Skip to main content

Advertisement

Log in

Experimental measurements and numerical simulations of the transport and retention of nanocrystal CdSe/ZnS quantum dots in saturated porous media: effects of pH, organic ligand, and natural organic matter

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The risks of environmental exposures of quantum dot (QD) nanoparticles are increasing, but these risks are difficult to assess because fundamental questions remain about factors affecting the mobility of QDs. The objective of this study is to help address this shortcoming by evaluating the physico-chemical mechanisms controlling the transport and retention of CdSe/ZnS QDs under various environmental conditions. The approach was to run a series of laboratory-scale column experiments where QDs were transported through saturated porous media with different pH values and concentrations of citrate and Suwannee River natural organic matter (SRNOM). Numerical simulations were then conducted and compared with the laboratory data in order to evaluate parameters controlling transport. QD suspensions were injected into the column in an upward direction and ICP-MS used to analyze Cd2+ concentrations (C) in column effluent and sand porous media samples. The increase in the background solution pH values enhanced the QD transport and decreased the QD retention. QD transport recovery percentages obtained from the column effluent samples were 2.6%, 83.2%, 101.7%, 96.5%, and 98.9%, at pH levels of 1.5, 3.5, 5, 7, and 9, respectively. The effects of citrate and SRNOM on the transport and retention of QDs were pH dependent as reflected in the influence of the electrostatic and steric interactions between QDs and sand surfaces. QDs were mobile under unfavorable deposition conditions at environmentally relevant pHs (i.e., 5, 7, and 9). Under favorable pH conditions for deposition (i.e., 1.5), QDs were completely retained within the porous media. The retention profiles of QDs showed a non-exponential decay with distance to the inlet, attributed to multiple deposition rates caused by the QD particles and surface heterogeneities of the quartz silica sand. Results of the diameter ratios of QDs to the median sand grains, in suspensions of DI water at pH 1.5, of citrate at pH 1.5, and of citrate at pH 3.5 indicate straining as the dominating mechanism for QD retention in porous media. The blocking effect and straining were significant under favorable deposition conditions and the detachment effect was non-negligible under unfavorable deposition conditions. Physico-chemical attachment and straining are the governing mechanisms that control the retention of QDs. Overall, experimental results indicate that aggregation, deposition, straining, blocking, and DLVO-type interactions affect the advective transport and retention of QDs in saturated porous media. The simulations were conducted using models that include terms describing attachment, detachment, and straining terms—model 1: M1-attachment, model 2: M2-attachment and detachment, model 3: M3-straining, and model 4: M4-attachment, detachment, and straining. The results from simulations with M2-attachment and detachment and M4-attachment, detachment, and straining matched best the observed breakthrough curves, but all four models inadequately described the retention profiles. Our findings demonstrate that QDs are mobile in porous media under a wide range of physico-chemical conditions representative of the natural environment. The mobility behavior of QDs in porous media indicated the potential risk of soil and groundwater contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ahmad F, Pandey AK, Herzog AB, Rose JB, Gerba CP, Hashsham SA (2012) Environmental applications and potential health implications of quantum dots. J Nanopart Res 14:1038

    Article  CAS  Google Scholar 

  • Åkerman ME, Chan WC, Laakkonen P, Bhatia SN, Ruoslahti E (2002) Nanocrystal targeting in vivo. Proc Natl Acad Sci 99:12617–12621

    Article  CAS  Google Scholar 

  • Albanese A, Tang PS, Chan WC (2012) The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 14:1–16

    Article  CAS  Google Scholar 

  • Ambrosone A, Mattera L, Marchesano V, Quarta A, Susha AS, Tino A, Rogach AL, Tortiglione C (2012) Mechanisms underlying toxicity induced by CdTe quantum dots determined in an invertebrate model organism. Biomaterials 33:1991–2000

    Article  CAS  Google Scholar 

  • Amirbahman A, Olson TM (1993) Transport of humic matter-coated hematite in packed beds. Environ Sci Technol 27:2807–2813

    Article  CAS  Google Scholar 

  • Anikeeva PO, Halpert JE, Bawendi MG, Bulovic V (2009) Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum. Nano Lett 9:2532–2536

    Article  CAS  Google Scholar 

  • Bagalkot V, Zhang L, Levy-Nissenbaum E, Jon S, Kantoff PW, Langer R, Farokhzad OC (2007) Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett 7:3065–3070

    Article  CAS  Google Scholar 

  • Balmer ME, Sulzberger B (1999) Atrazine degradation in irradiated iron/oxalate systems: effects of pH and oxalate. Environ Sci Technol 33:2418–2424

