Skip to main content

Advertisement

Log in

Recent developments in MnO2-based photocatalysts for organic dye removal: a review

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The textile industry consumes a large volume of organic dyes and water. These organic dyes, which remained in the effluents, are usually persistent and difficult to degrade by conventional wastewater treatment techniques. If the wastewater is not treated properly and is discharged into water system, it will cause environmental pollution and risk to living organisms. To mitigate these impacts, the photo-driven catalysis process using semiconductor materials emerges as a promising approach. The semiconductor photocatalysts are able to remove the organic effluent through their mineralization and decolorization abilities. Besides the commonly used titanium dioxide (TiO2), manganese dioxide (MnO2) is a potential photocatalyst for wastewater treatment. MnO2 has a narrow bandgap energy of 1~2 eV. Thus, it possesses high possibility to be driven by visible light and infrared light for dye degradation. This paper reviews the MnO2-based photocatalysts in various aspects, including its fundamental and photocatalytic mechanisms, recent progress in the synthesis of MnO2 nanostructures in particle forms and on supporting systems, and regeneration of photocatalysts for repeated use. In addition, the effect of various factors that could affect the photocatalytic performance of MnO2 nanostructures are discussed, followed by the future prospects of the development of this semiconductor photocatalysts towards commercialization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Achar TK, Bose A, Mal P (2017) Mechanochemical synthesis of small organic molecules. Beilstein J Org Chem 13(1):1907–1931

    CAS  Google Scholar 

  • Ai Z, Zhang L, Kong F, Liu H, Xing W, Qiu J (2008) Microwave-assisted green synthesis of MnO2 nanoplates with environmental catalytic activity. Mater Chem Phys 111(1):162–167

    CAS  Google Scholar 

  • Akpan UG, Hameed BH (2009) Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review. J Hazard Mater 170(2–3):520–529

    CAS  Google Scholar 

  • Alzahrani SA, Al-Thabaiti SA, Al-Arjan WS, Malik MA, Khan Z (2017) Preparation of ultra long α-MnO2 and Ag@MnO2 nanoparticles by seedless approach and their photocatalytic performance. J Mol Struct 1137:495–505

    CAS  Google Scholar 

  • Arai T, Fujita H, Watanabe M (1987) Evaluation of adhesion strength of thin hard coatings. Thin Solid Films 154(1–2):387–401

    CAS  Google Scholar 

  • Baral A, Das DP, Minakshi M, Ghosh MK, Padhi DK (2016) Probing environmental remediation of rhb organic dye using α-mno2 under visible-light irradiation: structural, photocatalytic and mineralization studies. Chem Select 1(14):4277–4258

    CAS  Google Scholar 

  • Barreca D, Gri F, Gasparotto A, Carraro G, Bigiani L, Altantzis T, Žener B, Štangar UL, Alessi B, Padmanaban DB (2019) Multi-functional MnO2 nanomaterials for photo-activated applications by a plasma-assisted fabrication route. Nanoscale 11(1):98–108

    CAS  Google Scholar 

  • Beydoun D, Amal R, Scott J, Low G, McEvoy S (2001) Studies on the mineralization and separation efficiencies of a magnetic photocatalyst. Chem Eng Technol 24(7):745–748

    CAS  Google Scholar 

  • Bond GC (1987) Heterogeneous Catalysis, United States, 2nd edn. Clarendon Press, Oxford

    Google Scholar 

  • Cabello G, Davoglio RA, Cuadrado LG (2018) The role of small nanoparticles on the formation of hot spots under microwave-assisted hydrothermal heating. Inorg Chem 57(12):7252–7258

    CAS  Google Scholar 

  • Cao H, Suib SL (1994) Highly efficient heterogeneous photooxidation of 2-propanol to acetone with amorphous manganese oxide catalysts. J Am Chem Soc 116(12):5334–5342

    CAS  Google Scholar 

  • Chakrabarti S, Dutta BK (2004) Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst. J Hazard Mater 112(3):269–278

    CAS  Google Scholar 

  • Chan HS, Yeong WT, Juan JC, The CY (2011) Recent developments of metal oxide semiconductors as photocatalysts in advanced oxidation processes (AOPs) for treatment of dye waste-water. J Chem Technol Biotechnol 86(9):1130–1158

    CAS  Google Scholar 

  • Chan YL, Pung SY, Sreekantan S, Yeoh FY (2016) Photocatalytic activity of β-MnO2 nanotubes grown on PET fibre under visible light irradiation. J Exp Nanosci 11(8):603–618

    CAS  Google Scholar 

  • Chen S, Zhu J, Han Q, Zheng Z, Yang Y, Wang X (2009) Shape-controlled synthesis of one-dimensional MnO2 via a facile quick-precipitation procedure and its electrochemical properties. Cryst Growth Des 9(10):4356–4361

    CAS  Google Scholar 

  • Chen J, Huang Z, Meng H, Zhang L, Ji D, Liu J, Yu F, Qu L, Li Z (2018) A facile fluorescence lateral flow biosensor for glutathione detection based on quantum dots-MnO2 nanocomposites. Sensors Actuators B Chem 260:770–777

