Skip to main content

Advertisement

Log in

Chloride-salinity as indicator of the chemical composition of groundwater: empirical predictive model based on aquifers in Southern Quebec, Canada

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The present study first describes the variations in concentrations of 12 chemical elements in groundwater relative to salinity levels in Southern Quebec (Canada) groundwater systems, and then uses this data to develop an empirical predictive model for evaluating groundwater chemical composition relative to salinity levels. Data is drawn from a large groundwater chemistry database containing 2608 samples. Eight salinity classes were established from lowest to highest chloride (Cl) concentrations. Graphical analyses were applied to describe variations in major, minor, and trace element concentrations relative to salinity levels. Results show that the major elements were found to be dominant in the lower salinity classes, whereas Cl becomes dominant at the highest salinity classes. For each of the major elements, a transitional state was identified between domination of the major elements and domination of Cl. This transition occurred at a different level of salinity for each of the major elements. Except for Si, the minor elements Ba, B, and Sr generally increase relative to the increase of Cl. The highest Mn concentrations were found to be associated with only the highest levels of Cl, whereas F was observed to be more abundant than Mn. Based on this analysis of the data, a correlation table was established between salinity level and concentrations of the chemical constituents. We thus propose a predictive empirical model, identifying a profile of the chemical composition of groundwater relative to salinity levels, to help homeowners and groundwater managers evaluate groundwater quality before resorting to laborious and costly laboratory analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that supports the findings of the study are illustrated in the Figs. 2, 3, 4, 5 and 6 of the present manuscript.

References

  • Addinsoft (2021) XLSTAT statistical and data analysis solution. New York, USA. https://www.xlstat.com

  • Amrhein C, Strong JE, Mosher PA (1992) Effect of de-icing salts on metal and organic matter mobilization in roadside soils. Environ Sci Technol 26:703–709

    Article  CAS  Google Scholar 

  • ATSDR (Agency for Toxic Substances and Disease Registry (2010) Toxicological profile for Boron. Department of Health and Human Services, Public Health Service, Atlanta, GA, U.S

    Google Scholar 

  • Avrahamov N, Antler G, Yechieli Y et al (2014) Anaerobic oxidation of methane by sulfate in hypersaline groundwater of the Dead Sea aquifer. Geobiology 12:511–528

    Article  CAS  Google Scholar 

  • Barbieri M, Ricolfi L, Vitale S, Muteto PV (2019) Assessment of groundwater quality in the buffer zone of Limpopo National Park, Gaza Province, Southern Mozambique. Environ Sci Pollut Res 26:62–77

    Article  CAS  Google Scholar 

  • Beaucaire C, Michard G (1982) Origin of dissolved minor elements (Li, Rb, Sr, Ba) in superficial waters in a granitic area. Appl Geochemistry 16:247–258

    CAS  Google Scholar 

  • Beaudry C (2013) Hydrogéochimie de l’aquifèere rocheux régional en Montérégie est, Québec. Master’s thesis, Université du Québec, Institut national de la recherche scientifique, Québec, Canada

  • Beaudry C, Lefebvre R, Rivard C, Cloutier V (2018) Conceptual model of regional groundwater flow based on hydrogeochemistry (Montérégie Est, Québec, Canada). Can Water Resour J 43:152–172

    Article  Google Scholar 

  • Benoit N, Nastev M, Blanchette D, Molson J (2014) Hydrogeology and hydrogeochemistry of the Chaudière River watershed aquifers, Québec, Canada. Can Water Resour J 39:32–48

    Article  Google Scholar 

  • Blanchette D, Lefebvre R, Nastev M, Cloutier V (2010) Groundwater quality, geochemical processes and groundwater evolution in the Chateauguay River watershed, Quebec, Canada. Can Water Resour J 35:503–526

    Article  Google Scholar 

  • Bolduc AM, Ross M (2001) Géologie des formations superficielles, Lachute-Oka, Québec. Geological Survey of Canada, Open File 3520; Natural Resources Canada

  • Bondu R, Cloutier V, Rosa E (2018) Occurrence of geogenic contaminants in private wells from a crystalline bedrock aquifer in western Quebec, Canada: Geochemical sources and health risks. J Hydrol 559:627–637