    Article  CAS  Google Scholar 

  • Barnes RJ, Riba O, Gardner MN, Scott TB, Jackman SA, Thompson IP (2010) Optimization of nano-scale nickel/iron particles for the reduction of high concentration chlorinated aliphatic hydrocarbon solutions. Chemosphere 79:448–454

    Article  CAS  Google Scholar 

  • Becker MD, Wang Y, Pennell KD, Abriola LM (2015) A multi-constituent site blocking model for nanoparticle and stabilizing agent transport in porous media. Environ Sci : Nano 2:155–166

    CAS  Google Scholar 

  • Berli CL, Piaggio MV, Deiber JA (2003) Modeling the zeta potential of silica capillaries in relation to the background electrolyte composition. Electrophoresis 24:1587–1595

    Article  CAS  Google Scholar 

  • Beyer WN, Meador JP (2011) Environmental contaminants in biota: interpreting tissue concentrations. CRC Press, Boca Raton

    Google Scholar 

  • Bhattacharjee S, Ko C-H, Elimelech M (1998) DLVO interaction between rough surfaces. Langmuir 14:3365–3375

    Article  CAS  Google Scholar 

  • Bouldin JL, Ingle TM, Sengupta A, Alexander R, Hannigan RE, Buchanan RA (2008) Aqueous toxicity and food chain transfer of quantum dots™ in freshwater algae and Ceriodaphnia dubia. Environ Toxicol Chem 27:1958–1963

    Article  CAS  Google Scholar 

  • Bradford SA, Bettahar M, Simunek J, Van Genuchten MT (2004) Straining and attachment of colloids in physically heterogeneous porous media. Vadose Zone J 3:384–394

    Article  CAS  Google Scholar 

  • Bradford SA, Simunek J, Bettahar M, Tadassa YF, van Genuchten MT, Yates SR (2005) Straining of colloids at textural interfaces. Water Resour Res 41:W10404

    Article  Google Scholar 

  • Bradford SA, Simunek J, Bettahar M, van Genuchten MT, Yates SR (2003) Modeling colloid attachment, straining, and exclusion in saturated porous media. Environ Sci Technol 37:2242–2250

    Article  CAS  Google Scholar 

  • Bradford SA, Yates SR, Bettahar M, Simunek J (2002) Physical factors affecting the transport and fate of colloids in saturated porous media. Water Resour Res 38:1327

    Article  Google Scholar 

  • Brow CN, Li X, Rička J, Johnson WP (2005) Comparison of microsphere deposition in porous media versus simple shear systems. Colloids Surf A Physicochem Eng Asp 253:125–136

    Article  CAS  Google Scholar 

  • Cambardella C, Moorman T, Parkin T, Karlen D, Novak J, Turco R, Konopka A (1994) Field-scale variability of soil properties in central Iowa soils. Soil Sci Soc Am J 58:1501–1511

    Article  Google Scholar 

  • Chen G, Liu X, Su C (2012) Distinct effects of humic acid on transport and retention of TiO2 rutile nanoparticles in saturated sand columns. Environ Sci Technol 46:7142–7150

    Article  CAS  Google Scholar 

  • Chen KL, Elimelech M (2008) Interaction of fullerene (C60) nanoparticles with humic acid and alginate coated silica surfaces: measurements, mechanisms, and environmental implications. Environ Sci Technol 42:7607–7614

    Article  CAS  Google Scholar 

  • Chen L, Sheng Z, Zhang A, Guo X, Li J, Han H, Jin M (2010) Quantum-dots-based fluoroimmunoassay for the rapid and sensitive detection of avian influenza virus subtype H5N1. Luminescence 25:419–423

    Article  CAS  Google Scholar 

  • Chen M, Yin H, Bai P, Miao P, Deng X, Xu Y, Hu J, Yin J (2016) ABC transporters affect the elimination and toxicity of CdTe quantum dots in liver and kidney cells. Toxicol Appl Pharmacol 303:11–20

    Article  CAS  Google Scholar 

  • Choi N-C, Choi J-W, Kwon K-S, Lee S-G, Lee S (2017) Quantifying bacterial attachment and detachment using leaching solutions of various ionic strengths after bacterial pulse. AMB Express 7:38

    Article  CAS  Google Scholar 

  • Chrysikopoulos CV, Katzourakis VE (2015) Colloid particle size-dependent dispersivity. Water Resour Res 51:4668–4683