    CAS  Google Scholar 

  • Cui P, Chen Y, Chen G (2011) Degradation of low concentration methyl orange in aqueous solution through sonophotocatalysis with simultaneous recovery of photocatalyst by ceramic membrane microfiltration. Ind Eng Chem Res 50(7):3947–3954

    CAS  Google Scholar 

  • Cui HJ, Huang HZ, Yuan B, Fu ML (2015) Decolourization of RhB dye by manganese oxides: effect of crystal type and solution pH. Geochem Trans 16(1):10

    Google Scholar 

  • Dang TD, Banerjee AN, Tran QT, Roy S (2016) Fast degradation of dyes in water using manganese-oxide-coated diatomite for environmental remediation. J Phys Chem Solids 98:50–58

    CAS  Google Scholar 

  • Das M, Bhattacharyya KG (2014) Oxidation of Rhodamine B in aqueous medium in ambient conditions with raw and acid-activated MnO2, NiO, ZnO as catalysts. J Mol Catal A Chem 391:121–129

    CAS  Google Scholar 

  • Das S, Samanta A, Jana S (2017) Light-assisted synthesis of hierarchical flower-like MnO2 nanocomposites with solar light induced enhanced photocatalytic activity. ACS Sustain Chem Eng 5(10):9086–9094

    CAS  Google Scholar 

  • David SA, Vedhi C (2017) Synthesis of nano Co3O4-MnO2-ZrO2 mixed oxides for visible-light photocatalytic activity. Int J Adv Res Sci Eng Technol 6(01):613–623

    Google Scholar 

  • Devaraj S, Munichandraiah N (2008) Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties. J Phys Chem C 112(11):4406–4417

    CAS  Google Scholar 

  • Dey G, Yang L, Lee KB, Wang L (2018) Characterizing molecular adsorption on biodegradable MnO2 nanoscaffolds. J Phys Chem C 122(50):29017–29027

    CAS  Google Scholar 

  • Dong H, Zeng G, Tang L, Fan C, Zhang C, He X, He Y (2015) An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures. Water Res 79:128–146

    CAS  Google Scholar 

  • Du P, Chang J, Zhao H, Liu W, Dang C, Tong M, Ni J, Zhang B (2018) Sea-buckthorn-like MnO2 decorated titanate nanotubes with oxidation property and photocatalytic activity for enhanced degradation of 17β-estradiol under solar light. ACS Appl Energy Mater 1(5):2123–2133

    CAS  Google Scholar 

  • Ekimov AI, Efros AL, Onushchenko AA (1985) Quantum size effect in semiconductor microcrystals. Solid State Commun 56(11):921–924

    CAS  Google Scholar 

  • Elbasuney S, Elsayed MA, Mostafa SF, Khalil WF (2019) MnO2 nanoparticles supported on porous Al2O3 substrate for wastewater treatment: synergy of adsorption, oxidation, and photocatalysis. J Inorg Organomet Polym Mater 29(3):827–840

    CAS  Google Scholar 

  • Feng Q, Yanagisawa K, Yamasaki N (1998) Hydrothermal soft chemical process for synthesis of manganese oxides with tunnel structures. J Porous Mater 5(2):153–162

    CAS  Google Scholar 

  • Ferreira T, Garcia L, Gurgel G, Nascimento R, Godinho M, Rodrigues M, Bomio M, Motta F (2018) Effects of MnO2/In2O3 thin films on photocatalytic degradation 17 alpha-ethynylestradiol and methylene blue in water. J Mater Sci Mater Electron 29(14):12278–12287

    CAS  Google Scholar 

  • Fujishima A, Zhang X, Tryk DA (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63(12):515–582

    CAS  Google Scholar 

  • Gagrani A, Zhou J, Tsuzuki T (2018) Solvent free mechanochemical synthesis of MnO2 for the efficient degradation of Rhodamine-B. Ceram Int 44(5):4694–4698

    CAS  Google Scholar 

  • Gao T, Glerup M, Krumeich F, Nesper R, Fjellvåg H, Norby P (2008) Microstructures and spectroscopic properties of cryptomelane-type manganese dioxide nanofibers. J Phys Chem C 112(34):13134–13140

    CAS  Google Scholar 

  • Gong W, Meng X, Tang X, Ji P (2017) Core-Shell MnO2-SiO2 nanorods for catalyzing the removal of dyes from water. Catalysts 7(1):19

    Google Scholar 

  • Güneş Durak S, Köseoğlu İmer DY, Türkoğlu Demirkol G, Ormancı T, Armağan B, Tüfekci N (2013) Influence of ageing on the catalytic activity of MnO2 sludge for oxidation of Mn (II). Desalin Water Treat 51(28–30):5692–5700

    Google Scholar 

  • Guo HX, Lin KL, Zheng ZS, Xiao FB, Li SX (2012) Sulfanilic acid-modified P25 TiO2 nanoparticles with improved photocatalytic degradation on Congo red under visible light. Dyes Pigments 92(3):1278–1284