    Article  CAS  Google Scholar 

  • Bondu R, Cloutier V, Rosa E, Roy M (2020) An exploratory data analysis approach for assessing the sources and distribution of naturally occurring contaminants (F, Ba, Mn, As) in groundwater from southern Quebec (Canada). Appl Geochemistry 114:1–17

    Article  CAS  Google Scholar 

  • Boumaiza L, Chesnaux R, Drias T et al (2020) Identifying groundwater degradation sources in a Mediterranean coastal area experiencing significant multi-origin stresses. Sci Total Environ 746:1–20

    Article  CAS  Google Scholar 

  • Boumaiza L, Chesnaux R, Walter J, Meghnefi F (2021) Assessing response times of an alluvial aquifer experiencing seasonally variable meteorological inputs. Groundw Sustain Dev 14:1–12. https://doi.org/10.1016/j.gsd.2021.100647

    Article  Google Scholar 

  • Boumaiza L, Chesnaux R, Walter J, Stumpp C (2020) Constraining a flow model with field measurements to assess water transit time through a vadose zone. Groundwater. https://doi.org/10.1111/gwat.13056

    Article  Google Scholar 

  • Boumaiza L, Chesnaux R, Walter J, Stumpp C (2020) Assessing groundwater recharge and transpiration in a humid northern region dominated by snowmelt using vadose-zone depth profiles. Hydrogeol J 28:2315–2329

    Article  CAS  Google Scholar 

  • Boumaiza L, Chesnaux R, Walter J, Stumpp C (2021b) Numerical assessment of water transit-time through a thick heterogeneous aquifer vadose-zone. In: Proceedings of the 74th Canadian Geotechnical Conference and the 14th Joint CGS/IAH-CNC Groundwater Conference (GeoNiagara-2021b), Niagara Falls, Ontario, Canada. p 6

  • Boumaiza L, Rouleau A, Cousineau PA (2015) Estimation de la conductivité hydraulique et de la porosité des lithofaciès identifiés dans les dépôts granulaires du paléodelta de la rivière Valin dans la région du Saguenay au Québec. In: Proceedings of the 68th Canadian Geotechnical Conference, Quebec City, Quebec, Canada. p 9

  • Boumaiza L, Rouleau A, Cousineau PA (2017) Determining hydrofacies in granular deposits of the Valin River paleodelta in the Saguenay region of Quebec. In: Proceedings of the 70th Canadian Geotechnical Conference and the 12th Joint CGS/IAH-CNC Groundwater Conference, Ottawa, Ontario, Canada. 8

  • Boumaiza L, Rouleau A, Cousineau PA (2019) Combining shallow hydrogeological characterization with borehole data for determining hydrofacies in the Valin River paleodelta. In: Proceedings of the 72nd Canadian Geotechnical Conference, St-John’s, Newfoundland, Canada. 8

  • Boumaiza L, Walter J, Chesnaux R et al (2021) An operational methodology for determining relevant DRASTIC factors and their relative weights in the assessment of aquifer vulnerability to contamination. Environ Earth Sci 80:1–19. https://doi.org/10.1007/s12665-021-09575-w

    Article  CAS  Google Scholar 

  • Boumaiza L, Walter J, Chesnaux R et al (2022) Groundwater recharge over the past 100 years: regional spatiotemporal assessment and climate change impact over the Sauguenay-Lac-Saint-Jean region Canada. Hydrol Process 36:1–17. https://doi.org/10.1002/hyp.14526

    Article  Google Scholar 

  • CEAEQ (Centre d’expertise en analyse environnementale du Québec) (2021) Méthodes d’analyses

  • CERM-PACES (2013) Résultats du programme d’acquisition de connaissances sur les eaux souterraines de la région Saguenay-Lac-Saint-Jean. Université du Québec à Chicoutimi, Centre d’études sur les ressources minérales

    Google Scholar 

  • Chaillou G, Touchette M, Buffin-Bélanger T et al (2018) Hydrogeochemical evolution and groundwater mineralization of shallow aquifers in the Bas-Saint-Laurent region, Québec, Canada. Can Water Resour J 43:136–151

    Article  Google Scholar 

  • Charette MA, Sholkovitz ER (2006) Trace element cycling in a subterranean estuary: part 2. Geochemistry of the pore water. Geochim Cosmochim Acta 70:811–826

    Article  CAS  Google Scholar 

  • Chesnaux R (2013) Regional recharge assessment in the crystalline bedrock aquifer of the Kenogami Uplands, Canada. Hydrol Sci J 58:421–436