    Article  Google Scholar 

  • Cornelis G, Pang LP, Doolette C, Kirby JK, McLaughlin MJ (2013) Transport of silver nanoparticles in saturated columns of natural soils. Sci Total Environ 463:120–130

    Article  CAS  Google Scholar 

  • Cozzarelli IM, Eganhouse RP, Baedecker MJ (1990) Transformation of monoaromatic hydrocarbons to organic acids in anoxic groundwater environment. Environ Geol 16:135–141

    CAS  Google Scholar 

  • Derfus AM, Chen AA, Min D-H, Ruoslahti E, Bhatia SN (2007) Targeted quantum dot conjugates for siRNA delivery. Bioconjug Chem 18:1391–1396

    Article  CAS  Google Scholar 

  • Doshi R, Braida W, Christodoulatos C, Wazne M, O’Connor G (2008) Nano-aluminum: transport through sand columns and environmental effects on plants and soil communities. Environ Res 106:296–303

    Article  CAS  Google Scholar 

  • Dumas E-M, Ozenne V, Mielke RE, Nadeau JL (2009) Toxicity of CdTe quantum dots in bacterial strains. IEEE Trans Nanobiosci 8:58–64

    Article  Google Scholar 

  • Elimelech M, O'Melia CR (1990) Kinetics of deposition of colloidal particles in porous media. Environ Sci Technol 24:1528–1536

    Article  CAS  Google Scholar 

  • Fang J, Shan X-Q, Wen B, Lin J-m, Owens G (2009) Stability of titania nanoparticles in soil suspensions and transport in saturated homogeneous soil columns. Environ Pollut 157:1101–1109

    Article  CAS  Google Scholar 

  • Fisher BR, Eisler H-J, Stott NE, Bawendi MG (2004) Emission intensity dependence and single-exponential behavior in single colloidal quantum dot fluorescence lifetimes. J Phys Chem B 108:143–148

    Article  CAS  Google Scholar 

  • Flory J, Kanel SR, Racz L, Impellitteri CA, Silva RG, Goltz MN (2013) Influence of pH on the transport of silver nanoparticles in saturated porous media: laboratory experiments and modeling. J Nanopart Res 15:1484

    Article  CAS  Google Scholar 

  • Franchi A, O'Melia CR (2003) Effects of natural organic matter and solution chemistry on the deposition and reentrainment of colloids in porous media. Environ Sci Technol 37:1122–1129

    Article  CAS  Google Scholar 

  • Furman O, Usenko S, Lau BL (2013) Relative importance of the humic and fulvic fractions of natural organic matter in the aggregation and deposition of silver nanoparticles. Environ Sci Technol 47:1349–1356

    CAS  Google Scholar 

  • Gagné F, Auclair J, Turcotte P, Fournier M, Gagnon C, Sauvé S, Blaise C (2008) Ecotoxicity of CdTe quantum dots to freshwater mussels: impacts on immune system, oxidative stress and genotoxicity. Aquat Toxicol 86:333–340

    Article  CAS  Google Scholar 

  • Godinez IG, Darnault CJG (2011) Aggregation and transport of nano-TiO2 in saturated porous media: effects of pH, surfactants and flow velocity. Water Res 45:839–851

    Article  CAS  Google Scholar 

  • Godinez IG, Darnault CJG, Khodadoust AP, Bogdan D (2013) Deposition and release kinetics of nano-TiO2 in saturated porous media: effects of solution ionic strength and surfactants. Environ Pollut 174:106–113

    Article  CAS  Google Scholar 

  • Gopee NV, Roberts DW, Webb P, Cozart CR, Siitonen PH, Warbritton AR, Yu WW, Colvin VL, Walker NJ, Howard PC (2007) Migration of intradermally injected quantum dots to sentinel organs in mice. Toxicol Sci 98:249–257

    Article  CAS  Google Scholar 

  • Gottschalk F, Nowack B (2011) The release of engineered nanomaterials to the environment. J Environ Monit 13:1145–1155

    Article  CAS  Google Scholar 

  • Hardman R (2005) A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 114:165–172

    Article  Google Scholar 

  • Hong Y, Honda RJ, Myung NV, Walker SL (2009) Transport of iron-based nanoparticles: role of magnetic properties. Environ Sci Technol 43:8834–8839

    Article  CAS  Google Scholar 

  • Jatana S, Callahan LM, Pentland AP, DeLouise LA (2016) Impact of cosmetic lotions on nanoparticle penetration through ex vivo C57BL/6 hairless mouse and human skin: a comparison study. Cosmetics 3:6

