu Q, Poon CS (2019) Sustainable stabilization/solidification of municipal solid waste incinerator fly ash by incorporation of green materials. J Clean Prod 222:335–343

    Article  CAS  Google Scholar 

  • Cheng TW, Chiu JP (2003) Fire-resistant geopolymer produced by granulated blast furnace slag. Miner Eng 16:205–210

    Article  CAS  Google Scholar 

  • CN-GB (2007) Identification standards for hazardous wastes-identification for extraction toxicity (GB5085.3-2007)

  • CN-GB (2008) Standard for pollution control on the landfill site of municipal solid waste (GB 16889–2008)

  • CN-HJ (2007) Solid waste-Extraction procedure for leaching toxicity-acetic acid buffer solution method (HJ/T 300-2007)

  • de Vargas AS, Dal Molin DCC, Vilela ACF, da Silva FJ, Pavao B, Veit H (2011) The effects of Na2O/SiO2 molar ratio, curing temperature and age on compressive strength, morphology and microstructure of alkali-activated fly ash-based geopolymers. Cem Concr Compos 33:653–660

    Article  CAS  Google Scholar 

  • Deng J, Li B, Xiao Y, Ma L, Wang CP, Bin LW, Shu CM (2017) Combustion properties of coal gangue using thermogravimetry-Fourier transform infrared spectroscopy. Appl Therm Eng 116:244–252

    Article  CAS  Google Scholar 

  • Diaz-Loya EI, Allouche EN, Eklund S, Joshi AR, Kupwade-Patil K (2012) Toxicity mitigation and solidification of municipal solid waste incinerator fly ash using alkaline activated coal ash. Waste Manag 32:1521–1527

    Article  CAS  Google Scholar 

  • Dong L (2018) Research on aluminum and iron oxide recovery from coal gangue through acid leaching. Ph.D Thesis, China University of Mining & Technology, Beijing

  • Du B, Li JT, Fang W, Liu YL, Yu SY, Li Y, Liu JG (2018) Characterization of naturally aged cement-solidified MSWI fly ash. Waste Manag 80:101–111

    Article  CAS  Google Scholar 

  • Ei-Eswed BI, Aldagag OM, Khalili FI (2017) Efficiency and mechanism of stabilization/solidification of Pb(II), Cd(II), Cu(II), Th(IV) and U(VI) in metakaolin based geopolymers. Appl Clay Sci 140:148–156

    Article  CAS  Google Scholar 

  • El Hafid K, Hajjaji M (2015) Effects of the experimental factors on the microstructure and the properties of cured alkali-activated heated clay. Appl Clay Sci 116:202–210

    Article  CAS  Google Scholar 

  • Fernandez R, Martirena F, Scrivener KL (2011) The origin of the pozzolanic activity of calcined clay minerals: A comparison between kaolinite, illite and montmorillonite. Cem Concr Res 41:113–122

    Article  CAS  Google Scholar 

  • Gao K, Lin KL, Wang D, Hwang CL, Shiu HS, Chang YM, Cheng TW (2014) Effects SiO2/Na2O molar ratio on mechanical properties and the microstructure of nano-SiO2 metakaolin-based geopolymers. Constr Build Mater 53:503–510

    Article  Google Scholar 

  • Giasuddin HM, Sanjayan JG, Ranjith PG (2013) Strength of geopolymer cured in saline water in ambient conditions. Fuel 107:34–39

    Article  CAS  Google Scholar 

  • Gorhan G, Kurklu G (2014) The influence of the NaOH solution on the properties of the fly ash-based geopolymer mortar cured at different temperatures. Compos Part B 58:371–377

    Article  CAS  Google Scholar 

  • Granizo N, Palomo A, Fernandez-Jimenez A (2014) Effect of temperature and alkaline concentration on metakaolin leaching kinetics. Ceram Int 40:8975–8985

    Article  CAS  Google Scholar 

  • Hounsi AD, Lecomte-Nana G, Djeteli G, Blanchart P, Alowanou D, Kpelou P, Napo K, Tchangbedji G, Praisler M (2014) How does Na, K alkali metal concentration change the early age structural characteristic of kaolin-based geopolymers. Ceram Int 40:8953–8962

    Article  CAS  Google Scholar 

  • Hu W, Nie QK, Huang BS, Shu X, He Q (2018) Mechanical and microstructural characterization of geopolymers derived from red mud and fly ashes. J Clean Prod 186:799–806

    Article  CAS  Google Scholar 

  • Huang X, Huang T, Li S, Muhammad F, Xu GJ, Zhao ZQ, Yu L, Yan YJ, Li DW, Jiao B (2016) Immobilization of chromite ore processing residue with alkali-activated blast furnace slag-based geopolymer. Ceram Int 42:9538–9549

    Article  CAS  Google Scholar 

  • Huang X, Zhuang RL, Muhammad F, Yu L, Shiau YC, Li DW (2017) Solidification/stabilization of chromite ore processing residue using alkali-activated composite cementitious materials. Chemosphere 168:300–308