    CAS  Google Scholar 

  • Han F, Kambala VSR, Srinivasan M, Rajarathnam D, Naidu R (2009) Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment: a review. Appl Catal A General 359(1–2):25–40

    CAS  Google Scholar 

  • Hao X, Zhao J, Zhao Y, Ma D, Lu Y, Guo J, Zeng Q (2013) Mild aqueous synthesis of urchin-like MnOx hollow nanostructures and their properties for RhB degradation. Chem Eng J 229:134–143

    CAS  Google Scholar 

  • Hayon E (1965) Radical and molecular yields in the radiolysis of alkaline aqueous solutions. Faraday Soc 61:734–743

    CAS  Google Scholar 

  • He Y, Jiang DB, Chen J, Jiang DY, Zhang YX (2018) Synthesis of MnO2 nanosheets on montmorillonite for oxidative degradation and adsorption of methylene blue. J Colloid Interface Sci 510:207–220

    CAS  Google Scholar 

  • Herrmann JM, Disdier J, Pichat P, Malato S, Blanco J (1998) TiO2-based solar photocatalytic detoxification of water containing organic pollutants. Case studies of 2, 4-dichlorophenoxyaceticacid (2, 4-D) and of benzofuran. Appl Catal B Environ 17(1–2):15–23

    CAS  Google Scholar 

  • Horie Y, David DA, Taya M, Tone S (1996) Effects of light intensity and titanium dioxide concentration on photocatalytic sterilization rates of microbial cells. Ind Eng Chem Res 35(11):3920–3926

    CAS  Google Scholar 

  • Hoseinpour V, Ghaemi N (2018) Novel ZnO–MnO2–Cu2O triple nanocomposite: facial synthesis, characterization, antibacterial activity and visible light photocatalytic performance for dyes degradation-a comparative study. Mater Res Express 5(8):085012

    Google Scholar 

  • Hoseinpour V, Souri M, Ghaemi N (2018) Green synthesis, characterisation, and photocatalytic activity of manganese dioxide nanoparticles. Micro Nano Lett 13(11):1560–1563

    CAS  Google Scholar 

  • Huang M, Xu C, Wu Z, Huang Y, Lin J, Wu J (2008) Photocatalytic discoloration of methyl orange solution by Pt modified TiO2 loaded on natural zeolite. Dyes Pigments 77(2):327–334

    CAS  Google Scholar 

  • Huang MZ, Yuan B, Dai L, Fu ML (2015) Toward NIR driven photocatalyst: fabrication, characterization, and photocatalytic activity of β-NaYF4: Yb3+, Tm3+/g-C3N4 nanocomposite. J Colloid Interface Sci 460:264–272

    CAS  Google Scholar 

  • Huang D, Ma J, Fan C, Wang K, Zhao W, Peng M, Komarneni S (2018) Co-Mn-Fe complex oxide catalysts from layered double hydroxides for decomposition of methylene blue: role of Mn. Appl Clay Sci 152:230–238

    CAS  Google Scholar 

  • Julien C, Mauger A (2017) Nanostructured MnO2 as electrode materials for energy storage. Nanomater 7(11):396

    Google Scholar 

  • Khan I, Sadiq M, Khan I, Saeed K (2019) Manganese dioxide nanoparticles/activated carbon composite as efficient UV and visible-light photocatalyst. Environ Sci Pollut Res 26(5):5140–5154

    CAS  Google Scholar 

  • Kim EJ, Oh D, Lee CS, Gong J, Kim J, Chang YS (2017) Manganese oxide nanorods as a robust Fenton-like catalyst at neutral pH: crystal phase-dependent behaviour. Catal Today 282:71–76

    CAS  Google Scholar 

  • Kitchaev DA, Peng H, Liu Y, Sun J, Perdew JP, Ceder G (2016) Energetics of MnO2 polymorphs in density functional theory. Phys Rev B 93(4):045132

    Google Scholar 

  • Konstantinou K, Albanis TA (2004) TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl Catal B Environ 49(1):1–14

    CAS  Google Scholar 

  • Kormann C, Bahnemann D, Hoffmann MR (1991) Photolysis of chloroform and other organic molecules in aqueous titanium dioxide suspensions. Environ Sci Technol 25(3):494–500

    CAS  Google Scholar 

  • Kristensen E, Ahmed SI, Devol AH (1995) Aerobic and anaerobic decomposition of organic matter in marine sediment: which is fastest? Limnol Oceanogr 40(8):1430–1437

    CAS  Google Scholar 

  • Kuan W, Chen C, Hu CY (2011) Removal of methylene blue from water by γ-MnO2. Water Sci Technol 64(4):899–903

    CAS  Google Scholar 

  • Kurinobu S, Tsurusaki K, Natui Y, Kimata M, Hasegawa M (2007) Decomposition of pollutants in wastewater using magnetic photocatalyst particles. J Magn Mater 310(2):1025–1027

    Google Scholar 

  • Kwon KD, Refson K, Sposito G (2008) Defect-induced photoconductivity in layered manganese oxides: a density functional theory study. Phys Rev Lett 100(14):146601