    Article  CAS  Google Scholar 

  • Johnson PR, Sun N, Elimelech M (1996) Colloid transport in geochemically heterogeneous porous media: modeling and measurements. Environ Sci Technol 30:3284–3293

    Article  CAS  Google Scholar 

  • Johnson RL, Johnson GOB, Nurmi JT, Tratnyek PG (2009) Natural organic matter enhanced mobility of nano zerovalent iron. Environ Sci Technol 43:5455–5460

    Article  CAS  Google Scholar 

  • Johnson WP, Logan BE (1996) Enhanced transport of bacteria in porous media by sediment-phase and aqueous-phase natural organic matter. Water Res 30:923–931

    Article  CAS  Google Scholar 

  • Jones EH, Su C (2012) Fate and transport of elemental copper (Cu0) nanoparticles through saturated porous media in the presence of organic materials. Water Res 46:2445–2456

    Article  CAS  Google Scholar 

  • Jones EH, Su C (2014) Transport and retention of zinc oxide nanoparticles in porous media: effects of natural organic matter versus natural organic ligands at circumneutral pH. J Hazard Mater 275:79–88

    Article  CAS  Google Scholar 

  • Kägi R et al (2008) Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment. Environ Pollut 156:233–239

    Article  CAS  Google Scholar 

  • Kamat PV (2008) Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. J Phys Chem C 112:18737–18753

    Article  CAS  Google Scholar 

  • Kanel SR, Al-Abed SR (2011) Influence of pH on the transport of nanoscale zinc oxide in saturated porous media. J Nanopart Res 13:4035–4047

    Article  CAS  Google Scholar 

  • Katzourakis VE, Chrysikopoulos CV (2019) Two-site colloid transport with reversible and irreversible attachment: analytical solutions. Adv Water Resour 130:29–36

    Article  Google Scholar 

  • Katzourakis VE, Chrysikopoulos CV (2018) Impact of spatially variable collision efficiency on the transport of biocolloids in geochemically heterogeneous porous media. Water Resour Res 54:3841–3862

    Article  CAS  Google Scholar 

  • Katsumiti A, Gilliland D, Arostegui I, Cajaraville M (2014) Cytotoxicity and cellular mechanisms involved in the toxicity of CdS quantum dots in hemocytes and gill cells of the mussel Mytilus galloprovincialis. Aquat Toxicol 153:39–52

    Article  CAS  Google Scholar 

  • Kim H-J, Phenrat T, Tilton RD, Lowry GV (2012) Effect of kaolinite, silica fines and pH on transport of polymer-modified zero valent iron nano-particles in heterogeneous porous media. J Colloid Interface Sci 370:1–10

    Article  CAS  Google Scholar 

  • King-Heiden TC, Wiecinski PN, Mangham AN, Metz KM, Nesbit D, Pedersen JA, Hamers RJ, Heideman W, Peterson RE (2009) Quantum dot nanotoxicity assessment using the zebrafish embryo. Environ Sci Technol 43:1605–1611

    Article  CAS  Google Scholar 

  • Kirchner C, Liedl T, Kudera S, Pellegrino T, Muñoz Javier A, Gaub HE, Stölzle S, Fertig N, Parak WJ (2005) Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett 5:331–338

    Article  CAS  Google Scholar 

  • Koeneman BA, Zhang Y, Hristovski K, Westerhoff P, Chen Y, Crittenden JC, Capco DG (2009) Experimental approach for an in vitro toxicity assay with non-aggregated quantum dots. Toxicol in Vitro 23:955–962

    Article  CAS  Google Scholar 

  • Kominkova M, Michalek P, Moulick A, Nemcova B, Zitka O, Kopel P, Beklova M, Adam V, Kizek R (2014) Biosynthesis of quantum dots (CdTe) and its effect on Eisenia fetida and Escherichia coli. Chromatographia 77:1441–1449

    Article  CAS  Google Scholar 

  • Lecoanet HF, Wiesner MR (2004) Velocity effects on fullerene and oxide nanoparticle deposition in porous media. Environ Sci Technol 38:4377–4382

    Article  CAS  Google Scholar 

  • Lewinski NA et al (2010) Quantification of water solubilized CdSe/ZnS quantum dots in Daphnia magna. Environ Sci Technol 44:1841–1846

    Article  CAS  Google Scholar 

  • Lewis NS, Crabtree G (2005) Basic research needs for solar energy utilization: report of the basic energy sciences workshop on solar energy utilization. April 18-21:2005 https://www.osti.gov/servlets/purl/899136. Accessed March 10, 2019.