    Article  CAS  Google Scholar 

  • Chesnaux R, Lambert M, Walter J et al (2011) Building a geodatabase for mapping hydrogeological features and 3D modeling of groundwater systems: application to the Saguenay-Lac-St.-Jean region. Canada Comput Geosci 37:1870–1882

    Article  Google Scholar 

  • Chesnaux R, Stumpp C (2018) Advantages and challenges of using soil water isotopes to assess groundwater recharge dominated by snowmelt at a field study located in Canada. Hydrol Sci J 63:679–695

    Article  CAS  Google Scholar 

  • Cloutier V, Lefebvre R, Savard MM et al (2006) Hydrogeochemistry and groundwater origin of the Basses-Laurentides sedimentary rock aquifer system, St. Lawrence Lowlands, Québec. Canada Hydrogeol J 14:573–590

    Article  CAS  Google Scholar 

  • Cloutier V, Lefebvre R, Savard MM, Therrien R (2010) Desalination of a sedimentary rock aquifer system invaded by Pleistocene Champlain Sea water and processes controlling groundwater geochemistry. Environ Earth Sci 59:977–994

    Article  CAS  Google Scholar 

  • Cloutier V, Lefebvre R, Therrien R, Savard MM (2008) Multivariate statistical analysis of geochemical data as indicative of the hydrogeochemical evolution of groundwater in a sedimentary rock aquifer system. J Hydrol 353:294–313

    Article  CAS  Google Scholar 

  • Cui Y, Wei M (2000) Ambient groundwater quality monitoring and assessment in BC: current status and future directions. Groundwater Section, Ministry of Environment, Lands and Parks, British Columbia, Canada

  • Deng YM, Wang YX, Ma T (2009) Isotope and minor element geochemistry of high arsenic groundwater from Hangjinhouqi, the Hetao Plain, Inner Mongolia. Appl Geochemistry 24:587–599

    Article  CAS  Google Scholar 

  • Dessureault R (1975) Hydrogéologie du Lac Saint-Jean, partie nord-est. Ministère des richesses naturelles du Québec, Direction générale des eaux, Service des eaux souterraines

  • Ding Y, Gao Y, Sun H et al (2011) The relationships between low levels of urine fluoride on children’s intelligence, dental fluorosis in endemic fluorosis areas in Hulunbuir, Inner Mongolia, China. J Hazard Mater 186:1942–1946

    Article  CAS  Google Scholar 

  • Elumalai V, Nwabisa DP, Rajmohan N (2019) Evaluation of high fluoride contaminated fractured rock aquifer in South Africa geochemical and chemometric approaches. Chemosphere 235:1–11

    Article  CAS  Google Scholar 

  • Evans AEV, Hanjra MA, Jiang Y et al (2012) Water quality: assessment of the current situation in Asia. Water Resour Dev 28:195–216

    Article  Google Scholar 

  • Ferroud A, Chesnaux R, Rafini S (2019) Drawdown log-derived analysis for interpreting constant-rate pumping tests in inclined substratum aquifers. Hydrogeol J 27:2279–2297

    Article  Google Scholar 

  • Ferroud A, Chesnaux R, Rafini S (2018) Insights on pumping well interpretation from flow dimension analysis: the learnings of a multi-context field database. J Hydrol 556:449–474

    Article  Google Scholar 

  • Foster SSD, Tuinhof A, Garduno H (2006) Groundwater development in Sub-Saharan Africa: a strategic overview of key issues and major needs. The World Bank GW-Mate Case Profile Collection no. 15, World Bank, Washington, DC

  • Franklyn MT, McNutt RH, Kamineni DC, Gascoyne M, Frape SK (1991) Groundwater 87Sr/86Sr values in the Eye-Dashwa Lakes pluton, Canada: Evidence for plagioclase-water reaction. Chem Geol 86:111–122

    CAS  Google Scholar 

  • Ghesquière O, Walter J, Chesnaux R, Rouleau A (2015) Scenarios of groundwater chemical evolution in a region of the Canadian Shield based on multivariate statistical analysis. J Hydrol Reg Stud 4:246–266

    Article  Google Scholar 

  • Government of Canada (2021) Canada’s national climate archive. http://www.climate.weatheroffice.ec.gc.ca/climate_normals/ [consulted in July 2019]

