Skip to main content
Erschienen in: The International Journal of Life Cycle Assessment 4/2014

01.04.2014 | LCI METHODOLOGY AND DATABASES

Framework for LCI modelling of releases of manufactured nanomaterials along their life cycle

verfasst von: Roland Hischier

Erschienen in: The International Journal of Life Cycle Assessment | Ausgabe 4/2014

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Purpose

Numerous publications in the last years stressed the growing importance of nanotechnology in our society, highlighting both positive as well as in the negative topics. Life cycle assessment (LCA) is amongst the most established and best-developed tool in the area of product-related assessment. In order to use this tool in the area of nanotechnology, clear rules of how emissions of nanomaterials should be taken into account on the level of life cycle inventory (LCI) modelling are required—i.e. what elements and properties need to be reported for an emission of a nanomaterial. The objective of this paper is to describe such a framework for an adequate and comprehensive integration of releases of nanomaterials.

Methods

With a three-step method, additional properties are identified that are necessary for an adequate integration of releases of nanomaterials into LCA studies.

Result and discussion

In the first step, a comprehensive characterisation of the release of a nanomaterial is compiled—based on reviewing scientific publications, results from expert workshops and publications from public authorities and international organisations. In the second step, this comprehensive overview is refined to a list containing only those properties that are effectively relevant for LCA studies—i.e. properties that influence the impacts in the areas of human toxicity and ecotoxicity, respectively. For this, an academic approach is combined with a second, more practical, view point, resulting together in a prioritisation of this list of properties. Finally, in a third step, these findings are translated into the LCA language—by showing how such additional properties could be integrated into the current LCA data formats for a broader use by the LCA community.

Conclusions

As a compromise between scholarly knowledge and the (toxicological) reality, this paper presents a clear proposal of an LCI modelling framework for the integration of releases of nanomaterials in LCA studies. However, only the broad testing of this framework in various situations will show if the suggested simplifications and reductions keep the characterisation of releases of nanomaterials specific enough and/or if assessment is accurate enough. Therefore, a next step has to come from the impact assessment, by the development of characterisation factors as a function of size and shape of such releases.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
Nanomaterial‘ is defined in EC 2011, as ‘a natural, incidental or manufactured material containing particles, in an unbound state or as an aggregate or as an agglomerate and where, for 50 % or more of the particles in the number size distribution, one or more external dimensions is in the size range 1–100 nm’.
 
2
According to ISO 2010, releases having one or more dimensions in the nanoscale (i.e. in the range 1–100 nm) are defined as ‘nano objects’; and comprise ‘nanoparticles’ (all three dimensions in the nanoscale), ‘nanofibres’ (two dimensions in nanoscale) and ‘nanoplates’ (one dimension in nanoscale). As reported, e.g. in Klaessig et al. 2011, ‘several reports have been issued that differ in definitions used for nanotechnology’—therefore, here the term ‘manufactured nanomaterial’ (MNM) is used for both, the material as well as its releases along the life cycle.
 
3
International Reference Life Cycle Data System (ILCD)—published by EC-JRC in order to ‘to provide guidance for consistent and quality assured Life Cycle Assessment data and studies’.
 
4
The term ‘bulk’ stands in this paper for materials that does not fit into the European Commission’s definition of (manufactured) nanomaterials; i.e. material that has <50 % of its particles in the number size distribution, one or more external dimensions is in the size range of 1–100 nm.
 
5
Prof. Dr. Harald Krug, Dr. Peter Wick (both for human toxicity) and Prof. Dr. Bernd Nowack (for ecotoxicity) have been interviewed in the framework of these activities.
 
6
Emissions to air: non-urban air or from high stacks/low population density, long term/lower stratosphere + upper troposphere/urban air close to ground/indoor/unspecified—emissions to water: ground-/ground-, long-term/ocean/surface water/unspecified—emissions to soil: agricultural/forestry/industrial/unspecified (more in Weidema et al. 2012)
 
7
As in reality most (non-fibrous) particles are not of a spherical form (Merkus 2009b); Merkus suggests in his publication for a less ambiguous way of reporting the use of the ‘equivalent sphere concept’. However, within the ‘equivalent sphere concept’ various approaches exist (see, e.g. Fig. 2.2 in Merkus 2009b), which depend on the actual measurement technique used.
 
8
According to Wikipedia, intrinsic means ‘an essential or inherent property of a system or of a material itself or within. It is independent of how much of the material is present and is independent of the form the material, e.g., one large piece or a collection of smaller pieces. Intrinsic properties are dependent mainly on the chemical composition or structure of the material’.
 