    Google Scholar 

  • Kwon H, Marques-Mota F, Chung K, Jang YJ, Hyun JK, Lee J, Kim DH (2017) Enhancing solar light-driven photocatalytic activity of mesoporous carbon–TiO2 hybrid films via upconversion coupling. ACS Sustain Chem Eng 6(1):1310–1317

    Google Scholar 

  • Lai X, Cheng Y, Han C, Luo G (2018) Synthesis of ε-MnO2 in deep eutectic solvent for visible-light-driven photocatalytic activity. Mater Res Innov 23(5):1–5

    Google Scholar 

  • Langhals H (2004) Color chemistry. Synthesis, properties and applications of organic dyes and pigments. Angew Chem Int Ed 43(40):5291–5292

    CAS  Google Scholar 

  • Lee KM, Lai CW, Ngai KS, Juan JC (2016) Recent developments of zinc oxide based photocatalyst in water treatment technology: a review. Water Res 88:428–448

    CAS  Google Scholar 

  • Lekshmi KV, Yesodharan S, Yesodharan E (2017) MnO2 and MnO2/TiO2 mediated, persulphate enhanced photocatalysis for the removal of indigo carmine dye pollutant from water. Eur Chem Bull 6(5):177

    CAS  Google Scholar 

  • Lekshmi KV, Yesodharan S, Yesodharan S (2018) MnO2 efficiently removes indigo carmine dyes from polluted water. Heliyon 4(11):e00897

    Google Scholar 

  • Li M, Li J (2006) Size effects on the band-gap of semiconductor compounds. Mater Lett 60(20):2526–2529

    CAS  Google Scholar 

  • Li S, Ma Z, Wang L, Liu J (2008) Influence of MnO2 on the photocatalytic activity of P-25 TiO2 in the degradation of methyl orange. Sci China Ser B Chem 51(2):179–185

    CAS  Google Scholar 

  • Li W, Cui X, Zeng R, Du G, Sun Z, Zheng R, Ringer SP, Dou SX (2015a) Performance modulation of α-MnO2 nanowires by crystal facet engineering. Sci Rep 5:8987

    CAS  Google Scholar 

  • Li K, Gao S, Wang Q, Xu H, Wang Z, Huang B, Dai Y, Lu J (2015b) In-situ-reduced synthesis of Ti3+ self-doped TiO2/g-C3N4 heterojunctions with high photocatalytic performance under LED light irradiation. ACS Appl Mater Interfaces 7(17):9023–9030

    CAS  Google Scholar 

  • Li YF, Zhu SC, Liu ZP, Am J (2016) Reaction network of layer-to-tunnel transition of MnO2. Chem Soc 138(16):5371–5379

    CAS  Google Scholar 

  • Li Z, Kang W, Han Z, Yan J, Cheng B, Liu Y (2019) Hierarchical MnOx@ PVDF/MWCNTs tree-like nanofiber membrane with high catalytic oxidation activity. J Alloys Compd 780:805–815

    CAS  Google Scholar 

  • Liang S, Teng F, Bulgan G, Zong R, Zhu Y (2008) Effect of phase structure of MnO2 nanorod catalyst on the activity for CO oxidation. J Phys Chem C 112(14):5307–5315

    CAS  Google Scholar 

  • Liang H, Sun H, Patel A, Shukla P, Zhu Z, Wang S (2012) Excellent performance of mesoporous Co3O4/MnO2 nanoparticles in heterogeneous activation of peroxymonosulfate for phenol degradation in aqueous solutions. Appl Catal B Environ 127:330–335

    CAS  Google Scholar 

  • Lin H, Chen D, Liu H, Zou X, Chen T (2017) Effect of MnO2 crystalline structure on the catalytic oxidation of formaldehyde. Aerosol Air Qual Res 17(4):1011–1020

    CAS  Google Scholar 

  • Liu X, Chen C, Zhao Y, Jia B (2013) A review on the synthesis of manganese oxide nanomaterials and their applications on lithium-ion batteries. J Nanomater. https://doi.org/10.1155/2013/736375

    Google Scholar 

  • Liu J, Shao Z, Shao P, Cui F (2015) Activation of peroxymonosulfate with magnetic Fe3O4–MnO2 core–shell nanocomposites for 4-chlorophenol degradation. Chem Eng J 262:854–861

    CAS  Google Scholar 

  • Liu C, Shi JW, Gao C, Niu C (2016) Manganese oxide-based catalysts for low-temperature selective catalytic reduction of NOx with NH3: a review. Appl Catal A General 522:54–69

    CAS  Google Scholar 

  • Liu KY, Zhang Y, Zhang W, Zheng H, Geng S (2017) Charge-discharge process of MnO2 supercapacitor. T Nonferr Metal Soc 17(3):649–653

    Google Scholar 

  • Low J, Cheng B, Yu J (2017) Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: a review. Appl Surf Sci 392:658–686

    CAS  Google Scholar 

  • Lu T, Chen Y, Liu M, Jiang W (2019) Efficient degradation of evaporative condensing liquid of shale gas wastewater using O3/UV process. Process Saf Environ 121:175–183