  • Grassi S, Netti R (2000) Sea water intrusion and mercury pollution of some coastal aquifers in the province of Grosseto (Southern Tuscany - Italy). J Hydrol 237:198–211

    Article  CAS  Google Scholar 

  • Haines TS, Lloyd JW (1985) Controls on silica in groundwater environments in the United Kingdom. J Hydrol 81:277–295

    Article  CAS  Google Scholar 

  • Hamilton SM, Grasby SE, McIntosh JC, Osborn SG (2015) The effect of long-term regional pumping on hydrochemistry and dissolved gas content in an undeveloped shale-gas-bearing aquifer in southwestern Ontario, Canada. Hydrogeol J 23:719–739

    Article  CAS  Google Scholar 

  • Hanor JS (1994) Origin of saline fluids in sedimentary basins. Geol Soc London, Spec Publ 78:151–174

    Article  Google Scholar 

  • Health Canada (2020) Guidelines for Canadian Drinking Water Quality-Summary Table. Water and Air Quality Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada

  • Hounslow AW (1995) Water quality data: analysis and interpretation. Lewis, Boca Raton, FL

    Google Scholar 

  • Howard KWF, Haynes J (1993) Groundwater contamination due to road de-icing chemicals — salt balance implications. Geosci Canada 20:1–8

    Google Scholar 

  • Kendall MG (1975) Rank Correlation Method. Charless Griffin, London

    Google Scholar 

  • Kennedy GW, Drage JM (2009) Hydrogeologic characterization of Nova Scotia’s groundwater regions. In: The 62nd Canadian Geotechnical Conference and the 10th Joint CGS/IAH-CNC Groundwater Conference. IAH-CNC, Halifax, NS, Canada. 1230–1240

  • Khan MMA, Umar R (2010) Significance of silica analysis in groundwater in parts of Central Ganga Plain, Uttar Pradesh, India. Curr Sci 98:1237–1240

    CAS  Google Scholar 

  • Khan A, Umar R, Khan HH (2015) Significance of silica in identifying the processes affecting groundwater chemistry in parts of Kali watershed, Central Ganga Plain, India. Appl Water Sci 5:65–72

    Article  CAS  Google Scholar 

  • Kinsman DJ (1969) Interpretation of Sr2+ concentrations in carbonate minerals and rocks. J Sediment Petrol 39:486–508

    CAS  Google Scholar 

  • Koreimann C, Grath J, Winkler G, et al (1996) Groundwater monitoring in Europe. European Environment Agency Copenhagen, Denmark

  • Labrecque G, Chesnaux R, Boucher MA (2020) Water-table fluctuation method for assessing aquifer recharge: application to Canadian aquifers and comparison with other methods. Hydrogeol J 28:521–533

    Article  Google Scholar 

  • Ladevèze P, Rivard C, Lavoie D et al (2019) Fault and natural fracture control on upward fluid migration: insights from a shale gas play in the St. Lawrence Platform. Canada Hydrogeol J 27:121–143

    Article  Google Scholar 

  • Lamothe M (1989) A new framework for the Pleistocene stratigraphy of the central St. Lawrence Lowland. Southern Quebec Géographie Phys Quat 43:119–129

    Article  Google Scholar 

  • Lamothe M, St-Jacques G (2014) Géologie du Quaternaire des bassins versant des rivières Nicolet et Saint-François, Québec. Ministère Énergies et Ressources Naturelles, Québec, Canada

  • Larocque M, Cloutier V, Levison J, Rosa E (2018) Results from the Quebec groundwater knowledge acquisition program. Can Water Resour J 43:69–74

    Article  Google Scholar 

  • Lazur A, Van Derwerker T, Koepenick K (2020) Review of implications of road salt use on groundwater quality-corrosivity and mobilization of heavy metals and radionuclides. Water Air Soil Pollut 231:1–10

    Article  CAS  Google Scholar 

  • Leahy PP, Thompson TH (1994) Overview of the National Water-Quality Assessment Program. U.S. Geological Survey Open-File Report 94–70

  • Lefebvre R, Ballard JM, Carrier MA, et al (2015) Portrait des ressources en eau souterraine en Chaudière-Appalaches, Québec, Canada. Projet réalisé conjointement par l’Institut national de la recherche scientifique (INRS), l’Institut de recherche et développement en agroenvironnement (IRDA) et le Regrou. Rapport final INRS R-1508, Ministère du Développement durable, de l’Environnement et de la Lutte contre les changements climatiques, Québec, Canada