9
SCENIHR: Scientific Committee on Emerging and Newly Identified Health Risks.
 
Literatur
Zurück zum Zitat Alvarez PJJ, Colvin VL, Lead JR, Stone V (2009) Research priorities to advance eco-responsible nanotechnology. ACS Nano 3(7):1616–1619CrossRef Alvarez PJJ, Colvin VL, Lead JR, Stone V (2009) Research priorities to advance eco-responsible nanotechnology. ACS Nano 3(7):1616–1619CrossRef
Zurück zum Zitat Aschberger K, Micheletti C, Sokull Klüttgen B, Christensen FM (2011) Analysis of currently available data for characterising the risk of engineered nanomaterials to the environment and human health—lessons learned from four case studies. Environ Int 37(6):1143–1156CrossRef Aschberger K, Micheletti C, Sokull Klüttgen B, Christensen FM (2011) Analysis of currently available data for characterising the risk of engineered nanomaterials to the environment and human health—lessons learned from four case studies. Environ Int 37(6):1143–1156CrossRef
Zurück zum Zitat Bouwmeester H, Lynch I, Marvin HJP, Dawson KA, Berges M, Braguer D, Bryne HJ, Casey A, Chambers G, Clift MJD, Elia G, Fernandes TF, Fjellsbo LM, Hatto P, Juillerat L, Klein C, Kreyling WG, Nickel C, Riediker M, Stone V (2011) Minimal analytical characterisation of engineered nanomaterials needed for hazard assessment in biological matrices. Nanotoxicology 5(1):1–11CrossRef Bouwmeester H, Lynch I, Marvin HJP, Dawson KA, Berges M, Braguer D, Bryne HJ, Casey A, Chambers G, Clift MJD, Elia G, Fernandes TF, Fjellsbo LM, Hatto P, Juillerat L, Klein C, Kreyling WG, Nickel C, Riediker M, Stone V (2011) Minimal analytical characterisation of engineered nanomaterials needed for hazard assessment in biological matrices. Nanotoxicology 5(1):1–11CrossRef
Zurück zum Zitat Card JW, Magnuson BA (2009) Letter to the editor: proposed minimum characterization parameters for studies on food and food-related nanomaterials. J Food Sci 74(8):vi–viiCrossRef Card JW, Magnuson BA (2009) Letter to the editor: proposed minimum characterization parameters for studies on food and food-related nanomaterials. J Food Sci 74(8):vi–viiCrossRef
Zurück zum Zitat Charron A, Harrison RM (2009) Atmospheric nanoparticles. In: Lead JR, Smith E (eds) Environmental and human health impacts of nanotechnology. Blackwell, London, pp 163–209 Charron A, Harrison RM (2009) Atmospheric nanoparticles. In: Lead JR, Smith E (eds) Environmental and human health impacts of nanotechnology. Blackwell, London, pp 163–209
Zurück zum Zitat Choi S-J, Choy J-H (2011) Effect of physico-chemical parameters on the toxicity of inorganic nanoparticles. J Mater Chem 21:5547–5554CrossRef Choi S-J, Choy J-H (2011) Effect of physico-chemical parameters on the toxicity of inorganic nanoparticles. J Mater Chem 21:5547–5554CrossRef
Zurück zum Zitat Clark K, van Tongeren M, Christensen FM, Brouwer D, Nowack B, Gottschalk F, Micheletti C, Schmid K, Gerritsen R, Aitken R, Vaquero C, Gkanis V, Housiades C, López de Ipiña JM, Riediker M (2012) Limitations and information needs for engineered nanomaterial-specific exposure estimation and scenarios: recommendations for improved reporting practices. J Nanoparticle Res 14:970. doi:10.1007/s11051-012-0970-x CrossRef Clark K, van Tongeren M, Christensen FM, Brouwer D, Nowack B, Gottschalk F, Micheletti C, Schmid K, Gerritsen R, Aitken R, Vaquero C, Gkanis V, Housiades C, López de Ipiña JM, Riediker M (2012) Limitations and information needs for engineered nanomaterial-specific exposure estimation and scenarios: recommendations for improved reporting practices. J Nanoparticle Res 14:970. doi:10.​1007/​s11051-012-0970-x CrossRef
Zurück zum Zitat Crane M, Handy RD, Garrod J, Owen R (2008) Ecotoxicity test methods and environmental hazard assessment for engineered nanoparticles. Ecotoxicology 17:412–437CrossRef Crane M, Handy RD, Garrod J, Owen R (2008) Ecotoxicity test methods and environmental hazard assessment for engineered nanoparticles. Ecotoxicology 17:412–437CrossRef
Zurück zum Zitat de Figueirêdo MCB, Rosa MF, Ugaya CML, Moreira de Souza Filho MS, Carneiro da Silva Braid AC, Braid AC, de Melo LFL (2012) Life cycle assessment of cellulose nanowhiskers. J Clean Prod 35:130–139CrossRef de Figueirêdo MCB, Rosa MF, Ugaya CML, Moreira de Souza Filho MS, Carneiro da Silva Braid AC, Braid AC, de Melo LFL (2012) Life cycle assessment of cellulose nanowhiskers. J Clean Prod 35:130–139CrossRef
Zurück zum Zitat Demou E, Stark WJ, Hellweg S (2009) Particle emission and exposure during nanoparticle synthesis in research laboratories. Ann Occup Hyg 53(8):829–838CrossRef Demou E, Stark WJ, Hellweg S (2009) Particle emission and exposure during nanoparticle synthesis in research laboratories. Ann Occup Hyg 53(8):829–838CrossRef