    Google Scholar 

  • Li X, Yang X, Yuwen L, Yang W, Weng L, Teng Z, Wang L (2016) Evaluation of toxic effects of CdTe quantum dots on the reproductive system in adult male mice. Biomaterials 96:24–32

    Article  CAS  Google Scholar 

  • Li Z, Sahle-Demessie E, Hassan AA, Sorial GA (2011) Transport and deposition of CeO2 nanoparticles in water-saturated porous media. Water Res 45:4409–4418

    Article  CAS  Google Scholar 

  • Lin D, Tian X, Wu F, Xing B (2010) Fate and transport of engineered nanomaterials in the environment. J Environ Qual 39:1896–1908

    Article  Google Scholar 

  • Lin S, Bhattacharya P, Rajapakse NC, Brune DE, Ke PC (2009) Effects of quantum dots adsorption on algal photosynthesis. J Phys Chem C 113:10962–10966

    Article  CAS  Google Scholar 

  • Lv X, Gao B, Sun Y, Dong S, Wu J, Jiang B, Shi X (2016) Effects of grain size and structural heterogeneity on the transport and retention of nano-TiO2 in saturated porous media. Sci Total Environ 563:987–995

    Article  CAS  Google Scholar 

  • McMahon PB, Chapelle FH (1991) Microbial production of organic acids in aquitard sediments and its role in aquifer geochemistry. Nature 349:233–235

    Article  CAS  Google Scholar 

  • Michalet X et al (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544

    Article  CAS  Google Scholar 

  • Mitrano DM, Rimmele E, Wichser A, Erni R, Height M, Nowack B (2014) Presence of nanoparticles in wash water from conventional silver and nano-silver textiles. ACS Nano 8:7208–7219

    Article  CAS  Google Scholar 

  • Morales VL, Zhang W, Gao B, Lion LW, Bisogni JJ Jr, McDonough BA, Steenhuis TS (2011) Impact of dissolved organic matter on colloid transport in the vadose zone: deterministic approximation of transport deposition coefficients from polymeric coating characteristics. Water Res 45:1691–1701

    Article  CAS  Google Scholar 

  • Mueller NC, Nowack B (2008) Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42:4447–4453

    Article  CAS  Google Scholar 

  • Naderi S, Zare H, Taghavinia N, Irajizad A, Aghaei M, Panjehpour M (2018) Cadmium telluride quantum dots induce apoptosis in human breast cancer cell lines. Toxicol Ind Health 34:339–352

    Article  CAS  Google Scholar 

  • Nagy A, Steinbrück A, Gao J, Doggett N, Hollingsworth JA, Iyer R (2012) Comprehensive analysis of the effects of CdSe quantum dot size, surface charge, and functionalization on primary human lung cells. ACS Nano 6:4748–4762

    Article  CAS  Google Scholar 

  • Navarro DA, Bisson MA, Aga DS (2012) Investigating uptake of water-dispersible CdSe/ZnS quantum dot nanoparticles by Arabidopsis thaliana plants. J Hazard Mater 211:427–435

    Article  CAS  Google Scholar 

  • Navarro DA, Watson DF, Aga DS, Banerjee S (2009) Natural organic matter-mediated phase transfer of quantum dots in the aquatic environment. Environ Sci Technol 43:677–682

    Article  CAS  Google Scholar 

  • Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ, Quigg A, Santschi PH, Sigg L (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17:372–386

    Article  CAS  Google Scholar 

  • Nguyen KC, Rippstein P, Tayabali AF, Willmore WG (2015) Mitochondrial toxicity of cadmium telluride quantum dot nanoparticles in mammalian hepatocytes. Toxicol Sci 146:31–42

    Article  CAS  Google Scholar 

  • Park CM, Heo J, Her N, Chu KH, Jang M, Yoon Y (2016) Modeling the effects of surfactant, hardness, and natural organic matter on deposition and mobility of silver nanoparticles in saturated porous media. Water Res 103:38–47

    Article  CAS  Google Scholar 

  • Patil S, Chore H (2014) Contaminant transport through porous media: an overview of experimental and numerical studies. Adv Environ Res 3:45–69

    Article  Google Scholar 

  • Pelley AJ, Tufenkji N (2008) Effect of particle size and natural organic matter on the migration of nano-and microscale latex particles in saturated porous media. J Colloid Interface Sci 321:74–83