    CAS  Google Scholar 

  • Luan J, Shen Y, Zhang L, Guo N (2016) Property characterization and photocatalytic activity evaluation of BiGdO3 nanoparticles under visible light irradiation. Int J Mol Sci 17(9):1441

    Google Scholar 

  • Mahale DD, Patil NN, Zodge DS, Gaikwad PD, Banerjee BS, Bawankar KN, Mohod AV, Gogate PR (2016) Removal of patent blue V dye using air bubble-induced oxidation based on small glass balls: intensification studies. Desalin Water Treat 57(34):15900–15909

    CAS  Google Scholar 

  • Malato S, Blanco J, Campos A, Cáceres J, Guillard C, Herrmann J, Fernandez-Alba A (2003) Effect of operating parameters on the testing of new industrial titania catalysts at solar pilot plant scale. Appl Catal B Environ 42(4):349–357

    CAS  Google Scholar 

  • Malato S, Fernández-Ibáñez P, Maldonado MI, Blanco J, Gernjak W (2009) Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catal Today 147(1):1–59

    CAS  Google Scholar 

  • Mittal N, Shah A, Punjabi PB, Sharma V, Rasayan (2009) Photodegradation of rose bengal using MnO2 (manganese dioxide). Rasayan J Chem 2(2):516–520

    CAS  Google Scholar 

  • Miyazaki H, Matsui H, Kuwamoto T, Ito S, Karuppuchamy S, Yoshihara M (2009) Synthesis and photocatalytic activities of MnO2-loaded Nb2O5/carbon clusters composite material. Microporous Mesoporous Mater 118(1–3):518–522

    CAS  Google Scholar 

  • Mohod AV, Hinge SP, Raut RS, Bagal MV, Pinjari D (2018) Process intensified removal of methyl violet 2B using modified cavity-bubbles oxidation reactor. J Environ Chem Eng 6(1):574–582

    CAS  Google Scholar 

  • Molina R, Martínez F, Melero JA, Bremner DH, Chakinala AG (2006) Mineralization of phenol by a heterogeneous ultrasound/Fe-SBA-15/H2O2 process: multivariate study by factorial design of experiments. Appl Catal B Environ 66(3–4):198–207

    CAS  Google Scholar 

  • Mondal D, Das S, Paul BK, Bhattacharya D, Ghoshal D, Gayen AL, Das K, Das S (2019) Size engineered cu-doped α-MnO2 nanoparticles for exaggerated photocatalytic activity and energy storage application. Mater Res Bull 115:159–169

    CAS  Google Scholar 

  • Moulai F, Fellahi O, Messaoudi B, Hadjersi T, Zerroual L (2018) Electrodeposition of nanostructured γ-MnO2 film for photodegradation of Rhodamine B. Ionics 24(7):2099–2109

    CAS  Google Scholar 

  • Nakata K, Fujishima A (2012) TiO2 photocatalysis: design and applications. J Photochem Photobiol C 13(3):169–189

    CAS  Google Scholar 

  • Nanda B, Pradhan AC, Parida K (2016) A comparative study on adsorption and photocatalytic dye degradation under visible light irradiation by mesoporous MnO2 modified MCM-41 nanocomposite. Microporous Mesoporous Mater 226:229–242

    CAS  Google Scholar 

  • Nitta M (1984) Characteristics of manganese nodules as adsorbents and catalysts, a review. Appl Catal 9(2):151–176

    CAS  Google Scholar 

  • Oh WD, Dong Z, Lim TT (2016) Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: current development, challenges and prospects. Appl Catal B Environ 194:169–201

    CAS  Google Scholar 

  • Ong WJ, Tan LL, Ng YH, Yong ST, Chai SP (2016) Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem Rev 116(12):7159–7329

    CAS  Google Scholar 

  • Ong CB, Ng LY, Mohammad AW (2018) A review of ZnO nanoparticles as solar photocatalysts: synthesis, mechanisms and applications. Renew Sust Energ Rev 81:536–552

    CAS  Google Scholar 

  • Pacheco-Torgal F, Jalali S (2011) Nanotechnology: advantages and drawbacks in the field of construction and building materials. Constr Build Mater 25(2):582–590

    Google Scholar 

  • Prahl FG, De-Lange GJ, Scholten S, Cowie GL (1997) A case of post-depositional aerobic degradation of terrestrial organic matter in turbidite deposits from the Madeira Abyssal Plain. Org Geochem 27(3–4):141–152

    CAS  Google Scholar 

  • Qu J, Shi L, He C, Gao F, Li B, Zhou Q, Hu H, Shao G, Wang X, Qiu J (2014) Highly efficient synthesis of graphene/MnO2 hybrids and their application for ultrafast oxidative decomposition of methylene blue. Carbon 66:485–492

    CAS  Google Scholar 

  • Rai M, Dos-Santos CA (2017) Nanotechnology applied to pharmaceutical technology. Springer, Switzerland

  • Rajrana K, Gupta A, Mir RA, Pandey O (2019) Facile sono-chemical synthesis of nanocrystalline MnO2 for catalytic and capacitive applications. Phys B Condens Matter 564:179–185