Zurück zum Zitat Donaldson K, Tran CL (2004) An introduction to the short-term toxicology of respirable industrial fibres. Mutat Res 553(1–2):5–9CrossRef Donaldson K, Tran CL (2004) An introduction to the short-term toxicology of respirable industrial fibres. Mutat Res 553(1–2):5–9CrossRef
Zurück zum Zitat EC (2011) Commission Recommendation of 18 October 2011 on the definition of nanomaterial. 2011/696/EU. Official Journal of the European Union, Brussels EC (2011) Commission Recommendation of 18 October 2011 on the definition of nanomaterial. 2011/696/EU. Official Journal of the European Union, Brussels
Zurück zum Zitat EC-JRC (2010a) Analysis of existing environmental impact assessment methodologies for use in life cycle assessment. ILCD handbook—International Reference Life Cycle Data System. European Commission—Joint Research Centre (EC-JRC), Ispra EC-JRC (2010a) Analysis of existing environmental impact assessment methodologies for use in life cycle assessment. ILCD handbook—International Reference Life Cycle Data System. European Commission—Joint Research Centre (EC-JRC), Ispra
Zurück zum Zitat EC-JRC (2010b) Framework and requirements for life cycle impact assessment models and indicators. ILCD handbook—International Reference Life Cycle Data System. European Commission—Joint Research Centre (EC-JRC), Ispra EC-JRC (2010b) Framework and requirements for life cycle impact assessment models and indicators. ILCD handbook—International Reference Life Cycle Data System. European Commission—Joint Research Centre (EC-JRC), Ispra
Zurück zum Zitat EC-JRC (2010c) General guide for life cycle assessment—detailed guidance. ILCD handbook—International Reference Life Cycle Data System. European Commission—Joint Research Centre (EC-JRC), Ispra EC-JRC (2010c) General guide for life cycle assessment—detailed guidance. ILCD handbook—International Reference Life Cycle Data System. European Commission—Joint Research Centre (EC-JRC), Ispra
Zurück zum Zitat EC-JRC (2010d) Specific guide for life cycle inventory datasets. ILCD handbook—International Reference Life Cycle Data System. European Commission—Joint Research Centre (EC-JRC), Ispra EC-JRC (2010d) Specific guide for life cycle inventory datasets. ILCD handbook—International Reference Life Cycle Data System. European Commission—Joint Research Centre (EC-JRC), Ispra
Zurück zum Zitat EC-JRC (2011) Recommendations for life cycle impact assessment in the European context—based on existing environmental impact assessment models and factors. ILCD handbook—International Reference Life Cycle Data System. European Commission—Joint Research Centre (EC-JRC), Ispra EC-JRC (2011) Recommendations for life cycle impact assessment in the European context—based on existing environmental impact assessment models and factors. ILCD handbook—International Reference Life Cycle Data System. European Commission—Joint Research Centre (EC-JRC), Ispra
Zurück zum Zitat Eckelman MJ, Mauter MS, Isaacs JA, Elimelech M (2012) New perspectives on nanomaterial aquatic ecotoxicity: production impacts exceed direct exposure impacts for carbon nanotubes. Environ Sci Technol 46:2902–2910CrossRef Eckelman MJ, Mauter MS, Isaacs JA, Elimelech M (2012) New perspectives on nanomaterial aquatic ecotoxicity: production impacts exceed direct exposure impacts for carbon nanotubes. Environ Sci Technol 46:2902–2910CrossRef
Zurück zum Zitat ecoinvent Centre (2013) ecoinvent data v3.01. Swiss Centre for Life Cycle Inventories, Dübendorf ecoinvent Centre (2013) ecoinvent data v3.01. Swiss Centre for Life Cycle Inventories, Dübendorf
Zurück zum Zitat EC-SCENIHR (2009) Risk assessment of products of nanotechnologies. European Commission—Scientific Committee on Emerging and Newly Identified Health Risks (EC-SCENIHR), Brussels EC-SCENIHR (2009) Risk assessment of products of nanotechnologies. European Commission—Scientific Committee on Emerging and Newly Identified Health Risks (EC-SCENIHR), Brussels
Zurück zum Zitat ED, DP (2007) Nano risk framework. Environmental Defense/DuPont, Washington/Wilmington ED, DP (2007) Nano risk framework. Environmental Defense/DuPont, Washington/Wilmington
Zurück zum Zitat Euliss LE, DuPont JA, Gratton S, DeSimone J (2006) Imparting size, shape, and composition control of materials for nanomedicine. Chem Soc Rev 35:1095–1104. doi:10.1039/b600913c CrossRef Euliss LE, DuPont JA, Gratton S, DeSimone J (2006) Imparting size, shape, and composition control of materials for nanomedicine. Chem Soc Rev 35:1095–1104. doi:10.​1039/​b600913c CrossRef
Zurück zum Zitat Farré M, Sanchís J, Barceló D (2011) Analysis and assessment of the occurrence, the fate and the behavior of nanomaterials in the environment. Trends Anal Chem 30(3):517–527CrossRef Farré M, Sanchís J, Barceló D (2011) Analysis and assessment of the occurrence, the fate and the behavior of nanomaterials in the environment. Trends Anal Chem 30(3):517–527CrossRef