    Article  CAS  Google Scholar 

  • Peng CW, Tian Q, Yang GF, Fang M, Zhang ZL, Peng J, Li Y, Pang DW (2012) Quantum-dots based simultaneous detection of multiple biomarkers of tumor stromal features to predict clinical outcomes in gastric cancer. Biomaterials 33:5742–5752

    Article  CAS  Google Scholar 

  • Petosa AR, Brennan SJ, Rajput F, Tufenkji N (2012) Transport of two metal oxide nanoparticles in saturated granular porous media: role of water chemistry and particle coating. Water Res 46:1273–1285

    Article  CAS  Google Scholar 

  • Quevedo IR, Tufenkji N (2009) Influence of solution chemistry on the deposition and detachment kinetics of a CdTe quantum dot examined using a quartz crystal microbalance. Environ Sci Technol 43:3176–3182

    Article  CAS  Google Scholar 

  • Quevedo IR, Tufenkji N (2012) Mobility of functionalized quantum dots and a model polystyrene nanoparticle in saturated quartz sand and loamy sand. Environ Sci Technol 46:4449–4457

    Article  CAS  Google Scholar 

  • Redman JA, Walker SL, Elimelech M (2004) Bacterial adhesion and transport in porous media: role of the secondary energy minimum. Environ Sci Technol 38:1777–1785

    Article  CAS  Google Scholar 

  • Reiss P, Protiere M, Li L (2009) Core/shell semiconductor nanocrystals. Small 5:154–168

    Article  CAS  Google Scholar 

  • Rispail N, de Matteis L, Santos R, Miguel AS, Custardoy L, Testillano PS, Risueño MC, Pérez-de-Luque A, Maycock C, Fevereiro P, Oliva A, Fernández-Pacheco R, Ibarra MR, de la Fuente JM, Marquina C, Rubiales D, Prats E (2014) Quantum dot and superparamagnetic nanoparticle interaction with pathogenic fungi: internalization and toxicity profile. ACS Appl Mater Interfaces 6:9100–9110

    Article  CAS  Google Scholar 

  • Ryman-Rasmussen JP, Riviere JE, Monteiro-Riviere NA (2007) Surface coatings determine cytotoxicity and irritation potential of quantum dot nanoparticles in epidermal keratinocytes. J Investig Dermatol 127:143–153

    Article  CAS  Google Scholar 

  • Sang W, Stoof CR, Zhang W, Morales VL, Gao B, Kay RW, Liu L, Zhang Y, Steenhuis TS (2014) Effect of hydrofracking fluid on colloid transport in the unsaturated zone. Environ Sci Technol 48:8266–8274

    Article  CAS  Google Scholar 

  • Schijven JF, Hassanizadeh SM, de Bruin RHAM (2002) Two-site kinetic modeling of bacteriophages transport through columns of saturated dune sand. J Contam Hydrol 57:259–279

    Article  CAS  Google Scholar 

  • Schijven JF, Simunek J (2002) Kinetic modeling of virus transport at the field scale. J Contam Hydrol 55:113–135

    Article  CAS  Google Scholar 

  • Simunek J, van Genuchten MT (2008) Modeling nonequilibrium flow and transport processes using HYDRUS. Vadose Zone J 7:782–797

    Article  CAS  Google Scholar 

  • Singh BR, Singh BN, Khan W, Singh H, Naqvi A (2012) ROS-mediated apoptotic cell death in prostate cancer LNCaP cells induced by biosurfactant stabilized CdS quantum dots. Biomaterials 33:5753–5767

    Article  CAS  Google Scholar 

  • Snee PT, Chan Y, Nocera DG, Bawendi MG (2005) Whispering-gallery-mode lasing from a semiconductor nanocrystal/microsphere resonator composite. Adv Mater 17:1131–1136

    Article  Google Scholar 

  • Snee PT, Tyrakowski CM, Page LE, Isovic A, Jawaid AM (2011) Quantifying quantum dots through forster resonant energy transfer. J Phys Chem C 115:19578–19582

    Article  CAS  Google Scholar 

  • Song L, Elimelech M (1993) Dynamics of colloid deposition in porous media: modeling the role of retained particles. Colloids Surf A Physicochem Eng Asp 73:49–63

    Article  CAS  Google Scholar 

  • Song L, Elimelech M (1994) Transient deposition of colloidal particles in heterogeneous porous media. J Colloid Interface Sci 167:301–313