    CAS  Google Scholar 

  • Recepoğlu YK, Kabay N, Yoshizuka K, Nishihama S, Yılmaz-Ipek I, Arda M, Yüksel M (2018) Effect of operational conditions on separation of lithium from geothermal water by λ-MnO2 using ion exchange–membrane filtration hybrid process. Solvent Extr Ion Exch 36(5):1–14

    Google Scholar 

  • Sakai N, Ebina Y, Takada K, Sasaki T (2005) Photocurrent generation from semiconducting manganese oxide nanosheets in response to visible light. J Phys Chem B 109(19):9651–9655

    CAS  Google Scholar 

  • Saputra E, Muhammad S, Sun H, Patel A, Shukla P, Zhu Z, Wang S (2012) α-MnO2 activation of peroxymonosulfate for catalytic phenol degradation in aqueous solutions. Catal Commun 26:144–148

    CAS  Google Scholar 

  • Saroyan HS, Arampatzidou A, Voutsa D, Lazaridis NK, Deliyanni EA (2019a) Activated carbon supported MnO2 for catalytic degradation of reactive black 5. Colloids Surf A Physicochem Eng Asp 566:166–175

    CAS  Google Scholar 

  • Saroyan H, Kyzas GZ, Deliyanni EA (2019b) Effective dye degradation by graphene oxide supported manganese oxide. Processes 7(1):40

    CAS  Google Scholar 

  • Selvam K, Muruganandham M, Muthuvel I, Swaminathan M (2007) The influence of inorganic oxidants and metal ions on semiconductor sensitized photodegradation of 4-fluorophenol. Chem Eng J 128(1):51–57

    CAS  Google Scholar 

  • Serpone N, Maruthamuthu P, Pichat P, Pelizzetti E, Hidaka H (1995) Exploiting the interparticle electron transfer process in the photocatalysed oxidation of phenol, 2-chlorophenol and pentachlorophenol: chemical evidence for electron and hole transfer between coupled semiconductors. J Photochem Photobio A Chem 85(3):247–255

    CAS  Google Scholar 

  • Shafi PM, Dhanabal R, Chithambararaj A, Velmathi S, Bose AC (2017) α-MnO2/h-MoO3 hybrid material for high performance supercapacitor electrode and photocatalyst. ACS Sustain Chem Eng 5(6):4757–4770

    CAS  Google Scholar 

  • Sharma SK, Chen D, Mudhoo A (2011) Handbook on applications of ultrasound: sonochemistry for sustainability. CRC press, Boca Raton

  • Shayegan Z, Lee CS, Haghighat F (2018) TiO2 photocatalyst for removal of volatile organic compounds in gas phase–a review. Chem Eng J 334:2408–2439

    CAS  Google Scholar 

  • Shinde AJ, More HN (2019) Nanoparticles: as carriers for drug delivery system. Res J Pharma Dosage Forms Technol 1(2):80–86

    Google Scholar 

  • Siddiqui SI, Manzoor O, Mohsin M, Chaudhry SA (2019) Nigella sativa seed based nanocomposite-MnO2/BC: an antibacterial material for photocatalytic degradation, and adsorptive removal of methylene blue from water. Environ Res 171:328–340

    CAS  Google Scholar 

  • Singh H, Saquib M, Haque MM, Muneer M (2007) Heterogeneous photocatalysed degradation of 4-chlorophenoxyacetic acid in aqueous suspensions. J Hazard Mater 142(1–2):374–380

    CAS  Google Scholar 

  • Smith AM, Nie S (2009) Next-generation quantum dots. Nat Biotechnol 27(8):732

    CAS  Google Scholar 

  • Soldatova AV, Balakrishnan G, Oyerinde OF, Romano CA, Tebo BM, Spiro TG (2019) Biogenic and synthetic MnO2 nanoparticles: size and growth probed with absorption and Raman spectroscopies and dynamic light scattering. Environ Sci Technol 53(8):4185–4197

    CAS  Google Scholar 

  • Stone AT, Morgan JJ (1984) Reduction and dissolution of manganese (III) and manganese (IV) oxides by organics: 2. Survey of the reactivity of organics. Environ Sci Technol 18(8):617–624

    CAS  Google Scholar 

  • Stumm W, Morgan J, Drever J (2012) Aquatic chemistry: chemical equilibria and rates in natural waters. Wiley, New York

    Google Scholar 

  • Sun H, Xu K, Huang M, Shang Y, She P, Yin S, Liu Z (2015) One-pot synthesis of ultrathin manganese dioxide nanosheets and their efficient oxidative degradation of Rhodamine B. Appl Surf Sci 357:69–73

    CAS  Google Scholar 

  • Sun H, Shang Y, Xu K, Tang Y, Li J, Liu Z (2017) MnO2 aerogels for highly efficient oxidative degradation of Rhodamine B. RSC Adv 7(48):30283–30288

    CAS  Google Scholar 

  • Tang WZ, An H (1995) UV/TiO2 photocatalytic oxidation of commercial dyes in aqueous solutions. Chemosphere 31(9):4157–4170