  • Luczaj J, Masarik K (2015) Groundwater quantity and quality issues in a water-rich region: examples from Wisconsin, USA. Resources 4:232–357

    Article  Google Scholar 

  • Mahlknecht J, Merchán D, Rosner M et al (2017) Assessing seawater intrusion in an arid coastal aquifer under high anthropogenic influence using major constituents, Sr and B isotopes in groundwater. Sci Total Environ 587–588:282–295

    Article  CAS  Google Scholar 

  • Mann HB (1945) Nonparametric tests against trend. Econometrica 13:245–259

    Article  Google Scholar 

  • McCormack R, Therrien R (2013) St. Lawrence lowlands region. In: Alfonso, R. (Ed.), Canada’s Groundwater Resources. Fitzhenry & Whiteside. 501–539

  • Meinken W, Stober I (1997) Permeability distribution in the Quaternary of the Upper Rhine glacio-fluvial aquifer. Terra 9:113–116

    Google Scholar 

  • MELCC (Ministère de l’Environnement et de la Lutte contre les changements climatiques) (2021) Projets d’acquisition de connaissance des eaux souterraines. https://www.environnement.gouv.qc.ca/eau/souterraines/programmes/acquisition-connaissance.htm

  • Meriano M (2007) Groundwater-surface water interaction in Frenchman’s bay watershed, Ontario: Implications for urban recharge, contaminant storage and migration. Ph.D. Thesis, University of Toronto, Canada

  • Meyzonnat G, Larocque M, Barbecot F et al (2016) The potential of major ion chemistry to assess groundwater vulnerability of a regional aquifer in southern Quebec (Canada). Environ Earth Sci 75:1–12

    Article  CAS  Google Scholar 

  • Middelburg JJ, Van Der Weijden CH, Woittiez JRW (1988) Chemical processes affecting the mobility of major, minor and trace elements during weathering of granitic rocks. Chem Geol 68:253–273

    Article  CAS  Google Scholar 

  • Minet EP, Goodhue R, Meier-Augenstein W et al (2017) Combining stable isotopes with contamination indicators: a method for improved investigation of nitrate sources and dynamics in aquifers with mixed nitrogen inputs. Water Res 124:85–96

    Article  CAS  Google Scholar 

  • Miretzky P, Alicia Fernàdez C (2004) Silica dynamics in a pampean lake (Lake Chascomùs, Argentina). Chem Geol 203:109–122

    Article  CAS  Google Scholar 

  • Moldovanyi E, Walter M, Brannon JC, Podosek FA (1990) New constraints on carbonate diagenesis from integrated Sr and S isotopic and rare earth element data, Jurassic Smackover Formation, U.S. Gulf Coast. Appl Geochemistry 5:449–470

    Article  Google Scholar 

  • Montcoudiol N, Molson J, Lemieux JM (2015) Groundwater geochemistry of the Outaouais Region (Québec, Canada): a regional-scale study. Hydrogeol J 23:377–396

    Article  CAS  Google Scholar 

  • Moore J, Bird DL, Dobbis SK, Woodward G (2017) Nonpoint Source contributions drive elevated major ion and dissolved inorganic carbon concentrations in urban watersheds. Environ Sci Technol Lett 4:198–204

    Article  CAS  Google Scholar 

  • Mora A, Mahlknecht J, Ledesma-Ruiz R et al (2020) Dynamics of major and trace elements during seawater intrusion in a coastal sedimentary aquifer impacted by anthropogenic activities. J Contam Hydrol 323:1–17

    Google Scholar 

  • Musgrove ML (2021) The occurrence and distribution of strontium in U.S. groundwater. Appl Geochemistry 126:1–18

    Article  CAS  Google Scholar 

  • Nadeau S, Rosa E, Cloutier V (2018) Stratigraphic sequence map for groundwater assessment and protection of unconsolidated aquifers: A case example in the Abitibi-Témiscamingue region, Québec, Canada. Can Water Resour J 43:113–135

    Article  Google Scholar 

  • NBDE (New Brunswick Department of Environment) (2008) New Brunswick Groundwater Chemistry Atlas: 1994–2007. Sciences and Reporting Branch, Sciences and Planning Division, Environmental Reporting Series T2008–01