    Article  CAS  Google Scholar 

  • Huang GD, Ji YS, Li J, Hou ZH, Dong ZC (2018) Improving strength of calcinated coal gangue geopolymer mortars via increasing calcium content. Constr Build Mater 166:760–768

    Article  CAS  Google Scholar 

  • Istuque DB, Soriano L, Akasaki JL, Melges JLP, Borrachero MV, Monzo J, Paya J, Tashima MM (2019) Effect of sewage sludge ash on mechanical and microstructural properties of geopolymers based on metakaolin. Constr Build Mater 203:95–103

    Article  CAS  Google Scholar 

  • Joshi S, Kalyanasundaram S, Balasubramanian V (2013) Quantitative Analysis of Sodium Carbonate and Sodium Bicarbonate in Solid Mixtures Using Fourier Transform Infrared Spectroscopy (FT-IR). Appl Spectrosc 67:841–845

    Article  CAS  Google Scholar 

  • Juenger MCG, Winnefeld F, Provis JL, Ideker JH (2011) Advances in alternative cementitious binders. Cem Concr Res 41:1232–1243

    Article  CAS  Google Scholar 

  • Komnitsas K, Zaharaki D, Vlachou A, Bartzas G, Galetakis M (2015) Effect of synthesis parameters on the quality of construction and demolition wastes (CDW) geopolymers. Adv Powder Technol 26:368–376

    Article  CAS  Google Scholar 

  • Kumar V, Kumar A, Prasad B (2019) Mechanical behavior of non-silicate based alkali-activated ground granulated blast furnace slag. Constr Build Mater 198:494–500

    Article  CAS  Google Scholar 

  • Lee S, van Riessen A, Chon CM, Kang NH, Jou HT, Kim YJ (2016) Impact of activator type on the immobilisation of lead in fly ash-based geopolymer. J Hazard Mater 305:59–66

    Article  CAS  Google Scholar 

  • Li C, Wan JH, Sun HH, Li LT (2010) Investigation on the activation of coal gangue by a new compound method. J Hazard Mater 179:515–520

    Article  CAS  Google Scholar 

  • Li S, Huang X, Muhammad F, Yu L, Xia M, Zhao J, Jiao BQ, Shiau Y, Li DW (2018) Waste solidification/stabilization of lead-zinc slag by utilizing fly ash based geopolymers. RSC Adv 8(32):956–32,965

    Google Scholar 

  • Lin KL, Lin DF, Chao SJ (2009) Effects of municipal solid waste incinerator fly ash slag on the strength and porosity of slag-blended cement pastes. Environ Eng Sci 26:1081–1086

    Article  CAS  Google Scholar 

  • Liu XM, Zhang N, Yao Y, Sun HH, Feng H (2013) Micro-structural characterization of the hydration products of bauxite-calcination-method red mud-coal gangue based cementitious materials. J Hazard Mater 262:428–438

    Article  CAS  Google Scholar 

  • Lizcano M, Gonzalez A, Basu S, Lozano K, Radovic M (2012) Effects of water content and chemical composition on structural properties of alkaline activated metakaolin-based geopolymers. J Am Ceram Soc 95:2169–2177

    Article  CAS  Google Scholar 

  • Moukannaa S, Nazari A, Bagheri A, Loutou M, Sanjayan JG, Hakkou R (2019) Alkaline fused phosphate mine tailings for geopolymer mortar synthesis: thermal stability, mechanical and microstructural properties. J Non-Cryst Solids 511:76–85

    Article  CAS  Google Scholar 

  • Muhammad F, Huang X, Li S, Xia M, Zhang ML, Liu Q, Hassan MAS, Jiao BQ, Yu L, Li DW (2018) Strength evaluation by using polycarboxylate superplasticizer and solidification efficiency of Cr6+, Pb2+ and Cd2+ in composite based geopolymer. J Clean Prod 188:807–815

    Article  CAS  Google Scholar 

  • Okada K, Ooyama A, Isobe T, Kameshima Y, Nakajima A, MacKenzie KJD (2009) Water retention properties of porous geopolymers for use in cooling applications. J Eur Ceram Soc 29:1917–1923

    Article  CAS  Google Scholar 

  • Pelisser F, Guerrino EL, Menger M, Michel MD, Labrincha JA (2013) Micromechanical characterization of metakaolin-based geopolymers. Constr Build Mater 49:547–553

    Article  Google Scholar 

  • Pereira CF, Luna Y, Querol X, Antenucci D, Vale J (2009) Waste stabilization/solidification of an electric arc furnace dust using fly ash-based geopolymers. Fuel 88:1185–1193

    Article  CAS  Google Scholar 

  • Reig L, Tashima MM, Soriano L, Borrachero MV, Monzo J, Paya J (2013) Alkaline activation of ceramic waste materials. Waste Biomass Valoriz 4:729–736

    Article  CAS  Google Scholar 

  • Rovnanik P (2010) Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer. Constr Build Mater 24:1176–1183

    Article  Google Scholar 

  • Santa RAAB, Soares C, Riella HG (2016) Geopolymers with a high percentage of bottom ash for solidification/immobilization of different toxic metals. J Hazard Mater 318:145–153