    CAS  Google Scholar 

  • Thackeray MM (1997) Manganese oxides for lithium batteries. Prog Solid State Chem 25(1–2):1–71

    CAS  Google Scholar 

  • TiyaDjowe A, Acayanka E, Mbouopda AP, BoyomTatchemo W, Laminsi S, Gaigneaux EM (2019) Producing oxide catalysts by exploiting the chemistry of gliding arc atmospheric plasma in humid air. Catal Today 334:104–108

    CAS  Google Scholar 

  • Trzciński K, Szkoda M, Sawczak M, Karczewski J, Lisowska-Oleksiak A (2016) Visible light activity of pulsed layer deposited BiVO4/MnO2 films decorated with gold nanoparticles: the evidence for hydroxyl radicals formation. Appl Surf Sci 385:199–208

    Google Scholar 

  • Wan H, Ge H, Zhang L, Duan T (2019) CS@ MnO2 core-shell nanospheres with enhanced visible light photocatalytic degradation. Mater Lett 237:290–293

    CAS  Google Scholar 

  • Wang X, Li Y (2003) Synthesis and formation mechanism of manganese dioxide nanowires/nanorods. Chem Eur J 9(1):300–206

    Google Scholar 

  • Wang D, Xie T, Li Y (2009) Nanocrystals: solution-based synthesis and applications as nanocatalysts. Nanocrystals Nano Res 2(1):30–46

    CAS  Google Scholar 

  • Wang N, Li J, Wu L, Li X, Shu J (2016) MnO2 and carbon nanotube co-modified C3N4 composite catalyst for enhanced water splitting activity under visible light irradiation. Int J Hydrog Energy 41(48):22743–22750

    CAS  Google Scholar 

  • Wang H, Gao Q, Li H, Gao M, Han B, Xia K, Zhou C (2018) Simple and controllable synthesis of high-quality MnTiO3 nanodiscs and their application as a highly efficient catalyst for H2O2-mediated oxidative degradation. ACS Appl Nano Mater 1(6):2727

    CAS  Google Scholar 

  • Wang R, Hao Q, Feng J, Wang GC, Ding H, Chen D, Ni B (2019) Enhanced separation of photogenerated charge carriers and catalytic properties of ZnO-MnO2 composites by microwave and photothermal effect. J Alloys Compd 786:418–427

    CAS  Google Scholar 

  • Wei L, Shifu C, Wei Z, Sujuan Z (2009) Titanium dioxide mediated photocatalytic degradation of methamidophos in aqueous phase. J Hazard Mater 164(1):154–160

    CAS  Google Scholar 

  • Xia P, Zhu B, Cheng B, Yu J, Xu J (2017) 2D/2D g-C3N4/MnO2 nanocomposite as a direct Z-scheme photocatalyst for enhanced photocatalytic activity. ACS Sustain Chem Eng 6(1):965–973

    Google Scholar 

  • Xiao FX, Hung SF, Miao J, Wang HY, Yang H, Liu B (2015) TiO2 nanotubes: metal-cluster-decorated TiO2 nanotube arrays: a composite heterostructure toward versatile photocatalytic and photoelectrochemical applications. Small 11(5):553–553

    Google Scholar 

  • Xiao L, Sun W, Zhou X, Cai Z, Hu F (2018) Facile synthesis of mesoporous MnO2 nanosheet and microflower with efficient photocatalytic activities for organic dyes. Vacuum 156:291–297

    CAS  Google Scholar 

  • Xiao W, Wang D, Lou XW (2009) Shape-controlled synthesis of MnO2 nanostructures with enhanced electrocatalytic activity for oxygen reduction. J Phys Chem C 114(3):1694–1700

    Google Scholar 

  • Xiong Y, Strunk PJ, Xia H, Zhu X, Karlsson HT (2001) Treatment of dye wastewater containing acid orange II using a cell with three-phase three-dimensional electrode. Water Res 35(17):4226–4230

    CAS  Google Scholar 

  • Xu DX, Lian ZW, Fu ML, Yuan B, Shi JW, Cui HJ (2013) Advanced near-infrared-driven photocatalyst: fabrication, characterization, and photocatalytic performance of β-NaYF4: Yb3+, Tm3+@ TiO2 core@ shell microcrystals. Appl Catal B Environ 142:377–386

    Google Scholar 

  • Xu X, Zhou X, Li X, Yang F, Jin B, Xu T, Li G, Li M (2014) Electrodeposition synthesis of MnO2/TiO2 nanotube arrays nanocomposites and their visible light photocatalytic activity. Mater Res Bull 59:32–36

    CAS  Google Scholar 

  • Xue M, Huang L, Wang JQ, Wang Y, Gao L, Zhu JH, Zou ZG (2008) The direct synthesis of mesoporous structured MnO2/TiO2 nanocomposite: a novel visible-light active photocatalyst with large pore size. Nanotech 19(18):185604

    Google Scholar 

  • Yahya N, Aziz F, Jamaludin N, Mutalib M, Ismail A, Salleh W, Jaafar J, Yusof N, Ludin N (2018) A review of integrated photocatalyst adsorbents for wastewater treatment. J Environ Chem Eng 6(6):7411–7425