  • Oberhelman A, Peterson EW (2020) Chloride source delineation in an urban-agricultural watershed: Deicing agents versus agricultural contributions. Hydrol Process 34:4017–4029

    Article  Google Scholar 

  • Paalman MAA, Van der Weijden CH, Loch JPG (1994) Sorption of cadmium on suspended matter under estuarine conditions: competition and complexation with major seawater ions. Water Air Soil Pollut 73:49–60

    Article  CAS  Google Scholar 

  • Pohlert T (2020) Non-Parametric Trend Tests and Change-Point Detection. https://creativecommons.org/licenses/by-nd/4.0/

  • Rango T, Vengosh A, Dwyer G, Bianchini G (2013) Mobilization of arsenic and other naturally occurring contaminants in groundwater of the Main Ethiopian Rift aquifers. Water Res 47:5801–5818

    Article  CAS  Google Scholar 

  • Rey N, Rosa E, Cloutier V, Lefebvre R (2018) Using water stable isotopes for tracing surface and groundwater flow systems in the Barlow-Ojibway Clay Belt, Quebec, Canada. Can Water Resour J 43:173–194

    Article  Google Scholar 

  • Richard SK, Chesnaux R, Rouleau A, Coupe RH (2016) Estimating the reliability of aquifer transmissivity values obtained from specific capacity tests: examples from the Saguenay-Lac-Saint-Jean aquifers, Canada. Hydrol Sci J 61:173–185

    Article  Google Scholar 

  • Ricolfi L, Barbieri M, Muteto PV et al (2020) Potential toxic elements in groundwater and their health risk assessment in drinking water of Limpopo National Park, Gaza Province, Southern Mozambique. Environ Geochem Health 42:2733–2745

    Article  CAS  Google Scholar 

  • Rouleau A, Clark ID, Bottomley DJ, Roy DW (2013) Precambrian Shield. In: Alfonso, R. (Ed.), Canada’s Groundwater Resources. Fitzhenry & Whiteside. 415–441

  • Rouleau A, Larocque M, Walter J et al (2012) Le programme d’acquisition de connaissances sur les eaux souterraines, Ses retombées dans les régions de Bécancour et du Saguenay–Lac-Saint-Jean. Vecteur Environ 45:30–31

    Google Scholar 

  • Russak A, Sivan O, Yechieli Y (2016) Trace elements (Li, B, Mn and Ba) as sensitive indicators for salinization and freshening events in coastal aquifers. Chem Geol 441:35–46

    Article  CAS  Google Scholar 

  • Saby M, Larocque M, Pinti DL et al (2016) Linking groudwater quality to residence times and regional geology in the St. Lawrence Lowlands, southern Quebec. Canada Appl Geochem 65:1–13

    Article  CAS  Google Scholar 

  • Santucci L, Carol E, Kruse E (2016) Identification of palaeo-seawater intrusion in groundwater using minor ions in a semi-confined aquifer of the Rio de la Plata littoral (Argentina). Sci Total Environ 566–567:1640–1648

    Article  CAS  Google Scholar 

  • Seddique AA, Masuda H, Anma R et al (2019) Hydrogeochemical and isotopic signatures for the identification of seawater intrusion in the paleobeach aquifer of Cox’s Bazar city and its surrounding area, south-east Bangladesh. Groundw Sustain Dev 9:1–12

    Google Scholar 

  • Sun H, Alexander J, Gove B, Koch M (2015) Mobilization of arsenic, lead, and mercury under conditions of sea water intrusion and road deicing salt application. J Contam Hydrol 180:12–24

    Article  CAS  Google Scholar 

  • Swartz CH, Blute NK, Badruzzman B et al (2004) Mobility of arsenic in a Bangladesh aquifer: inferences from geochemical profiles, leaching data, and mineralogical characterization. Geochim Cosmochim Actasmochim Acta 68:4539–4557

    Article  CAS  Google Scholar 

  • Thibaudeau P, Veillette J (2005) Géologie des formations en surface et histoire glaciaire. Commission géologique du Canada, Lac Chicobi, Québec

  • Tremblay R, Walter J, Chesnaux R, Boumaiza L (2021) Investigating the potential role of geological context on groundwater quality: a case study of the Grenville and St. Lawrence Platform geological provinces in Quebec. Canada Geosci 11:1–21