Zurück zum Zitat Finnveden G, Hauschild M, Ekvall T, Guinee J, Heijungs R, Hellweg S, Koehler A, Pennington D, Suh S (2009) Recent developments in life cycle assessment. J Environ Manag 91:1–21CrossRef Finnveden G, Hauschild M, Ekvall T, Guinee J, Heijungs R, Hellweg S, Koehler A, Pennington D, Suh S (2009) Recent developments in life cycle assessment. J Environ Manag 91:1–21CrossRef
Zurück zum Zitat Frischknecht R, Jungbluth N, Althaus H-J, Doka G, Dones R, Hischier R, Hellweg S, Nemecek T, Rebitzer G, Spielmann M (2007) Overview and methodology. Swiss Centre for Life Cycle Inventories, Duebendorf Frischknecht R, Jungbluth N, Althaus H-J, Doka G, Dones R, Hischier R, Hellweg S, Nemecek T, Rebitzer G, Spielmann M (2007) Overview and methodology. Swiss Centre for Life Cycle Inventories, Duebendorf
Zurück zum Zitat Fubini B, Ghiazza M, Fenoglio I (2010) Physio-chemical features of engineered nanoparticles relevant to their toxicity. Nanotoxicology 4(4):347–363CrossRef Fubini B, Ghiazza M, Fenoglio I (2010) Physio-chemical features of engineered nanoparticles relevant to their toxicity. Nanotoxicology 4(4):347–363CrossRef
Zurück zum Zitat Goedkoop M, Heijungs R, Huijbregts MAJ, de Schreyver A, Struijs J, Van Zelm R (2012) ReCiPe 2008—a life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level. First edition (revised)/Report I: Characterisation. VROM—Ministery of Housing Spatial Planning and Environment, Den Haag Goedkoop M, Heijungs R, Huijbregts MAJ, de Schreyver A, Struijs J, Van Zelm R (2012) ReCiPe 2008—a life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level. First edition (revised)/Report I: Characterisation. VROM—Ministery of Housing Spatial Planning and Environment, Den Haag
Zurück zum Zitat Gottschalk F, Nowack B (2011) The release of engineered nanomaterials to the environment. J Environ Monit 13:1145–1155CrossRef Gottschalk F, Nowack B (2011) The release of engineered nanomaterials to the environment. J Environ Monit 13:1145–1155CrossRef
Zurück zum Zitat Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43:9216–9222CrossRef Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43:9216–9222CrossRef
Zurück zum Zitat Handy RD, Owen R, Valsami-Jones E (2008a) The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs. Ecotoxicology 17(5):315–325CrossRef Handy RD, Owen R, Valsami-Jones E (2008a) The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs. Ecotoxicology 17(5):315–325CrossRef
Zurück zum Zitat Handy RD, Von der Kammer F, Lead JR, Hassellöv M, Owen R, Crane M (2008b) The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology 17(4):287–314CrossRef Handy RD, Von der Kammer F, Lead JR, Hassellöv M, Owen R, Crane M (2008b) The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology 17(4):287–314CrossRef
Zurück zum Zitat Hansen SF, Larsen BH, Olsen SI, Baun A (2007) Categorization framework to aid hazard identification of nanomaterials. Nanotoxicology 1(3):243–250CrossRef Hansen SF, Larsen BH, Olsen SI, Baun A (2007) Categorization framework to aid hazard identification of nanomaterials. Nanotoxicology 1(3):243–250CrossRef
Zurück zum Zitat Hassellöv M, Kägi R (2009) Analysis and characterization of manufactured nanoparticles in aquatic environments. In: Lead JR, Smith E (eds) Environmental and human health impacts of nanotechnology. Blackwell, London, pp 211–266 Hassellöv M, Kägi R (2009) Analysis and characterization of manufactured nanoparticles in aquatic environments. In: Lead JR, Smith E (eds) Environmental and human health impacts of nanotechnology. Blackwell, London, pp 211–266
Zurück zum Zitat Hischier R, Walser T (2012) Environmental sustainability assessment of engineered nanomaterials: state of art & strategies to overcome existing gaps. Sci Total Environ 425:271–282CrossRef Hischier R, Walser T (2012) Environmental sustainability assessment of engineered nanomaterials: state of art & strategies to overcome existing gaps. Sci Total Environ 425:271–282CrossRef
Zurück zum Zitat Hischier R, Baitz M, Bretz R, Frischknecht R, Jungbluth N, Marheineke T, McKeown P, Oele M, Osset P, Renner I, Skone T, Wessman H, de Beaufort ASH (2001) Guidelines for consistent reporting of exchanges from/to nature within life cycle inventories (LCI). Int J Life Cycle Assess 6(4):192–198 Hischier R, Baitz M, Bretz R, Frischknecht R, Jungbluth N, Marheineke T, McKeown P, Oele M, Osset P, Renner I, Skone T, Wessman H, de Beaufort ASH (2001) Guidelines for consistent reporting of exchanges from/to nature within life cycle inventories (LCI). Int J Life Cycle Assess 6(4):192–198
Zurück zum Zitat Horie M, Fujita K (2011) Toxicity of metal oxides nanoparticles. Adv Mol Toxicol 5:145–178 Horie M, Fujita K (2011) Toxicity of metal oxides nanoparticles. Adv Mol Toxicol 5:145–178