    Article  CAS  Google Scholar 

  • Su C, Puls RW (2004) Nitrate reduction by zerovalent iron: effects of formate, oxalate, citrate, chloride, sulfate, borate, and phosphate. Environ Sci Technol 38:2715–2720

    Article  CAS  Google Scholar 

  • Sun PD, Shijirbaatar A, Fang J, Owens G, Lin DH, Zhang KK (2015) Distinguishable transport behavior of zinc oxide nanoparticles in silica sand and soil columns. Sci Total Environ 505:189–198

    Article  CAS  Google Scholar 

  • Tang S, Allagadda V, Chibli H, Nadeau JL, Mayer GD (2013) Comparison of cytotoxicity and expression of metal regulatory genes in zebrafish (Danio rerio) liver cells exposed to cadmium sulfate, zinc sulfate and quantum dots. Metallomics 5:1411–1422. https://doi.org/10.1039/c3mt20234h

    Article  CAS  Google Scholar 

  • Tebes-Stevens C, Patel JM, Jones WJ, Weber EJ (2017) Prediction of hydrolysis products of organic chemicals under environmental pH conditions. Environ Sci Technol 51:5008–5016

    Article  CAS  Google Scholar 

  • Thio BJR, Zhou D, Keller AA (2011) Influence of natural organic matter on the aggregation and deposition of titanium dioxide nanoparticles. J Hazard Mater 189:556–563

    Article  CAS  Google Scholar 

  • Tong M, Johnson WP (2006) Excess colloid retention in porous media as a function of colloid size, fluid velocity, and grain angularity. Environ Sci Technol 40:7725–7731

    Article  CAS  Google Scholar 

  • Tong M, Johnson WP (2007) Colloid population heterogeneity drives hyperexponential deviation from classic filtration theory. Environ Sci Technol 41:493–499

    Article  CAS  Google Scholar 

  • Torkzaban S, Bradford SA, Wan J, Tokunaga T, Masoudih A (2013) Release of quantum dot nanoparticles in porous media: role of cation exchange and aging time. Environ Sci Technol 47:11528–11536

    Article  CAS  Google Scholar 

  • Torkzaban S, Kim HN, Simunek J, Bradford SA (2010a) Hysteresis of colloid retention and release in saturated porous media during transients in solution chemistry. Environ Sci Technol 44:1662–1669

    Article  CAS  Google Scholar 

  • Torkzaban S, Kim Y, Mulvihill M, Wan J, Tokunaga TK (2010b) Transport and deposition of functionalized CdTe nanoparticles in saturated porous media. J Contam Hydrol 118:208–217

    Article  CAS  Google Scholar 

  • Torkzaban S, Wan J, Tokunaga TK, Bradford SA (2012) Impacts of bridging complexation on the transport of surface-modified nanoparticles in saturated sand. J Contam Hydrol 136:86–95

    Article  CAS  Google Scholar 

  • Tourinho PS, Van Gestel CA, Lofts S, Svendsen C, Soares AM, Loureiro S (2012) Metal-based nanoparticles in soil: fate, behavior, and effects on soil invertebrates. Environ Toxicol Chem 31:1679–1692

    Article  CAS  Google Scholar 

  • Tufenkji N, Elimelech M (2004a) Correlation equation for predicting single-collector efficiency in physicochemical filtration in saturated porous media. Environ Sci Technol 38:529–536

    Article  CAS  Google Scholar 

  • Tufenkji N, Elimelech M (2004b) Deviation from the classical colloid filtration theory in the presence of repulsive DLVO interactions. Langmuir 20:10818–10828

    Article  CAS  Google Scholar 

  • Tufenkji N, Elimelech M (2005) Breakdown of colloid filtration theory: role of the secondary energy minimum and surface charge heterogeneities. Langmuir 21:841–852

    Article  CAS  Google Scholar 

  • Tufenkji N, Miller GF, Ryan JN, Harvey RW, Elimelech M (2004) Transport of Cryptosporidium oocysts in porous media: role of straining and physicochemical filtration. Environ Sci Technol 38:5932–5938

    Article  CAS  Google Scholar 

  • Uyusur B, Darnault CJ, Snee PT, Kokën E, Jacobson AR, Wells RR (2010) Coupled effects of solution chemistry and hydrodynamics on the mobility and transport of quantum dot nanomaterials in the vadose zone. J Contam Hydrol 118:184–198

    Article  CAS  Google Scholar 

  • Uyuşur B, Snee PT, Li C, Darnault CJG (2016) Quantitative imaging and in situ concentration measurements of quantum dot nanomaterials in variably saturated porous media. J Nanomater 2016:1–10. https://doi.org/10.1155/2016/8237029