    CAS  Google Scholar 

  • Yang Y, Zhang S, Wang S, Zhang K, Wang H, Huang J, Deng S, Wang B, Wang Y, Yu G (2015) Ball milling synthesized MnOx as highly active catalyst for gaseous POPs removal: significance of mechanochemically induced oxygen vacancies. Environ Sci Technol 49(7):4473–4480

    CAS  Google Scholar 

  • Yao Y, Xu C, Yu S, Zhang D, Wang S (2013) Facile synthesis of Mn3O4–reduced graphene oxide hybrids for catalytic decomposition of aqueous organics. Ind Eng Chem Res 52(10):3637–3645

    CAS  Google Scholar 

  • Ye Z, Li T, Ma G, Peng X, Zhao J (2017) Morphology controlled MnO2 electrodeposited on carbon fibre paper for high-performance supercapacitors. J Power Sources 351:51–57

    CAS  Google Scholar 

  • Yu C, Li G, Wei L, Fan Q, Shu Q, Jimmy CY (2014) Fabrication, characterization of β-MnO2 microrod catalysts and their performance in rapid degradation of dyes of high concentration. Catal Today 224:154–162

    CAS  Google Scholar 

  • Yu T, Sun Y, Zhe C, Wang W, Rao P (2017) Synthesis of CuOx/MnO2 heterostructures with enhanced visible light-driven photocatalytic activity. J Mater Sci Chem Eng 5(10):12

    CAS  Google Scholar 

  • Zaidi SA, Shin JH (2015) A novel and highly sensitive electrochemical monitoring platform for 4-nitrophenol on MnO2 nanoparticles modified graphene surface. RSC Adv 5(108):88996–89002

    CAS  Google Scholar 

  • Zhang L, He D, Jiang P (2009a) MnO2-doped anatase TiO2–An excellent photocatalyst for degradation of organic contaminants in aqueous solution. Catal Commun 10(10):1414–1416

    CAS  Google Scholar 

  • Zhang L, Wang W, Zhou L, Shang M, Sun S (2009b) Fe3O4 coupled BiOCl: a highly efficient magnetic photocatalyst. Appl Catal B Environ 90(3–4):458–462

    CAS  Google Scholar 

  • Zhang YX, Hao XD, Li F, Diao ZP, Guo ZY, Li J (2014a) pH-dependent degradation of methylene blue via rational-designed MnO2 nanosheet-decorated diatomites. Ind Eng Chem Res 53(17):6966–6977

    CAS  Google Scholar 

  • Zhang L, Lian J, Wu L, Duan Z, Jiang J, Zhao L (2014b) Synthesis of a thin-layer MnO2 nanosheet-coated Fe3O4 nanocomposite as a magnetically separable photocatalyst. Langmuir 30(23):7006–7013

    CAS  Google Scholar 

  • Zhang X, Qin J, Xue Y, Yu P, Zhang B, Wang L, Liu R (2014c) Effect of aspect ratio and surface defects on the photocatalytic activity of ZnO nanorods. Sci Rep 4:4596

    Google Scholar 

  • Zhao G, Li J, Ren X, Hu J, Hu W, Wang X (2013) Highly active MnO2 nanosheet synthesis from graphene oxide templates and their application in efficient oxidative degradation of methylene blue. RSC Adv 3(31):12909–12914

    CAS  Google Scholar 

  • Zhao J, Zhao Z, Li N, Nan J, Yu R, Du J (2018) Visible-light-driven photocatalytic degradation of ciprofloxacin by a ternary Mn2O3/Mn3O4/MnO2 valence state heterojunction. Chem Eng J 353:805–813

    CAS  Google Scholar 

  • Zhu S, Zhou H, Hibino M, Honma I, Ichihara M (2005) Synthesis of MnO2 nanoparticles confined in ordered mesoporous carbon using a sonochemical method. Adv Funct Mater 15(3):381–386

    CAS  Google Scholar 

  • Zhu S, Zhou Z, Zhang D, Wang H (2006) Synthesis of mesoporous amorphous MnO2 from SBA-15 via surface modification and ultrasonic waves. Microporous Mesoporous Mater 95(1–3):257–264

    CAS  Google Scholar 

  • Zhu S, Li L, Liu J, Wang H, Wang T, Zhang Y, Zhang L, Ruoff RS, Dong F (2018) Structural directed growth of ultrathin parallel birnessite on β-MnO2 for high-performance asymmetric supercapacitors. ACS Nano 12(2):1033–1042

    CAS  Google Scholar 

Download references

Funding

This study was funded by Universiti Sains Malaysia, Research University Grant (1001.PBAHAN.8014095). The authors also acknowledge the support from USM Fellowship (RU 1001/CIPS/AUPE001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swee-Yong Pung.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Suresh Pillai

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiam, SL., Pung, SY. & Yeoh, FY. Recent developments in MnO2-based photocatalysts for organic dye removal: a review. Environ Sci Pollut Res 27, 5759–5778 (2020). https://doi.org/10.1007/s11356-019-07568-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-07568-8

Keywords

Navigation