Zurück zum Zitat ISO (2006a) Environmental management—life cycle assessment—principles and framework. International Standardization Organization (ISO), European Standard EN ISO 14′040, Geneva ISO (2006a) Environmental management—life cycle assessment—principles and framework. International Standardization Organization (ISO), European Standard EN ISO 14′040, Geneva
Zurück zum Zitat ISO (2006b) Environmental management—life cycle assessment—requirements and guidelines. International Stanardisation Organisation (ISO), European Standard EN ISO 14′044, Geneva ISO (2006b) Environmental management—life cycle assessment—requirements and guidelines. International Stanardisation Organisation (ISO), European Standard EN ISO 14′044, Geneva
Zurück zum Zitat ISO (2010) Nanotechnologies—vocabulary—part 1: core terms. International Stanardisation Organisation (ISO), Technical Specification ISO/TS 80004-1, Geneva ISO (2010) Nanotechnologies—vocabulary—part 1: core terms. International Stanardisation Organisation (ISO), Technical Specification ISO/TS 80004-1, Geneva
Zurück zum Zitat ISO (2012) Nanotechnologies—guidance on physico-chemical characterization of engineered nanoscale materials for toxicologic assessment. International Stanardisation Organisation (ISO), Technical Report ISO/TR 13014:2012, Geneva ISO (2012) Nanotechnologies—guidance on physico-chemical characterization of engineered nanoscale materials for toxicologic assessment. International Stanardisation Organisation (ISO), Technical Report ISO/TR 13014:2012, Geneva
Zurück zum Zitat Klaessig F, Marrapese M, Shuji A (2011) Current perspectives in nanotechnology terminology and nomenclature. In: Murashov V, Howard J (eds) Nanotechnology standards. Springer, Berlin. doi:10.1007/978-1-4419-7853-0_2 Klaessig F, Marrapese M, Shuji A (2011) Current perspectives in nanotechnology terminology and nomenclature. In: Murashov V, Howard J (eds) Nanotechnology standards. Springer, Berlin. doi:10.​1007/​978-1-4419-7853-0_​2
Zurück zum Zitat Klaine SJ, Koelmans AA, Horne N, Carley S, Handy RD, Kapustka L, Nowack B, Von der Kammer F (2012) Paradigms to assess the environmental impact of manufactured nanomaterials. Environ Toxicol Chem 31(1):3–14CrossRef Klaine SJ, Koelmans AA, Horne N, Carley S, Handy RD, Kapustka L, Nowack B, Von der Kammer F (2012) Paradigms to assess the environmental impact of manufactured nanomaterials. Environ Toxicol Chem 31(1):3–14CrossRef
Zurück zum Zitat Köhler A, Som C, Helland A, Gottschalk F (2008) Studying the potential release of carbon nanotubes throughout the application life cycle. J Clean Prod 16(8–9):927–937CrossRef Köhler A, Som C, Helland A, Gottschalk F (2008) Studying the potential release of carbon nanotubes throughout the application life cycle. J Clean Prod 16(8–9):927–937CrossRef
Zurück zum Zitat Krug HF, Wick P (2011) Nanotoxicology: an interdisciplinary challenge. Angew Chem Int Ed Engl 50:1260–1278CrossRef Krug HF, Wick P (2011) Nanotoxicology: an interdisciplinary challenge. Angew Chem Int Ed Engl 50:1260–1278CrossRef
Zurück zum Zitat Krug HF, Wick P, Nowack B, Müller N (2013) Human and ecotoxicity of synthetic nanomaterials. Initial insights for major accident prevention. Environmental Studies No. 1301. Swiss Federal Office for the Environment (FOEN), Bern Krug HF, Wick P, Nowack B, Müller N (2013) Human and ecotoxicity of synthetic nanomaterials. Initial insights for major accident prevention. Environmental Studies No. 1301. Swiss Federal Office for the Environment (FOEN), Bern
Zurück zum Zitat Labille J, Brant J (2010) Stability of nanoparticles in water. Nanomedicine (Lond) 5(6):985–998CrossRef Labille J, Brant J (2010) Stability of nanoparticles in water. Nanomedicine (Lond) 5(6):985–998CrossRef
Zurück zum Zitat LeCorre D, Hohenthal C, Dufresne A, Bras J (2013) Comparative sustainability assessment of starch nanocrystals. J Polym Environ 21(1):71–80CrossRef LeCorre D, Hohenthal C, Dufresne A, Bras J (2013) Comparative sustainability assessment of starch nanocrystals. J Polym Environ 21(1):71–80CrossRef
Zurück zum Zitat Lin D, Tian X, Wu F, Xing B (2010) Fate and transport of engineered nanomaterials in the environment. J Environ Qual 39:1896–1908CrossRef Lin D, Tian X, Wu F, Xing B (2010) Fate and transport of engineered nanomaterials in the environment. J Environ Qual 39:1896–1908CrossRef
Zurück zum Zitat Love SA, Maurer-Jones MA, Thompson JW, Lin Y-S, Haynes CL (2012) Assessing nanoparticle toxicity. Annu Rev Anal Chem (Palo Alto, Calif) 5:181–205CrossRef Love SA, Maurer-Jones MA, Thompson JW, Lin Y-S, Haynes CL (2012) Assessing nanoparticle toxicity. Annu Rev Anal Chem (Palo Alto, Calif) 5:181–205CrossRef