    Google Scholar 

  • Vikas C, Kushwaha R, Ahmad W et al (2013) Genesis and geochemistry of high fluorine-bearing groundwater from a semi-arid terrain of NW India. Environ Earth Sci 68:289–305

    Article  CAS  Google Scholar 

  • Walter J (2018) Modèle d’évolution naturelle de l’eau souterraine dans une région du Bouclier Canadien à partir de la détermination de pôles hydrogéochimiques régionaux. Ph.D Thesis, Université du Québec à Chicoutimi, Québec, Canada

  • Walter J, Chesnaux R, Cloutier V, Gaboury D (2017) The influence of water/rock−water/clay interactions and mixing in the salinization processes of groundwater. J Hydrol Reg Stud 13:168–188

    Article  Google Scholar 

  • Walter J, Chesnaux R, Gaboury D, Cloutier V (2019) Subsampling of regional-scale database for improving multivariate analysis interpretation of groundwater chemical evolution and ion sources. Geosci 9:1–32

    Article  CAS  Google Scholar 

  • Walter J, Rouleau A, Chesnaux R et al (2018) Characterization of general and singular features of major aquifer systems in the Saguenay-Lac-Saint-Jean region. Can Water Resour J 43:75–91

    Article  Google Scholar 

  • Wen T, Castro MC, Hall CM et al (2015) Constraining groundwater flow in the glacial drift and saginaw aquifers in the Michigan Basin through helium concentrations and isotopic ratios. Geofluids 16:3–25

    Article  Google Scholar 

  • WHO (World Health Organization) (2017) Guidelines for drinking-water quality, 4th edition, incorporating the 1st addendum. ISBN: 978–92–4–154995–0

  • Wigley T (1973) The incongruent solution of dolomite. Geochim Cosmochim Acta 37:1397–1402

    Article  CAS  Google Scholar 

  • Williams DD, Williams NE, Cao Y (2000) Road salt contamination of groundwater in a major metropolitan area and development of a biological index to monitor its impact. Water Res 34:127–138

    Article  CAS  Google Scholar 

  • Yadav KK, Kumar V, Gupta N et al (2019) Human health risk assessment: study of a population exposed to fluoride through groundwater of Agra city, India. Regul Toxicol Pharmacol 106:68–80

    Article  CAS  Google Scholar 

  • Yang JY, Wang M, Lu J et al (2020) Fluorine in the environment in an endemic fluorosis area in Southwest, China. Environ Res 184:1–10

    Article  CAS  Google Scholar 

  • Zango MS, Sunkari ED, Abu M, Lermi A (2019) Hydrogeochemical controls and human health risk assessment of groundwater fluoride and boron in the semiarid North East region of Ghana. J Geochemical Explor 207:1–21

    Article  CAS  Google Scholar 

  • Zendehbad M, Cepuder P, Loiskandl W, Stumpp C (2019) Source identification of nitrate contamination in the urban aquifer of Mashhad. Iran J Hydrol Reg Stud 25:1–14

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Quebec Ministry of the Environment (Ministère de l'Environnement et de la Lutte contre les Changements Climatiques) that funded this project through the Groundwater Knowledge Acquisition Program (Programme d’acquisition de connaissances sur les eaux souterraines—PACES). The authors would like to thank two anonymous reviewers for their valuable comments and suggestions on improving this manuscript.

Funding

This project is funded by the Quebec Ministry of the Environment (Ministère de l'Environnement et de la Lutte contre les Changements Climatiques) through the Groundwater Knowledge Acquisition Program (Programme d’acquisition de connaissances sur les eaux souterraines—PACES).

Author information

Authors and Affiliations

Authors

Contributions

The first draft of the manuscript was written by Dr. Lamine Boumaiza and all authors (Julien Walter, Romain Chesnaux, Randy L. Stotler, Tao Wen, Karen H. Johannesson, Karthikeyan Brindha, and Frédéric Huneau) commented on previous versions of the manuscript. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Lamine Boumaiza.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Marcus Schulz

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 314 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boumaiza, L., Walter, J., Chesnaux, R. et al. Chloride-salinity as indicator of the chemical composition of groundwater: empirical predictive model based on aquifers in Southern Quebec, Canada. Environ Sci Pollut Res 29, 59414–59432 (2022). https://doi.org/10.1007/s11356-022-19854-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-19854-z

Keywords

Navigation