    Article  Google Scholar 

  • Wang L, Zheng H, Long Y, Gao M, Hao J, du J, Mao X, Zhou D (2010) Rapid determination of the toxicity of quantum dots with luminous bacteria. J Hazard Mater 177:1134–1137

    Article  CAS  Google Scholar 

  • Wang Y, Becker MD, Colvin VL, Abriola LM, Pennell KD (2014) Influence of residual polymer on nanoparticle deposition in porous media. Environ Sci Technol 48:10664–10671

    Article  CAS  Google Scholar 

  • Wang Y, Li Y, Fortner JD, Hughes JB, Abriola LM, Pennell KD (2008) Transport and retention of nanoscale C60 aggregates in water-saturated porous media. Environ Sci Technol 42:3588–3594

    Article  CAS  Google Scholar 

  • Wang Y, Zhu H, Becker MD, Englehart J, Abriola LM, Colvin VL, Pennell KD (2013) Effect of surface coating composition on quantum dot mobility in porous media. J Nanopart Res 15:1–16

    CAS  Google Scholar 

  • Werlin R, Priester JH, Mielke RE, Krämer S, Jackson S, Stoimenov PK, Stucky GD, Cherr GN, Orias E, Holden PA (2011) Biomagnification of cadmium selenide quantum dots in a simple experimental microbial food chain. Nat Nanotechnol 6:65–71

    Article  CAS  Google Scholar 

  • Wu Y, Li X, Steel D, Gammon D, Sham L (2004) Coherent optical control of semiconductor quantum dots for quantum information processing. Physica E Low Dimens Syst Nanostruct 25:242–248

    Article  Google Scholar 

  • Xiao Q, Huang S, Su W, Li P, Liang Z, Ou J, Ma J, Liu Y (2012) Evaluate the potential environmental toxicity of quantum dots on ciliated protozoa by microcalorimetry. Thermochim Acta 547:62–69

    Article  CAS  Google Scholar 

  • Xu S, Gao B, Saiers JE (2006) Straining of colloidal particles in saturated porous media. Water Resour Res 42

  • Yan M et al (2016) Cytotoxicity of CdTe quantum dots in human umbilical vein endothelial cells: the involvement of cellular uptake and induction of pro-apoptotic endoplasmic reticulum stress. Int J Nanomedicine 11:529

    CAS  Google Scholar 

  • Yang RS et al (2007) Persistent tissue kinetics and redistribution of nanoparticles, quantum dot 705, in mice: ICP-MS quantitative assessment. Environ Health Perspect 115:1339–1343

    Article  CAS  Google Scholar 

  • Yang X, Lin S, Wiesner MR (2014) Influence of natural organic matter on transport and retention of polymer coated silver nanoparticles in porous media. J Hazard Mater 264:161–168

    Article  CAS  Google Scholar 

  • Zhang W et al (2012) Toxicity assessment of zebrafish following exposure to CdTe QDs. J Hazard Mater 213:413–420

    Article  CAS  Google Scholar 

  • Zhang W, Yang L, Kuang H, Yang P, Aguilar ZP, Wang A, Fu F, Xu H (2016) Acute toxicity of quantum dots on late pregnancy mice: effects of nanoscale size and surface coating. J Hazard Mater 318:61–69

    Article  CAS  Google Scholar 

  • Zhu M, Nie G, Meng H, Xia T, Nel A, Zhao Y (2013) Physicochemical properties determine nanomaterial cellular uptake, transport and fate. Acc Chem Res 46:622–631

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We wish to convey our appreciation to Clemson University for supporting this research.

Availability of data

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Funding

This material is based upon work supported by Clemson University.

Author information

Authors and Affiliations

Authors

Contributions

Material preparation, data collection and analysis were performed by Chunyan Li, Asra Hassan, Marcell Palmai, Yu Xie, Preston T. Snee, Brian A. Powell, Lawrence C. Murdoch, and Christophe J. G. Darnault. The first draft of the manuscript was written by Chunyan Li and Christophe J. G. Darnault, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Christophe J. G. Darnault.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 30855 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Hassan, A., Palmai, M. et al. Experimental measurements and numerical simulations of the transport and retention of nanocrystal CdSe/ZnS quantum dots in saturated porous media: effects of pH, organic ligand, and natural organic matter. Environ Sci Pollut Res 28, 8050–8073 (2021). https://doi.org/10.1007/s11356-020-11097-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-11097-0

Keywords

Navigation