Zurück zum Zitat Lowry GV, Hotze EM, Bernhardt ES, Dionysiou D, Pedersen JA, Wiesner MR, Xing B (2010) Environmental occurrences, behavior, fate and ecological effects of nanomaterials: an introduction to the special series. J Environ Qual 39:1867–1874CrossRef Lowry GV, Hotze EM, Bernhardt ES, Dionysiou D, Pedersen JA, Wiesner MR, Xing B (2010) Environmental occurrences, behavior, fate and ecological effects of nanomaterials: an introduction to the special series. J Environ Qual 39:1867–1874CrossRef
Zurück zum Zitat Merkus HG (2009a) Overview of size characterisation techniques. In: Merkus HG (ed) Particle size measurements: fundamentals, practice, quality. vol 17 of Particle Technology Series. Springer, Dordrecht Merkus HG (2009a) Overview of size characterisation techniques. In: Merkus HG (ed) Particle size measurements: fundamentals, practice, quality. vol 17 of Particle Technology Series. Springer, Dordrecht
Zurück zum Zitat Merkus HG (2009b) Particle size, size distribution and shape. In: Merkus HG (ed) Particle size measurements: fundamentals, practice, quality. vol 17 of Particle Technology Series. Springer, Dordrecht Merkus HG (2009b) Particle size, size distribution and shape. In: Merkus HG (ed) Particle size measurements: fundamentals, practice, quality. vol 17 of Particle Technology Series. Springer, Dordrecht
Zurück zum Zitat MINChar Initiative (2008) Recommended minimum physical and chemical parameters for characterizing nanomaterials on toxicology studies: MINChar physiochemical parameters list. Woodrow Wilson International Center for Scholars: Washington MINChar Initiative (2008) Recommended minimum physical and chemical parameters for characterizing nanomaterials on toxicology studies: MINChar physiochemical parameters list. Woodrow Wilson International Center for Scholars: Washington
Zurück zum Zitat Nanocap (2009) Measurement techniques for nanoparticles Nanocap (2009) Measurement techniques for nanoparticles
Zurück zum Zitat Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627CrossRef Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627CrossRef
Zurück zum Zitat Ness B, Urbel-Piirsalu E, Anderberg S, Olsson L (2007) Categorising tools for sustainability assessment. Ecol Econ 60:498–508CrossRef Ness B, Urbel-Piirsalu E, Anderberg S, Olsson L (2007) Categorising tools for sustainability assessment. Ecol Econ 60:498–508CrossRef
Zurück zum Zitat Nowack B, Ranville JF, Diamond S, Gallego-Urrea JA, Metcalfe C, Rose J, Horne N, Koelmans AA, Klaine SJ (2012) Potential scenarios for nanomaterial release and subsequent alteration in the environment. Environ Toxicol Chem 31(1):50–59CrossRef Nowack B, Ranville JF, Diamond S, Gallego-Urrea JA, Metcalfe C, Rose J, Horne N, Koelmans AA, Klaine SJ (2012) Potential scenarios for nanomaterial release and subsequent alteration in the environment. Environ Toxicol Chem 31(1):50–59CrossRef
Zurück zum Zitat Oberdörster G, Stone V, Donaldson K (2007) Toxicology of nanoparticles: a historical perspective. Nanotoxicology 1(1):2–25CrossRef Oberdörster G, Stone V, Donaldson K (2007) Toxicology of nanoparticles: a historical perspective. Nanotoxicology 1(1):2–25CrossRef
Zurück zum Zitat OECD (2010) Guidance manual for the testing of manufactured nanomaterials: OECD Sponsorship Programme. Environment, Health and Safety Publications—series on the safety of manufactured nanomaterials. OECD Environment Directorate Environment, Health and Safety Devision, Paris OECD (2010) Guidance manual for the testing of manufactured nanomaterials: OECD Sponsorship Programme. Environment, Health and Safety Publications—series on the safety of manufactured nanomaterials. OECD Environment Directorate Environment, Health and Safety Devision, Paris
Zurück zum Zitat OECD (2012) Important issues on risk assessment of manufactured nanomaterials. Environment, Health and Safety Publications—series on the safety of manufactured nanomaterials. OECD Environment Directorate Environment, Health and Safety Devision, Paris OECD (2012) Important issues on risk assessment of manufactured nanomaterials. Environment, Health and Safety Publications—series on the safety of manufactured nanomaterials. OECD Environment Directorate Environment, Health and Safety Devision, Paris
Zurück zum Zitat Ogilvie Hendren C, Mesnard X, Dröge J, Wiesner MR (2011) Estimating production data for five engineered nanomaterials as a basis for exposure assessment. Environ Sci Technol 45:2562–2569CrossRef Ogilvie Hendren C, Mesnard X, Dröge J, Wiesner MR (2011) Estimating production data for five engineered nanomaterials as a basis for exposure assessment. Environ Sci Technol 45:2562–2569CrossRef
Zurück zum Zitat Peralta-Videa JR, Zhao L, Lopez-Moreno ML, de la Rosa G, Hong J, Gardea-Torresdey JL (2011) Nanomaterials and the environment: a review from the biennium 2008–2010. J Hazard Mater 186:1–15CrossRef Peralta-Videa JR, Zhao L, Lopez-Moreno ML, de la Rosa G, Hong J, Gardea-Torresdey JL (2011) Nanomaterials and the environment: a review from the biennium 2008–2010. J Hazard Mater 186:1–15CrossRef