    Article  CAS  Google Scholar 

  • Shi HS, Kan LL (2009) Characteristics of municipal solid wastes incineration (MSWI) fly ash-cement matrices and effect of mineral admixtures on composite system. Constr Build Mater 23:2160–2166

    Article  Google Scholar 

  • Slaty F, Khoury H, Wastiels J, Rahier H (2013) Characterization of alkali activated kaolinitic clay. Appl Clay Sci 75–76:120–125

    Article  CAS  Google Scholar 

  • Temuujin J, van Riessen A, Williams R (2009) Influence of calcium compounds on the mechanical properties of fly ash geopolymer pastes. J Hazard Mater 167:82–88

    Article  CAS  Google Scholar 

  • Tessier A, Campbell PGC, Bisson M (1979) Sequential extraction procedure for the speciation of particulate trace-metals. Anal Chem 51:844–851

    Article  CAS  Google Scholar 

  • Wang L, Yu KQ, Li JS, Tsang DCW, Poon CS, Yoo JC, Baek K, Ding SM, Hou DY, Dai JG (2018a) Low-carbon and low-alkalinity stabilization/solidification of high-Pb contaminated soil. Chem Eng J 351:418–427

    Article  CAS  Google Scholar 

  • Wang YG, Han FL, Mu JQ (2018b) Solidification/stabilization mechanism of Pb(II), Cd(II), Mn(II) and Cr(III) in fly ash based geopolymers. Constr Build Mater 160:818–827

    Article  CAS  Google Scholar 

  • Wang L, Chen L, Cho DW, Tsang DCW, Yang J, Hou D, Baek K, Kua HW, Poon CS (2019a) Novel synergy of Si-rich minerals and reactive MgO for stabilisation/solidification of contaminated sediment. J Hazard Mater 365:695–706

    Article  CAS  Google Scholar 

  • Wang L, Cho DW, Tsang DCW, Cao XD, Hou DY, Shen ZT, Alessi DS, Ok YS, Poon CS (2019b) Green remediation of As and Pb contaminated soil using cement-free clay-based stabilization/solidification. Environ Int 126:336–345

    Article  CAS  Google Scholar 

  • Xu H, Gong WL, Syltebo L, Izzo K, Lutze W, Pegg IL (2014) Effect of blast furnace slag grades on fly ash based geopolymer waste forms. Fuel 133:332–340

    Article  CAS  Google Scholar 

  • Ye N, Chen Y, Yang JK, Liang S, Hu Y, Xiao B, Huang QF, Shi YF, Hu JP, Wu X (2016) Co-disposal of MSWI fly ash and Bayer red mud using an one-part geopolymeric system. J Hazard Mater 318:70–78

    Article  CAS  Google Scholar 

  • Yue Y, Liu ZY, Liu ZZ, Zhang J, Lu M, Zhou JZ, Qian GR (2019) Rapid evaluation of leaching potential of heavy metals from municipal solid waste incineration fly ash. J Environ Manag 238:144–152

    Article  CAS  Google Scholar 

  • Zhan XY, Wang LA, Hu CC, Gong J, Xu TT, Li JX, Yang L, Bai JS, Zhong S (2018) Co-disposal of MSWI fly ash and electrolytic manganese residue based on geopolymeric system. Waste Manag 82:62–70

    Article  CAS  Google Scholar 

  • Zhang JG, Provis JL, Feng DW, van Deventer JSJ (2008) Geopolymers for immobilization of Cr6+, Cd2+, and Pb2+. J Hazard Mater 157:587–598

    Article  CAS  Google Scholar 

  • Zhang N, Liu XM, Sun HH, Li LT (2011) Pozzolanic behaviour of compound-activated red mud-coal gangue mixture. Cem Concr Res 41:270–278

    Article  CAS  Google Scholar 

  • Zhao HT, Deng YJ, Harsh JB, Flury M, Boyle JS (2004) Alteration of kaolinite to cancrinite and sodalite by simulated Hanford tank waste and its impact on cesium retention. Clay Clay Miner 52:1–13

    Article  CAS  Google Scholar 

  • Zheng L, Wang CW, Wang W, Shi YC, Gao XB (2011) Immobilization of MSWI fly ash through geopolymerization: Effects of water-wash. Waste Manag 31:311–317

    Article  CAS  Google Scholar 

  • Zuhua Z, Mao Y, Huajun Z, Yue C (2009) Role of water in the synthesis of calcined kaolin-based geopolymer. Appl Clay Sci 43:218–223

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao Huang, Binquan Jiao, Ning Lu or Dongwei Li.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Responsible editor: Bingcai Pan

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• The coal gangue without calcination is used for the preparation of alkali-activated cementitious materials.

• Uncalcined coal gangue has potential to solidify the MSWI FA.

• Solidified bodies could also be used as construction materials and landfill disposal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, S., Muhammad, F., Yu, L. et al. Solidification/stabilization of municipal solid waste incineration fly ash using uncalcined coal gangue–based alkali-activated cementitious materials. Environ Sci Pollut Res 26, 25609–25620 (2019). https://doi.org/10.1007/s11356-019-05832-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-05832-5

Keywords

Navigation