Zurück zum Zitat Piccinno F, Gottschalk F, Seeger S, Nowack B (2012) Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J Nanoparticle Res 14(1109):11 Piccinno F, Gottschalk F, Seeger S, Nowack B (2012) Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J Nanoparticle Res 14(1109):11
Zurück zum Zitat Rosenbaum R, Bachmann TM, Swirsky Gold L, Huijbregts MAJ, Jolliet O, Juraske R, Koehler A, Larsen HF, MacLeod M, Margni M, McKone T, Payet J, Schuhmacher M, Van de Meent D, Hauschild M (2008) USEtox—the UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. Int J Life Cycle Assess 13:532–546 Rosenbaum R, Bachmann TM, Swirsky Gold L, Huijbregts MAJ, Jolliet O, Juraske R, Koehler A, Larsen HF, MacLeod M, Margni M, McKone T, Payet J, Schuhmacher M, Van de Meent D, Hauschild M (2008) USEtox—the UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. Int J Life Cycle Assess 13:532–546
Zurück zum Zitat Salieri B (2013) The challenges and the limitations in life cycle impact assessment for metal oxide nanoparticles, a case study on nano-TiO2. Università di Bologna, Bologna Salieri B (2013) The challenges and the limitations in life cycle impact assessment for metal oxide nanoparticles, a case study on nano-TiO2. Università di Bologna, Bologna
Zurück zum Zitat Sanchís J, Farré M, Barceló D (2012) Analysis and Fate of Organic Nanomaterials in Environmental Samples. Comprehensive Analytical Chemistry 59 (Chapter 4):131-168 Sanchís J, Farré M, Barceló D (2012) Analysis and Fate of Organic Nanomaterials in Environmental Samples. Comprehensive Analytical Chemistry 59 (Chapter 4):131-168
Zurück zum Zitat Sayes CM, Warheit DB (2009) Characterisation of nanomaterials for toxicity assessment. Wiley Interdiscip Rev Nanomed Nanobiotechnol 1(6):660–670CrossRef Sayes CM, Warheit DB (2009) Characterisation of nanomaterials for toxicity assessment. Wiley Interdiscip Rev Nanomed Nanobiotechnol 1(6):660–670CrossRef
Zurück zum Zitat Schrand AM, Rahman MF, Hussain SM, Schlager JJ, Smith DA, Syed AF (2010) Metal-based nanoparticles and their toxicity assessment. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2(5):544–568CrossRef Schrand AM, Rahman MF, Hussain SM, Schlager JJ, Smith DA, Syed AF (2010) Metal-based nanoparticles and their toxicity assessment. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2(5):544–568CrossRef
Zurück zum Zitat Scown TM, van Aerle R, Tyler CR (2010) Review: do engineered nanoparticles pose a significant threat to the aquatic environment? Crit Rev Toxicol 40(7):653–670CrossRef Scown TM, van Aerle R, Tyler CR (2010) Review: do engineered nanoparticles pose a significant threat to the aquatic environment? Crit Rev Toxicol 40(7):653–670CrossRef
Zurück zum Zitat SETAC Guidelines for life-cycle assessment: a “Code of Practice”. SETAC Workshop, Sesimbra (Portugal), March 31 to April 3, 1993. Society of Environmental Toxicology and Chemistry (SETAC), Brussels and Pensacola SETAC Guidelines for life-cycle assessment: a “Code of Practice”. SETAC Workshop, Sesimbra (Portugal), March 31 to April 3, 1993. Society of Environmental Toxicology and Chemistry (SETAC), Brussels and Pensacola
Zurück zum Zitat Sharifi S, Behzadi S, Laurent S, Laird Forrest M, Stroeve P, Mahmoudi M (2012) Toxicity of nanomaterials. Chem Soc Rev 41:2323–2343CrossRef Sharifi S, Behzadi S, Laurent S, Laird Forrest M, Stroeve P, Mahmoudi M (2012) Toxicity of nanomaterials. Chem Soc Rev 41:2323–2343CrossRef
Zurück zum Zitat Smita S, Gupta SK, Bartonova A, Dusinska M, Gutleb AC, Rahman Q (2012) Nanoparticles in the environment: assessment using the causal diagram approach. Environ Health 11(Suppl 1):S13CrossRef Smita S, Gupta SK, Bartonova A, Dusinska M, Gutleb AC, Rahman Q (2012) Nanoparticles in the environment: assessment using the causal diagram approach. Environ Health 11(Suppl 1):S13CrossRef
Zurück zum Zitat Som C, Nowack B, Krug HF, Wick P (2013) Toward the development of decision supporting tools that can be used for safe production and use of nanomaterials. Acc Chem Res 46(3):863–72. doi:10.1021/ar3000458 CrossRef Som C, Nowack B, Krug HF, Wick P (2013) Toward the development of decision supporting tools that can be used for safe production and use of nanomaterials. Acc Chem Res 46(3):863–72. doi:10.​1021/​ar3000458 CrossRef
Zurück zum Zitat Sonnemann G, Vigon B (eds) (2011) Global guidance principles for life cycle assessment databases. A basis for greener processes and products. UNEP/SETAC Life Cycle Initiative. United Nations Environment Programme (UNEP), Paris Sonnemann G, Vigon B (eds) (2011) Global guidance principles for life cycle assessment databases. A basis for greener processes and products. UNEP/SETAC Life Cycle Initiative. United Nations Environment Programme (UNEP), Paris
Zurück zum Zitat Stone V, Hankin S, Aitken R, Aschberger K, Baun A, Christensen F, Fernandes T, Foss Hansen S, Bloch Hartmann N, Hutchison G, Johnston H, Micheletti C, Peters S, Ross B, Sokull-Kluettgen B, Stark D, Tran L (2009) Engineered nanoparticles: review of health and environmental safety (ENRHES). Project final report. Napier University, Edinburgh Stone V, Hankin S, Aitken R, Aschberger K, Baun A, Christensen F, Fernandes T, Foss Hansen S, Bloch Hartmann N, Hutchison G, Johnston H, Micheletti C, Peters S, Ross B, Sokull-Kluettgen B, Stark D, Tran L (2009) Engineered nanoparticles: review of health and environmental safety (ENRHES). Project final report. Napier University, Edinburgh
Zurück zum Zitat Stone V, Nowack B, Baun A, van den Brink N, von der Kammer F, Dusinska M, Handy R, Hankin S, Hassellöv M, Joner E, Fernandes TF (2010) Nanomaterials for environmental studies: classification, reference material issues, and strategies for physico-chemical characterisation. Sci Total Environ 408:1745–1754CrossRef Stone V, Nowack B, Baun A, van den Brink N, von der Kammer F, Dusinska M, Handy R, Hankin S, Hassellöv M, Joner E, Fernandes TF (2010) Nanomaterials for environmental studies: classification, reference material issues, and strategies for physico-chemical characterisation. Sci Total Environ 408:1745–1754CrossRef
Zurück zum Zitat Tiede K, Boxall ABA, Tear SP, Lewis J, David H, Hassellöv M (2008) Detection and characterization of engineered nanoparticles in food and the environment. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 25(7):795–821CrossRef Tiede K, Boxall ABA, Tear SP, Lewis J, David H, Hassellöv M (2008) Detection and characterization of engineered nanoparticles in food and the environment. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 25(7):795–821CrossRef
Zurück zum Zitat Upadhyayula VKK, Meyer DE, Curran MA, Gonzalez MA (2012) Life cycle assessment as a tool to enhance the environmental performance of carbon nanotube products: a review. J Clean Prod 26:37–47CrossRef Upadhyayula VKK, Meyer DE, Curran MA, Gonzalez MA (2012) Life cycle assessment as a tool to enhance the environmental performance of carbon nanotube products: a review. J Clean Prod 26:37–47CrossRef
Zurück zum Zitat Walser T, Demou E, Lang DJ, Hellweg S (2011) Prospective environmental life cycle assessment of nanosilver t-shirts. Environ Sci Technol 45(10):4570–4578CrossRef Walser T, Demou E, Lang DJ, Hellweg S (2011) Prospective environmental life cycle assessment of nanosilver t-shirts. Environ Sci Technol 45(10):4570–4578CrossRef
Zurück zum Zitat Warheit DB, Sayes CM, Reed KL, Swain KA (2008) Health effects related to nanoparticle exposures: environmental, health and safety considerations for assessing hazards and risks. Pharmacol Ther 120(1):35–42CrossRef Warheit DB, Sayes CM, Reed KL, Swain KA (2008) Health effects related to nanoparticle exposures: environmental, health and safety considerations for assessing hazards and risks. Pharmacol Ther 120(1):35–42CrossRef
Zurück zum Zitat Warheit DB, Reed KL, Sayes CM (2009) A role for nanoparticle surface reactivity in facilitating pulmonary toxicity and development of a base set of hazard assays as a component of nanoparticle risk management. Inhal Toxicol 21(S1):61–67CrossRef Warheit DB, Reed KL, Sayes CM (2009) A role for nanoparticle surface reactivity in facilitating pulmonary toxicity and development of a base set of hazard assays as a component of nanoparticle risk management. Inhal Toxicol 21(S1):61–67CrossRef
Zurück zum Zitat Weidema B, Bauer C, Hischier R, Nemecek T, Wernet G (2012) Overview and methodology. Data quality guideline for the ecoinvent database version 3. Final version (revision 2). ecoinvent Centre (Swiss Centre for Life Cycle Inventories), St. Gallen (Switzerland) Weidema B, Bauer C, Hischier R, Nemecek T, Wernet G (2012) Overview and methodology. Data quality guideline for the ecoinvent database version 3. Final version (revision 2). ecoinvent Centre (Swiss Centre for Life Cycle Inventories), St. Gallen (Switzerland)
Metadaten
Titel
Framework for LCI modelling of releases of manufactured nanomaterials along their life cycle
verfasst von
Roland Hischier
Publikationsdatum
01.04.2014
Verlag
Springer Berlin Heidelberg
Erschienen in
The International Journal of Life Cycle Assessment / Ausgabe 4/2014
Print ISSN: 0948-3349
Elektronische ISSN: 1614-7502
DOI
https://doi.org/10.1007/s11367-013-0688-8

Weitere Artikel der Ausgabe 4/2014

The International Journal of Life Cycle Assessment 4/2014 Zur Ausgabe

LCA FOR AGRICULTURAL PRACTICES AND BIOBASED INDUSTRIAL PRODUCTS

Reference and functional unit can change bioenergy pathway choices